English
新闻公告
More
化学进展 2014, Vol. 26 Issue (12): 1914-1923 DOI: 10.7536/PC140647 前一篇   后一篇

• 综述与评论 •

不同取代位掺杂对Li4Ti5O12结构及性能的影响

黄昭1, 王丹2, 张春明*2, 何丹农*1,2   

  1. 1. 上海交通大学材料科学与工程学院 上海 200240;
    2. 纳米技术及应用国家工程研究中心 上海 200241
  • 收稿日期:2014-06-01 修回日期:2014-09-01 出版日期:2014-12-15 发布日期:2014-12-19
  • 通讯作者: 张春明, 何丹农 E-mail:zhangchm2003@163.com;hdn_nercn@163.com
  • 基金资助:

    上海市启明星计划项目(No. 14QB1402900)、国家自然科学基金项目(No. 21171116)和国家国际科技合作专项(No. 2012DFG11660)资助

Effects of Different Doping Sites on the Structure and Performance of Li4Ti5O12 Material

Huang Zhao1, Wang Dan2, Zhang Chunming*2, He Dannong*1,2   

  1. 1. School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China;
    2. National Engineering Research Center for Nanotechnology, Shanghai 200241, China
  • Received:2014-06-01 Revised:2014-09-01 Online:2014-12-15 Published:2014-12-19
  • Supported by:

    The work was supported by the Shanghai Rising Star Program (No. 14QB1402900), the National Natural Science Foundation of China (No. 21171116) and the International Science & Technology Cooperation Program of China (No. 2012DFG11660)

锂离子负极材料Li4Ti5O12具有资源与性能等方面的优势,正在成为新一代储能和动力领域的研究重点.本文综述了掺杂离子在晶格中所处的不同取代位置及本身性质对Li4Ti5O12结构和性能的影响.取代Li的位于四面体(8a)位置的掺杂元素阻碍锂离子的扩散;取代Li的位于八面体(16d)位置的掺杂元素会影响Li离子在晶格中的分布;取代Ti的位于八面体(16d)位置的掺杂元素会影响Li4Ti5O12的结构稳定性;取代O的位于八面体(32e)位置的掺杂元素会影响Li4Ti5O12的导电性.一定条件下在Li4Ti5O12中掺入高价态的元素取代Li+、Ti4+、O2-,均能提高Li4Ti5O12电子导电能力.掺杂元素各异的能带结构和氧化还原行为会影响Li4Ti5O12的电化学反应过程.掺杂元素的离子半径和最终能够进入晶格的数量会改变Li4Ti5O12的晶格常数和微观组织形貌.

Li4Ti5O12 has the advantages of resource, performance, and so on. Recently, Li4Ti5O12 anode material is becoming an important research direction in the field of energy storage and power battery. In this review, the effects of doping ions with the different doping sites in the crystal lattice and its intrinsic properties on the structure and performance of Li4Ti5O12 were discussed. Substitution of doping ions for Li ions on the tetrahedral 8a sites would lower the Li-ion conductivity. Substitution of doping ions for Li ions on the octahedral 16d sites may "correct" distribution of alkali metal ions. Substitution of doping ions for Ti ions on the octahedral 16d sites would affect structural stability of Li4Ti5O12. Substitution of doping ions for O ions on the octahedral 32e sites would affect the conductivity. In certain conditions, if the valence state of doping ions is higher than the substituted ions, the electronic conductivity of Li4Ti5O12 could be improved. Doping elements with different energy band structures and redox behaviors affect the electrochemical reaction process of Li4Ti5O12. The different ionic radius and the number allowed to enter the lattice of doping ions would change the Li4Ti5O12 lattice constant and microstructure morphology.

Contents
1 Introduction
2 Structure properties of Li4Ti5O12
3 Doping of Li4Ti5O12
3.1 Position of dopants
3.2 Properties of dopants
3.3 Atmosphere of doping
4 Latest developments
5 Conclusion and outlook

中图分类号: 

()

[1] Goodenough J B, Kim Y. Chem. Mater., 2010, 22(3): 587.
[2] 唐致远(Tang Z Y),高飞(Gao F),韩彬(Han B). 化工进展(Chemical Industry and Engineering Progress), 2006, 25(2): 159.
[3] Armand M, Tarascon J M. Nature, 2008, 451: 652.
[4] Ohzuku T, Ueda A, Yamamoto N. J. Electrochem. Soc., 1995, 142: 1431.
[5] Birke P, Chu W F, Weppner W. Solid State Ionics, 1997, 91: 1.
[6] Panero S, Reale P, Ronci F, Albertini V R, Scrosati B. Ionics, 2000, 6: 461.
[7] Ferg E, Gummow R J, Kock A. J. Electrochem. Soc., 1994, 141: L147.
[8] 陈方(Chen F), 梁海潮(Liang H C), 李仁贵(Li R G), 刘力(Liu L), 邓正华(Deng Z H). 无机材料学报(Journal of Inorganic Materials), 2005, 20(3): 537.
[9] 王辰云(Wang C Y), 华宁(Hua N), 康雪雅(Kang X Y), 韩英(Han Y). 电子元件与材料(Electronic Components and Materials), 2009, 28(12): 80.
[10] 杨立(Yang L),陈继章(Chen J Z),唐宇峰(Tang Y F),房少华(Fang S H). 化学进展(Progress in Chemistry), 2011, 23(2/3): 310.
[11] Huang Z, Wang D, Lin Y, Wu X Y, Yan P, Zhang C M, He D N. J. Power Sources, 2014, 266: 60.
[12] Song H, Jeong T G, Moon Y H, Chun H H, Chung K Y, Kim H S, Cho B W, Kim Y T. Sci. Rep., 2014, 4: 4350.
[13] Li X, Lin H C, Cui W J, Xiao Q, Zhao J B. ACS Appl. Mater. Inter., 2014, 6(10): 7895.
[14] Cheng L, Yan J, Zhu G N, Luo J Y, Wang C X, Xia Y Y. J. Mater. Chem., 2010, 20(3):595.
[15] Gao J, Ying J, Jiang C, Wan C. J. Power Sources, 2007, 166(1): 255.
[16] Yang L, Gao L. J. Alloy. Compd., 2009, 485(1/2): 93.
[17] Jung H G, Myung S T, Yoon C S, Son S B, Oh K H, Amine K, Scrosati B, Sun Y K. Energ. Environ. Sci., 2011, 4(4): 1345.
[18] Zhao L, Hu Y S, Li H, Wang Z, Chen L. Adv. Mater., 2011, 23(11): 1385.
[19] Li H, Shen L, Wang J, Ding B, Nie P, Xu G, Wang X Y, Zhang X G. ChemPlusChem, 2014, 79(1): 128.
[20] Nugroho A, Chung K Y, Kim J. J. Phys. Chem. C, 2014, 118(1): 183.
[21] Zhang Q Y, Li X. Int. J. Electrochem. Sci., 2013, 8: 6449.
[22] 冯欣(Feng X), 韩恩山(Han E S), 朱令之(Zhu L Z), 李玲(Li L). 电源技术(Chinese Journal of Power Sources), 2012, 36(3): 317.
[23] 吕岩(Lv Y),张浩(Zhang H),曹高萍(Cao G P),王碧燕(Wang B Y). 电池(Battery Bimonthly), 2010, 40(3): 164.
[24] 段文升(Duan W S), 朱继平(Zhu J P), 郭超(Guo C), 徐超(Xu C), 司双(Si S), 徐晓明(Xu X M). 合肥工业大学学报(Journal of Hefei University of Technology), 2009, 32(7): 996.
[25] 田志宏(Tian Z H),赵海雷(Zhao H L),王治峰(Wang Z F),仇卫华(Chou W H). 电池(Battery Bimonthly), 2008, 38(3): 186.
[26] Yi T F, Xie Y, Shu J, Wang Z, Yue C B, Zhu R S, Qiao H B. J. Electrochem. Soc., 2011, 158(3): A266.
[27] Zhang Y Y, Zhang C M, Lin Y, Xiong D B, Wang D, Wu X Y, He D N. J. Power Sources, 2014, 250: 50.
[28] Zhao H, Li Y, Zhu Z, Lin J, Tian Z, Wang R. Electrochim. Acta, 2008, 53(24): 7079.
[29] Zhang X L, Hu G R, Peng Z D. J. Cent. South. Univ., 2013, 20(5): 1151.
[30] Huang Y, Qi Y, Jia D, Wang X, Guo Z, Cho W I. J. Solid State Electrochem., 2011, 16(5): 2011.
[31] Gao J, Jiang C, Wan C. J. Electrochem. Soc., 2010, 157(2): K39.
[32] Tian B, Xiang H, Zhang L, Wang H. J. Solid State Electrochem., 2011, 16(1): 205.
[33] Xiao C W, Ding Y, Zhang J T, Su X Q, Li G R, Gao X P, Shen P W. J. Power Sources, 2014, 248: 323.
[34] Yi T F, Yang S Y, Li X Y, Yao J H, Zhu Y R, Zhu R S. J. Power Sources, 2014, 246: 505.
[35] Gu F. Adv. Mater. Res., 2013, 712/715: 313.
[36] 李星(Li X), 瞿美臻(Qu M Z), 于作龙(Yu Z L). 无机化学学报(Chinese Journal of Inorganic Chemistry), 2010,26(2): 233.
[37] Chen C H, Vaughey J T, Jansen A N, Dees D W, Kahaian A J, Goacher T, Thackeray M M. J. Electrochem. Soc., 2001, 148: A102.
[38] Capsoni D, Bini M, Massarotti V, Mustarelli P, Chiodelli G, Azzoni C B, Mozzati M C, Linati L, Ferrari S. Chem. Mater., 2008, 20: 4291.
[39] Zhuravlev N A, Mukhina N A, Kellerman D G, Gorshkov V S. Bull. Russ. Acad. Sci.: Phys., 2009, 73(11): 1522.
[40] Wang J, Zhao H, Yang Q, Zhang T, Wang J. Ionics, 2012, 19(3): 415.
[41] Zhang Q Y, Li X. Int. J. Electrochem. Sci., 2013, 8: 9734.
[42] Choi B H, Lee D J, Ji M J, Kwon Y J, Park S T. J. Korean Ceram. Soc., 2010, 47(6): 638.
[43] Bai Y J, Gong C, Qi Y X, Lun N, Feng J. J. Mater. Chem.,2012, 22(36): 19054.
[44] Huang S, Wen Z, Gu Z, Zhu X. Electrochim. Acta, 2005, 50(20): 4057.
[45] Hao Y J, Lai Q Y, Lu J Z, Ji X Y. Ionics, 2007, 13(5): 369.
[46] Yi T F, Shu J, Zhu Y R, Zhu X D, Yue C B, Zhou A N, Zhu R S. Electrochim. Acta, 2009, 54(28): 7464.
[47] Kubiak P, Garcia A, Womes M, Aldon L. J. Power Sources, 2003, 119/121: 626.
[48] Yi T F, Xie Y, Wu Q, Liu H, Jiang L, Ye M, Zhu R S. J. Power Sources, 2012, 214: 220.
[49] Xiao L, Zhao Y, Yang Y, Cao Y, Ai X, Yang H. Electrochim. Acta, 2008, 54(2): 545.
[50] Wu D, Cheng Y. Ionics, 2012, 19(3): 395.
[51] Yi T F, Shu J, Zhu Y R, Zhu X D, Zhu R S, Zhou A N. J. Power Sources, 2010, 195(1): 285.
[52] Gu F. Adv. Mater. Res., 2013, 750/752: 1791.
[53] Zhang Q Y, Li X. Int. J. Electrochem. Sci., 2013, 8: 7816.
[54] Li X, Qu M, Yu Z. J. Alloy. Compd., 2009, 487(1/2): L12.
[55] Gu F, Chen G, Wang Z. J. Solid State Electrochem., 2011, 16(1): 375.
[56] Yi T F, Chen B, Shen H Y, Zhu R S, Zhou A N, Qiao H B. J. Alloy. Compd., 2013, 558: 11.
[57] Kim J G, Park M S, Hwang S M, Heo Y U, Liao T, Sun Z Q, Park J H, Kim K J, Jeong G J, Kim Y J, Kim J H, Dou S X. ChemSusChem, 2014, 7(5): 1451.
[58] Nithya V D, Sharmila S, Vediappan K, Lee C W, Vasylechko L, Selvan R K. J. Appl. Electrochem., 2014, 44(5): 647.
[59] 唐致远(Tang Z Y), 阳晓霞(Yang X X), 陈玉红(Chen Y H), 李昌盛(Li C S), 焦延峰(Jiao Y F),贺艳兵(He Y B). 精细化工(Fine Chemicals), 2007, 24(3): 273.
[60] Wolfenstine J, Allen J L. J. Power Sources, 2008, 180(1): 582.
[61] Tian B, Xiang H, Zhang L, Li Z, Wang H. Electrochim. Acta, 2010, 55(19): 5453.
[62] Shi L, Hu X, Huang Y. J. Nanopart. Res., 2014, 16(4): 2331.
[63] 武洪彬(Wu H B), 陈猛(Chen M), 康亮(Kang L), 周锴(Zhou K), 王文刚(Wang W G), 张晶(Zhang J). 电池工业(Chinese Battery Industry), 2010, 15(5):304.
[64] 熊训辉(Xiong X H), 王志兴(Wang Z X), 伍凌(Wu L), 李新海(Li H X), 吴飞翔(Wu F X), 郭华军(Guo H J), 彭文杰(Peng W J). 中国有色金属学报(The Chinese Journal of Nonferrous Metals), 2011,21(9): 2146.
[65] Yi T F, Xie Y, Jiang L J, Shu J, Yue C B, Zhou A N, Ye M F. RSC Adv., 2012, 2(8): 3541.
[66] Wang W, Wang H, Wang S, Hu Y, Tian Q, Jiao S. J. Power Sources, 2013, 228: 244.
[67] Ma Y, Ding B, Ji G, Lee J Y. ACS Nano, 2013, 7: 10870.
[68] Du G, Sharma N, Peterson V K, Kimpton J A, Jia D, Guo Z. Adv. Funct. Mater., 2011, 21(20): 3990.
[69] Liu D, Ouyang C, Shu J, Jiang J, Wang Z, Chen L. Phys. Status Solidi B, 2006, 243(8): 1835.
[70] Robertson A D, Trevino L, Tukamot H. J. Power Sources, 1999, 81/82: 352.
[71] Huang S, Wen Z, Zhu X, Lin Z. J. Power Sources, 2007, 165(1): 408.
[72] Huang S, Wen Z, Zhu X, Lin Z. J. Electrochem. Soc., 2005, 152(1): A186.
[73] Wu H, Chang S, Liu X, Yu L, Wang G, Cao D, Zhang Y, Yang B, She P. Solid State Ionics, 2013, 232: 13.
[74] Huang S, Wen Z, Zhu X, Gu Z. Electrochem. Commun., 2004, 6(11): 1093.
[75] Karhunen T, Lähde A, Leskinen J, Büchel R, Waser O, Tapper U. ISRN Nanotechnol., 2011, 2011: 1.
[76] Qiu C, Yuan Z, Liu L, Ye N, Liu J. J. Solid. State. Electrochem., 2012, 17(3): 841.
[77] Wang D, Zhang C, Zhang Y, Wang J, He D. Ceram. Int., 2013, 39(5): 5145.
[78] Jeong E D, Han H J, Jung O S, Ha M G, Doh C H, Hwang M J, Yang H S, Hong K S. Mater. Res. Bull., 2012, 47(10): 2847.
[79] Capsoni D, Bini M, Massarotti V, Mustarelli P, Ferrari S, Chiodeli G, Mozzati M C, Galinetto P. J. Phys. Chem. C, 2009, 196(113): 19664.
[80] Shenouda A Y, Murali K R. J. Power Sources, 2008, 176(1): 332.
[81] Qiu C, Yuan Z, Liu L, Cheng S, Liu J. Chinese. J. Chem., 2013, 31: 819.
[82] Park J S, Baek S H, Park Y, Kim J H. J. Korean Phys. Soc., 2014, 64(10): 1545.

[1] 朱国辉, 还红先, 于大伟, 郭学益, 田庆华. 废旧锂离子电池选择性提锂[J]. 化学进展, 2023, 35(2): 287-301.
[2] 李芳远, 李俊豪, 吴钰洁, 石凯祥, 刘全兵, 彭翃杰. “蛋黄蛋壳”结构纳米电极材料设计及在锂/钠离子/锂硫电池中的应用[J]. 化学进展, 2022, 34(6): 1369-1383.
[3] 王才威, 杨东杰, 邱学青, 张文礼. 木质素多孔碳材料在电化学储能中的应用[J]. 化学进展, 2022, 34(2): 285-300.
[4] 陈阳, 崔晓莉. 锂离子电池二氧化钛负极材料[J]. 化学进展, 2021, 33(8): 1249-1269.
[5] 陆嘉晟, 陈嘉苗, 何天贤, 赵经纬, 刘军, 霍延平. 锂电池用无机固态电解质[J]. 化学进展, 2021, 33(8): 1344-1361.
[6] 高金伙, 阮佳锋, 庞越鹏, 孙皓, 杨俊和, 郑时有. 高电压锂离子正极材料LiNi0.5Mn1.5O4高温特性[J]. 化学进展, 2021, 33(8): 1390-1403.
[7] 赵依凡, 毛琦云, 翟晓雅, 张国英. 钼酸铋光催化剂的结构缺陷调控[J]. 化学进展, 2021, 33(8): 1331-1343.
[8] 蔡克迪, 严爽, 徐天野, 郎笑石, 王振华. 锂离子电容电池关键电极材料[J]. 化学进展, 2021, 33(8): 1404-1413.
[9] 黄国勇, 董曦, 杜建委, 孙晓华, 李勃天, 叶海木. 锂离子电池高压电解液[J]. 化学进展, 2021, 33(5): 855-867.
[10] 张长欢, 李念武, 张秀芹. 柔性锂离子电池的电极[J]. 化学进展, 2021, 33(4): 633-648.
[11] 穆德颖, 刘铸, 金珊, 刘元龙, 田爽, 戴长松. 废旧锂离子电池正极材料及电解液的全过程回收及再利用[J]. 化学进展, 2020, 32(7): 950-965.
[12] 庄全超, 杨梓, 张蕾, 崔艳华. 锂离子电池的电化学阻抗谱分析研究进展[J]. 化学进展, 2020, 32(6): 761-791.
[13] 吴战, 李笑涵, 钱奥炜, 杨家喻, 张文魁, 张俊. 基于无机电致变色材料的变色储能器件[J]. 化学进展, 2020, 32(6): 792-802.
[14] 汪靖伦, 冉琴, 韩冲宇, 唐子龙, 陈启多, 秦雪英. 锂离子电池有机硅功能电解液[J]. 化学进展, 2020, 32(4): 467-480.
[15] 张伟, 齐小鹏, 方升, 张健华, 史碧梦, 杨娟玉. 碳在锂离子电池硅碳复合材料中的作用[J]. 化学进展, 2020, 32(4): 454-466.