English
新闻公告
More
化学进展 2022, Vol. 34 Issue (9): 1935-1946 DOI: 10.7536/PC211226 前一篇   后一篇

• 综述 •

微塑料:生物效应、分析和降解方法综述

周丽1, Abdelkrim Yasmine2, 姜志国2,*(), 于中振1,*(), 曲晋1,*()   

  1. 1 北京化工大学材料科学与工程学院 有机无机复合材料国家重点实验室 北京 100029
    2 北京化工大学 北京市先进功能高分子复合材料重点实验室 北京 100029
  • 收稿日期:2021-12-24 修回日期:2022-01-29 出版日期:2022-09-20 发布日期:2022-04-01

Microplastics: A Review on Biological Effects, Analysis and Degradation Methods

Li Zhou1, Abdelkrim Yasmine2, Zhiguo Jiang2(), Zhongzhen Yu1(), Jin Qu1()   

  1. 1 State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
    2 Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology,Beijing 100029, China
  • Received:2021-12-24 Revised:2022-01-29 Online:2022-09-20 Published:2022-04-01
  • Contact: *qujin@mail.buct.edu.cn(Jin Qu);jiangzg@mail.buct.edu.cn(Zhiguo Jiang);yuzz@mail.buct.edu.cn(Zhongzhen Yu)

微塑料(MPs)的出现引起了全球的广泛关注,它们遍布海洋和陆地的各个环境介质中,造成了严重的环境污染。微塑料通常被定义为粒径小于5 mm的塑料纤维、颗粒或者薄膜,可被生物吸收积累,产生生态风险和健康风险。实际上很多微塑料可达微米乃至纳米级别,肉眼是不可见的,因此也被形象地比作海洋中的“PM2.5”。作为目前学术界和社会各界争论的热点问题,本篇综述旨在系统地介绍环境中微塑料的来源与分布、生物效应以及分析鉴定方法,并重点介绍了微塑料污染的降解策略和研究成果,为今后微塑料降解方法的研究提供了参考。

The emergence of microplastics (MPs) has aroused widespread concern around the world. They spread all over the ocean and land in various environmental media, causing serious environmental pollution. Microplastics are generally defined as plastic fibers, particles or films with a particle size of less than 5 mm, which can be absorbed and accumulated by organisms, causing ecological and health risks. In fact, many microplastics can reach the micron or even nanometer level and are invisible to the naked eye, so they are vividly compared to the “PM2.5” in the ocean. As a hot issue in the current academic and social circles, this review aims to systematically introduce the source and distribution, biological effects, analysis and identification methods of microplastics in the environment, and focus on the degradation strategies and research results of microplastics pollution, providing a reference for the future study of microplastics degradation.

Contents

1 Introduction

2 Biological effects of microplastics

3 Analysis methods of microplastics

3.1 Sample collection

3.2 Sample processing

3.3 Identification of microplastics

4 Degradation of microplastics

4.1 Biodegradation

4.2 Advanced oxidation degradation

4.3 Photocatalytic degradation

5 Conclusion

()
图2 微塑料在人体中的潜在接触途径和颗粒毒性[69]
Fig. 2 Potential pathways of exposure and particle toxicity for microplastics in the human body[69]. Copyright 2020, Elsevier
图1 海水中双酚A在微塑料表面的吸附/释放机理图[51]
Fig. 1 Adsorption/release mechanism diagram of bisphenol A from seawater on microplastic surface[51]. Copyright 2019, American Chemical Society
图3 芽孢杆菌菌株降解微塑料[106]
Fig. 3 Bacillus strain degrades microplastics[106]. Copyright 2017, Elsevier
图4 (a) PS和(b) PE的O/C比值与蚀变时间的相关性[118]
Fig. 4 (a) Correlations between the O/C ratio and alteration time of (a) PS and (b) PE[118]. Copyright 2019, American Chemical Society
图5 基于TiO2/C阴极的类电芬顿(EF-like)技术降解PVC微塑料[119]
Fig. 5 Degradation of PVC microplastics by EF-like technology based on TiO2/C cathode[119]. Copyright 2020, Elsevier
表1 不同反应条件下计算的一级速率常数[120]
Table 1 First order rate constant calculated under different reaction conditions[120]
图6 (a) 一定时间间隔下PS的原位漫反射红外光谱;(b) 紫外光照射前后PS负载TiO2薄膜的热重分析[123]
Fig. 6 (a) In-situ DRIFTs spectrum of PS with a time interval; (b) thermogravimetric analysis of PS loaded TiO2 film before and after UV irradiation[123]. Copyright 2020, Cell Press
图7 光催化模块的光学图像;反应前后微塑料的形貌对比以及光降解副产物[125]
Fig. 7 Optical image of the photocatalytic module; Comparison of morphology of microplastics before and after reaction and photodegradation by-products[125]. Copyright 2021, Elsevier
图8 样品的(a) XRD和(b) FTIR,(c) 裂解气相色谱,(d) 质谱,(e) XPS 测量光谱,(f) 高分辨O 1s[126]
Fig. 8 (a) XRD and (b) FTIR, (c) pyrolysis gas chromatography, (d) mass spectrometry, (e) XPS survey spectra, (f) high-resolution O 1s of the samples[126]. Copyright 2021, Elsevier
表2 在清除剂存在的情况下,提取的HDPE MPs 与C,N-TiO2光催化降解HDPE MPs的CI值比较[124]
Table 2 Comparison of the CI of the as-extracted HDPE MPs with those subjected to visible-light photocatalytic degradation by C,N-TiO2 in the presence of scavengers[124]
[1]
Hammer J, Kraak M H, Parsons J R. Rev Environ Contam Toxicol. 2012, 220: 1.

doi: 10.1007/978-1-4614-3414-6_1     pmid: 22610295
[2]
MacArthur D E, Waughray D, Stuchtey R M. World Economic Forum. 2016.
[3]
Alimi O S, Farner Budarz J, Hernandez L M, Tufenkji N. Environ. Sci. Technol., 2018, 52(4): 1704.

doi: 10.1021/acs.est.7b05559     URL    
[4]
Dris R, Gasperi J, Mirande C, Mandin C, Guerrouache M, Langlois V, Tassin B. Environ. Pollut., 2017, 221: 453.

doi: 10.1016/j.envpol.2016.12.013     URL    
[5]
Dris R, Gasperi J, Saad M, Mirande C, Tassin B. Mar. Pollut. Bull., 2016, 104(1/2): 290.

doi: 10.1016/j.marpolbul.2016.01.006     URL    
[6]
Ng K L, Obbard J P. Mar. Pollut. Bull., 2006, 52(7): 761.

pmid: 16388828
[7]
Fendall L S, Sewell M A. Mar. Pollut. Bull., 2009, 58(8): 1225.

doi: S0025-326X(09)00179-9     pmid: 19481226
[8]
Cole M, Lindeque P, Halsband C, Galloway T S. Mar. Pollut. Bull., 2011, 62(12): 2588.

doi: 10.1016/j.marpolbul.2011.09.025     URL    
[9]
Wang J D, Tan Z, Peng J P, Qiu Q X, Li M M. Mar. Environ. Res., 2016, 113: 7.

doi: 10.1016/j.marenvres.2015.10.014     URL    
[10]
Piehl S, Leibner A, Löder M G J, Dris R, Bogner C, Laforsch C. Sci. Rep., 2018, 8: 17950.

doi: 10.1038/s41598-018-36172-y     URL    
[11]
Guo J J, Huang X P, Xiang L, Wang Y Z, Li Y W, Li H, Cai Q Y, Mo C H, Wong M H. Environ. Int., 2020, 137: 105263.

doi: 10.1016/j.envint.2019.105263     URL    
[12]
Yuan W K, Liu X N, Wang W F, Di M X, Wang J. Ecotoxicol. Environ. Saf., 2019, 170: 180.

doi: 10.1016/j.ecoenv.2018.11.126     URL    
[13]
van Cauwenberghe L, Vanreusel A, Mees J, Janssen C R. Environ. Pollut., 2013, 182: 495.

doi: 10.1016/j.envpol.2013.08.013     pmid: 24035457
[14]
Reddy M S, Shaik Basha, Adimurthy S, Ramachandraiah G. Estuar. Coast. Shelf Sci., 2006, 68(3/4): 656.

doi: 10.1016/j.ecss.2006.03.018     URL    
[15]
Zhang L S, Liu J Y, Xie Y S, Zhong S, Yang B, Lu D L, Zhong Q P. Sci. Total. Environ., 2020, 708: 135176.

doi: 10.1016/j.scitotenv.2019.135176     URL    
[16]
Jiang C B, Yin L S, Wen X F, Du C Y, Wu L X, Long Y N, Liu Y Z, Ma Y, Yin Q D, Zhou Z Y, Pan H M. Int. J. Environ. Res. Public Heal., 2018, 15(10): 2164.
[17]
Carr S A, Liu J, Tesoro A G. Water Res., 2016, 91: 174.

doi: 10.1016/j.watres.2016.01.002     URL    
[18]
Nizzetto L, Futter M, Langaas S. Environ. Sci. Technol., 2016, 50(20): 10777.

pmid: 27682621
[19]
Hurley R R, Lusher A L, Olsen M, Nizzetto L. Environ. Sci. Technol., 2018, 52(13): 7409.

doi: 10.1021/acs.est.8b01517     URL    
[20]
Duis K, Coors A. Environ. Sci. Eur., 2016, 28: 2.

doi: 10.1186/s12302-015-0069-y     URL    
[21]
Andrady A L. Mar. Pollut. Bull., 2011, 62(8): 1596.

doi: 10.1016/j.marpolbul.2011.05.030     URL    
[22]
Mai L, Bao L J, Shi L, Wong C S, Zeng E Y. Environ. Sci. Pollut. Res., 2018, 25(12): 11319.

doi: 10.1007/s11356-018-1692-0     URL    
[23]
Eerkes-Medrano D, Thompson R C, Aldridge D C. Water Res., 2015, 75: 63.

doi: 10.1016/j.watres.2015.02.012     pmid: 25746963
[24]
Mekaru H. ACS Omega, 2020, 5(7): 3218.

doi: 10.1021/acsomega.9b03278     URL    
[25]
Dawson A L, Kawaguchi S, King C K, Townsend K A, King R, Huston W M, Bengtson Nash S M. Nat. Commun., 2018, 9: 1001.

doi: 10.1038/s41467-018-03465-9     URL    
[26]
Yousefi N, Tufenkji N. Front. Chem., 2016, 4: 46.
[27]
Hernandez L M, Yousefi N, Tufenkji N. Environ. Sci. Technol. Lett., 2017, 4(7): 280.

doi: 10.1021/acs.estlett.7b00187     URL    
[28]
Bothun G D. J. Nanobiotechnology, 2008, 6(1): 13.

doi: 10.1186/1477-3155-6-13     URL    
[29]
McDermid K J, McMullen T L. Mar. Pollut. Bull., 2004, 48(7/8): 790.

doi: 10.1016/j.marpolbul.2003.10.017     URL    
[30]
Pan Z, Guo H G, Chen H Z, Wang S M, Sun X W, Zou Q P, Zhang Y B, Lin H, Cai S Z, Huang J. Sci. Total. Environ., 2019, 650: 1913.

doi: 10.1016/j.scitotenv.2018.09.244     URL    
[31]
Martins J, Sobral P. Mar. Pollut. Bull., 2011, 62(12): 2649.

doi: 10.1016/j.marpolbul.2011.09.028     pmid: 22019196
[32]
Li L, Geng S X, Wu C X, Song K, Sun F H, Visvanathan C, Xie F Z, Wang Q L. Environ. Pollut., 2019, 254: 112951.

doi: 10.1016/j.envpol.2019.07.119     URL    
[33]
Barnes D K A, Walters A, Gonçalves L. Mar. Environ. Res., 2010, 70(2): 250.

doi: 10.1016/j.marenvres.2010.05.006     pmid: 20621773
[34]
Bergmann M, Sandhop N, Schewe I, D’Hert D. Polar Biol., 2016, 39(3): 553.

doi: 10.1007/s00300-015-1795-8     URL    
[35]
Liebezeit G, Dubaish F. Bull. Environ. Contam. Toxicol., 2012, 89(1): 213.

doi: 10.1007/s00128-012-0642-7     URL    
[36]
Desforges J P W, Galbraith M, Dangerfield N, Ross P S. Mar. Pollut. Bull., 2014, 79(1/2): 94.

doi: 10.1016/j.marpolbul.2013.12.035     URL    
[37]
Browne M A, Crump P, Niven S J, Teuten E, Tonkin A, Galloway T, Thompson R. Environ. Sci. Technol., 2011, 45(21): 9175.

doi: 10.1021/es201811s     URL    
[38]
Mohamed Nor N H, Obbard J P. Mar. Pollut. Bull., 2014, 79(1/2): 278.

doi: 10.1016/j.marpolbul.2013.11.025     URL    
[39]
Ballent A, Purser A, de Jesus Mendes P, Pando S, Thomsen L. Biogeosci Discuss. 2012, 9 (12): 18755.
[40]
Law K L, MorÉt-Ferguson S, Maximenko N A, Proskurowski G, Peacock E E, Hafner J, Reddy C M. Science, 2010, 329(5996): 1185.

doi: 10.1126/science.1192321     URL    
[41]
Eriksen M, Mason S, Wilson S, Box C, Zellers A, Edwards W, Farley H, Amato S. Mar. Pollut. Bull., 2013, 77(1/2): 177.

doi: 10.1016/j.marpolbul.2013.10.007     URL    
[42]
CÓzar A, Echevarría F, González-Gordillo J I, Irigoien X, Úbeda B, Hernández-LeÓn S, Palma Á T, Navarro S, García-de-Lomas J, Ruiz A, Fernández-de-Puelles M L, Duarte C M. PNAS, 2014, 111(28): 10239.

doi: 10.1073/pnas.1314705111     URL    
[43]
Li J Y, Liu H H, Paul Chen J. Water Res., 2018, 137: 362.

doi: 10.1016/j.watres.2017.12.056     URL    
[44]
Hahladakis J N, Velis C A, Weber R, Iacovidou E, Purnell P. J. Hazard. Mater., 2018, 344: 179.

doi: S0304-3894(17)30763-X     pmid: 29035713
[45]
Talsness C E, Andrade A J M, Kuriyama S N, Taylor J A, vom Saal F S. Phil. Trans. R. Soc. B, 2009, 364(1526): 2079.

doi: 10.1098/rstb.2008.0281     URL    
[46]
Carbery M, O’Connor W, Palanisami T. Environ. Int., 2018, 115: 400.

doi: 10.1016/j.envint.2018.03.007     URL    
[47]
Horton A A, Walton A, Spurgeon D J, Lahive E, Svendsen C. Sci. Total. Environ., 2017, 586: 127.

doi: 10.1016/j.scitotenv.2017.01.190     URL    
[48]
Takada H. Mar. Pollut. Bull., 2006, 52(12): 1547.

doi: 10.1016/j.marpolbul.2006.10.010     URL    
[49]
Velzeboer I, Kwadijk C J A F, Koelmans A A. Environ. Sci. Technol., 2014, 48(9): 4869.

doi: 10.1021/es405721v     pmid: 24689832
[50]
Beckingham B, Ghosh U. Environ. Pollut., 2017, 220: 150.

doi: S0269-7491(16)31263-5     pmid: 27650963
[51]
Liu X M, Shi H H, Xie B, Dionysiou D D, Zhao Y P. Environ. Sci. Technol., 2019, 53(17): 10188.

doi: 10.1021/acs.est.9b02834     URL    
[52]
Sussarellu R, Suquet M, Thomas Y, Lambert C, Fabioux C, Pernet M E J, Le Goïc N, Quillien V, Mingant C, Epelboin Y, Corporeau C, Guyomarch J, Robbens J, Paul-Pont I, Soudant P, Huvet A. PNAS, 2016, 113(9): 2430.

doi: 10.1073/pnas.1519019113     pmid: 26831072
[53]
Cole M, Lindeque P, Fileman E, Halsband C, Galloway T S. Environ. Sci. Technol., 2015, 49(2): 1130.

doi: 10.1021/es504525u     URL    
[54]
Jin Y X, Lu L, Tu W Q, Luo T, Fu Z W. Sci. Total. Environ., 2019, 649: 308.

doi: 10.1016/j.scitotenv.2018.08.353     URL    
[55]
Barboza L G A, Vieira L R, Branco V, Figueiredo N, Carvalho F, Carvalho C, Guilhermino L. Aquat. Toxicol., 2018, 195: 49.

doi: 10.1016/j.aquatox.2017.12.008     URL    
[56]
Lei L L, Wu S Y, Lu S B, Liu M T, Song Y, Fu Z H, Shi H H, Raley-Susman K M, He D F. Sci. Total. Environ., 2018, 619/620: 1.

doi: 10.1016/j.scitotenv.2017.11.103     URL    
[57]
Cole M, Galloway T S. Environ. Sci. Technol., 2015, 49(24): 14625.

doi: 10.1021/acs.est.5b04099     URL    
[58]
Moore C J. Environ. Res., 2008, 108(2): 131.

doi: 10.1016/j.envres.2008.07.025     URL    
[59]
Cole M, Lindeque P, Fileman E, Halsband C, Goodhead R, Moger J, Galloway T S. Environ. Sci. Technol., 2013, 47(12): 6646.

doi: 10.1021/es400663f     URL    
[60]
Li J N, Lusher A L, Rotchell J M, Deudero S, Turra A, Bråte I L N, Sun C J, Hossain M S, Li Q P, Kolandhasamy P, Shi H H. Environ. Pollut., 2019, 244: 522.

doi: 10.1016/j.envpol.2018.10.032     URL    
[61]
Browne M A, Dissanayake A, Galloway T S, Lowe D M, Thompson R C. Environ. Sci. Technol., 2008, 42(13): 5026.

pmid: 18678044
[62]
Wang F, Wong C S, da Chen, Lu X W, Wang F, Zeng E Y. Water Res., 2018, 139: 208.

doi: S0043-1354(18)30283-5     pmid: 29653356
[63]
Derraik J G B. Mar. Pollut. Bull., 2002, 44(9): 842.

pmid: 12405208
[64]
Li Q P, Ma C Z, Zhang Q, Shi H H. Curr. Opin. Food Sci., 2021, 40: 192.
[65]
Li Q P, Feng Z H, Zhang T, Ma C Z, Shi H H. J. Hazard. Mater., 2020, 388: 122060.

doi: 10.1016/j.jhazmat.2020.122060     URL    
[66]
Du F N, Cai H W, Zhang Q, Chen Q Q, Shi H H. J. Hazard. Mater., 2020, 399: 122969.

doi: 10.1016/j.jhazmat.2020.122969     URL    
[67]
Ragusa A, Svelato A, Santacroce C, Catalano P, Notarstefano V, Carnevali O, Papa F, Rongioletti M C A, Baiocco F, Draghi S, D’Amore E, Rinaldo D, Matta M, Giorgini E. Environ Int. 2021, 146: 106274.

doi: 10.1016/j.envint.2020.106274     URL    
[68]
Yan Z H, Zhao H J, Zhao Y P, Zhu Q D, Qiao R X, Ren H Q, Zhang Y. J. Hazard. Mater., 2020, 384: 121489.

doi: 10.1016/j.jhazmat.2019.121489     URL    
[69]
Prata J C, da Costa J P, Lopes I, Duarte A C, Rocha-Santos T. Sci. Total. Environ., 2020, 702: 134455.

doi: 10.1016/j.scitotenv.2019.134455     URL    
[70]
Hidalgo-Ruz V, Gutow L, Thompson R C, Thiel M. Environ. Sci. Technol., 2012, 46(6): 3060.

doi: 10.1021/es2031505     pmid: 22321064
[71]
Frias J P G L, Sobral P, Ferreira A M. Mar. Pollut. Bull., 2010, 60(11): 1988.

doi: 10.1016/j.marpolbul.2010.07.030     pmid: 20800853
[72]
Hanvey J S, Lewis P J, Lavers J L, Crosbie N D, Pozo K, Clarke B O. Anal. Methods, 2017, 9(9): 1369.

doi: 10.1039/C6AY02707E     URL    
[73]
Claessens M, de Meester S, Landuyt L V, de Clerck K, Janssen C R. Mar. Pollut. Bull., 2011, 62(10): 2199.

doi: 10.1016/j.marpolbul.2011.06.030     pmid: 21802098
[74]
Corcoran P L. Environ. Sci.: Processes Impacts, 2015, 17(8): 1363.
[75]
Corcoran P L, Biesinger M C, Grifi M. Mar. Pollut. Bull., 2009, 58(1): 80.

doi: 10.1016/j.marpolbul.2008.08.022     URL    
[76]
Stolte A, Forster S, Gerdts G, Schubert H. Mar. Pollut. Bull., 2015, 99(1/2): 216.

doi: 10.1016/j.marpolbul.2015.07.022     URL    
[77]
Liu M T, Song Y, Lu S B, Qiu R, Hu J N, Li X Y, Bigalke M, Shi H H, He D F. Sci. Total. Environ., 2019, 691: 341.

doi: 10.1016/j.scitotenv.2019.07.144     URL    
[78]
Nuelle M T, Dekiff J H, Remy D, Fries E. Environ. Pollut., 2014, 184: 161.

doi: 10.1016/j.envpol.2013.07.027     URL    
[79]
Crawford C B, Quinn B. In Microplastic Pollutants. 2017, 203.
[80]
Imhof H K, Schmid J, Niessner R, Ivleva N P, Laforsch C. Limnol. Oceanogr.: Methods. 2012, 10 (7): 524.
[81]
Fuller S, Gautam A. Environ. Sci. Technol., 2016, 50(11): 5774.

doi: 10.1021/acs.est.6b00816     URL    
[82]
Thompson R C, Olsen Y, Mitchell R P, Davis A, Rowland S J, John A W G, McGonigle D, Russell A E. Science, 2004, 304(5672): 838.

pmid: 15131299
[83]
NorÉn F. KIMO Report. 2007, 11: 1.
[84]
Zettler E R, Mincer T J, Amaral-Zettler L A. Environ. Sci. Technol., 2013, 47(13): 7137.

doi: 10.1021/es401288x     pmid: 23745679
[85]
Zhao S Y, Danley M, Ward J E, Li D J, Mincer T J. Anal. Methods, 2017, 9(9): 1470.

doi: 10.1039/C6AY02302A     URL    
[86]
Imhof H K, Ivleva N P, Schmid J, Niessner R, Laforsch C. Curr. Biol., 2013, 23(19): R867.

doi: 10.1016/j.cub.2013.09.001     URL    
[87]
Cole M, Webb H, Lindeque P K, Fileman E S, Halsband C, Galloway T S. Sci. Rep., 2014, 4: 4528.

doi: 10.1038/srep04528     URL    
[88]
Rios L M, Jones P R, Moore C, Narayan U V. J. Environ. Monit., 2010, 12(12): 2226.

doi: 10.1039/c0em00239a     URL    
[89]
Doyle M J, Watson W, Bowlin N M, Sheavly S B. Mar. Environ. Res., 2011, 71(1): 41.

doi: 10.1016/j.marenvres.2010.10.001     URL    
[90]
Moller J N, Loder M G J, Laforsch C. Environ Sci Technol. 2020, 54 (4): 2078.

doi: 10.1021/acs.est.9b04618     URL    
[91]
Cooper D A, Corcoran P L. Mar. Pollut. Bull., 2010, 60(5): 650.

doi: 10.1016/j.marpolbul.2009.12.026     pmid: 20106491
[92]
Tagg A S, Sapp M, Harrison J P, Ojeda J J. Anal. Chem., 2015, 87(12): 6032.

doi: 10.1021/acs.analchem.5b00495     URL    
[93]
Murray F, Cowie P R. Mar. Pollut. Bull., 2011, 62(6): 1207.

doi: 10.1016/j.marpolbul.2011.03.032     pmid: 21497854
[94]
Fries E, Dekiff J H, Willmeyer J, Nuelle M T, Ebert M, Remy D. Environ. Sci.: Processes Impacts, 2013, 15(10): 1949.
[95]
Majewsky M, Bitter H, Eiche E, Horn H. Sci. Total. Environ., 2016, 568: 507.

doi: 10.1016/j.scitotenv.2016.06.017     URL    
[96]
Qiu Q X, Tan Z, Wang J D, Peng J P, Li M M, Zhan Z W. Estuar. Coast. Shelf Sci., 2016, 176: 102.

doi: 10.1016/j.ecss.2016.04.012     URL    
[97]
Löder M G J, Gerdts G. Marine Anthropogenic Litter. Cham: Springer International Publishing, 2015: 201.
[98]
Huppertsberg S, Knepper T P. Anal. Bioanal. Chem., 2018, 410(25): 6343.

doi: 10.1007/s00216-018-1210-8     pmid: 29959485
[99]
Araujo C F, Nolasco M M, Ribeiro A M P, Ribeiro-Claro P J A. Water Res., 2018, 142: 426.

doi: 10.1016/j.watres.2018.05.060     URL    
[100]
Käppler A, Fischer D, Oberbeckmann S, Schernewski G, Labrenz M, Eichhorn K J, Voit B. Anal. Bioanal. Chem., 2016, 408(29): 8377.

pmid: 27722940
[101]
Chen M, Liu Y, Lin J, Liu C. J Appl Polym Sci. 2019, 136 (18).
[102]
Fischer M, Scholz-Böttcher B M. Environ. Sci. Technol., 2017, 51(9): 5052.

doi: 10.1021/acs.est.6b06362     pmid: 28391690
[103]
Herrera M, Matuschek G, Kettrup A. J. Anal. Appl. Pyrolysis, 2003, 70(1): 35.

doi: 10.1016/S0165-2370(02)00078-5     URL    
[104]
Peñalver R, Arroyo-Manzanares N, LÓpez-García I, Hernández-CÓrdoba M. Chemosphere, 2020, 242: 125170.

doi: 10.1016/j.chemosphere.2019.125170     URL    
[105]
Rodríguez Chialanza M, Sierra I, PÉrez Parada A, Fornaro L. Environ. Sci. Pollut. Res., 2018, 25(17): 16767.

doi: 10.1007/s11356-018-1846-0     URL    
[106]
Auta H S, Emenike C U, Fauziah S H. Environ. Pollut., 2017, 231: 1552.

doi: S0269-7491(17)30964-8     pmid: 28964604
[107]
Auta H S, Emenike C U, Jayanthi B, Fauziah S H. Mar. Pollut. Bull., 2018, 127: 15.

doi: S0025-326X(17)30993-1     pmid: 29475646
[108]
Dobretsov S, Abed R M M, Teplitski M. Biofouling, 2013, 29(4): 423.

doi: 10.1080/08927014.2013.776042     pmid: 23574279
[109]
Yuan J H, Ma J, Sun Y R, Zhou T, Zhao Y C, Yu F. Sci. Total. Environ., 2020, 715: 136968.

doi: 10.1016/j.scitotenv.2020.136968     URL    
[110]
Skariyachan S, Manjunatha V, Sultana S, Jois C, Bai V, Vasist K S. Environ. Sci. Pollut. Res., 2016, 23(18): 18307.

doi: 10.1007/s11356-016-7000-y     URL    
[111]
Tsiota P, Karkanorachaki K, Syranidou E, Franchini M, Kalogerakis N. In Proceedings of the International Conference on Microplastic Pollution in the Mediterranean Sea. Springer, Chapter Cham, 2018, 181.
[112]
Hao S M, Yu M Y, Zhang Y J, Abdelkrim Y, Qu J. J. Colloid Interface Sci., 2019, 545: 128.

doi: 10.1016/j.jcis.2019.03.017     URL    
[113]
Zhu Z S, Qu J, Hao S M, Han S, Jia K L, Yu Z Z. ACS Appl. Mater. Interfaces, 2018, 10(36): 30670.

doi: 10.1021/acsami.8b10128     URL    
[114]
Zhu Z S, Yu X J, Qu J, Jing Y Q, Abdelkrim Y, Yu Z Z. Appl. Catal. B Environ., 2020, 261: 118238.

doi: 10.1016/j.apcatb.2019.118238     URL    
[115]
Yu X J, Qu J, Yuan Z Y, Min P, Hao S M, Zhu Z S, Li X F, Yang D Z, Yu Z Z. ACS Appl. Mater. Interfaces, 2019, 11(37): 34222.

doi: 10.1021/acsami.9b10287     URL    
[116]
Hao S M, Qu J, Zhu Z S, Zhang X Y, Wang Q Q, Yu Z Z. Adv. Funct. Mater., 2016, 26(40): 7334.

doi: 10.1002/adfm.201603315     URL    
[117]
Kang J, Zhou L, Duan X G, Sun H Q, Ao Z M, Wang S B. Matter, 2019, 1(3): 745.

doi: 10.1016/j.matt.2019.06.004     URL    
[118]
Liu P, Qian L, Wang H Y, Zhan X, Lu K, Gu C, Gao S X. Environ. Sci. Technol., 2019, 53(7): 3579.

doi: 10.1021/acs.est.9b00493     URL    
[119]
Miao F, Liu Y F, Gao M M, Yu X, Xiao P W, Wang M, Wang S G, Wang X H. J. Hazard. Mater., 2020, 399: 123023.

doi: 10.1016/j.jhazmat.2020.123023     URL    
[120]
Ariza-Tarazona M C, Villarreal-Chiu J F, Barbieri V, Siligardi C, Cedillo-González E I. Ceram. Int., 2019, 45(7): 9618.

doi: 10.1016/j.ceramint.2018.10.208    
[121]
Napper I E, Bakir A, Rowland S J, Thompson R C. Mar. Pollut. Bull., 2015, 99(1/2): 178.

doi: 10.1016/j.marpolbul.2015.07.029     URL    
[122]
Tofa T S, Kunjali K L, Paul S, Dutta J. Environ. Chem. Lett., 2019, 17(3): 1341.

doi: 10.1007/s10311-019-00859-z     URL    
[123]
Nabi I, Bacha A U R, Li K J, Cheng H Y, Wang T, Liu Y Y, Ajmal S, Yang Y, Feng Y Q, Zhang L W. iScience, 2020, 23(7): 101326.

doi: 10.1016/j.isci.2020.101326     URL    
[124]
Vital-Grappin A D, Ariza-Tarazona M C, Luna-Hernández V M, Villarreal-Chiu J F, Hernández-LÓpez J M, Siligardi C, Cedillo-González E I. Polymers, 2021, 13(7): 999.

doi: 10.3390/polym13070999     URL    
[125]
Uheida A, Mejía H G, Abdel-Rehim M, Hamd W, Dutta J. J. Hazard. Mater., 2021, 406: 124299.

doi: 10.1016/j.jhazmat.2020.124299     URL    
[126]
Jiang R R, Lu G H, Yan Z H, Liu J C, Wu D H, Wang Y H. J. Hazard. Mater., 2021, 405: 124247.

doi: 10.1016/j.jhazmat.2020.124247     URL    
[127]
Ariza-Tarazona M C, Villarreal-Chiu J F, Hernández-LÓpez J M, Rivera de la Rosa J, Barbieri V, Siligardi C, Cedillo-González E I. J. Hazard. Mater., 2020, 395: 122632.

doi: 10.1016/j.jhazmat.2020.122632     URL    
[1] 宋志花, 李盛红, 杨刚强, 周娜, 陈令新. 人参皂苷类化合物样品前处理及分析检测[J]. 化学进展, 2020, 32(2/3): 239-248.
[2] 王亚韡, 王莹, 江桂斌. 短链氯化石蜡的分析方法、污染现状与毒性效应[J]. 化学进展, 2017, 29(9): 919-929.
[3] 向垒, 孙腾飞, 莫测辉, 李彦文, 蔡全英, 李慧. 季铵盐类化合物环境问题研究进展[J]. 化学进展, 2016, 28(5): 727-736.
[4] 杨引, 樊梦醒, 郭智慧, 张卉, 吴萍, 蔡称心. DNA甲基化电化学分析[J]. 化学进展, 2014, 26(12): 1977-1986.
[5] 刘国瑞, 李丽, 孙素芳, 姜晓旭, 王美, 郑明辉. 多溴联苯的污染来源、分析方法和环境污染特征[J]. 化学进展, 2014, 26(08): 1434-1444.
[6] 史亚利, 蔡亚岐. 全氟和多氟化合物环境问题研究[J]. 化学进展, 2014, 26(04): 665-681.
[7] 许志珍, 晏晓敏, 张杰, 王煜倩, 唐仕川, 钟儒刚. 纳米颗粒与蛋白质分子的相互作用[J]. 化学进展, 2013, 25(08): 1383-1391.
[8] 王夔*, 杨晓改*. 生物介质内形成的金属基生物微粒: 冲击和挑战[J]. 化学进展, 2013, 25(04): 457-468.
[9] 李卓娜, 周群芳, 刘稷燕, 史亚利, 蔡亚岐, 江桂斌. 多环麝香(PCMs)的环境行为及毒性效应[J]. 化学进展, 2012, 24(04): 606-615.
[10] 王晓伟 刘景富 阴永光. 有机磷酸酯阻燃剂污染现状与研究进展*[J]. 化学进展, 2010, 22(10): 1983-1992.
[11] 马玲玲 徐殿斗 陈扬 柴之芳. 短链氯化石蜡分析方法*[J]. 化学进展, 2010, 22(04): 720-726.
[12] 孔露露 郭晓燕 周启星 李琪琳 胡万里 鲁金凤. 地表水和饮用水中NDMA的降解方法*[J]. 化学进展, 2010, 22(04): 734-739.
[13] 刘永春,贺泓. 大气颗粒物化学组成分析*[J]. 化学进展, 2007, 19(10): 1620-1631.
[14] 杨晓改,杨晓达,王夔. 稀土药用研究的动向和问题*[J]. 化学进展, 2007, 19(0203): 201-204.
[15] 蔡亚岐,史亚利,张萍,牟世芬,江桂斌. 高氯酸盐的环境污染问题*[J]. 化学进展, 2006, 18(11): 1554-1564.