English
新闻公告
More
化学进展 2021, Vol. 33 Issue (8): 1390-1403 DOI: 10.7536/PC200773 前一篇   后一篇

所属专题: 锂离子电池

• 综述 •

高电压锂离子正极材料LiNi0.5Mn1.5O4高温特性

高金伙1, 阮佳锋1,2, 庞越鹏1, 孙皓1, 杨俊和1, 郑时有1,*()   

  1. 1 上海理工大学材料科学与工程学院 上海 200093
    2 复旦大学材料科学系 上海 200433
  • 收稿日期:2020-07-31 修回日期:2020-09-20 出版日期:2021-08-20 发布日期:2020-12-28
  • 通讯作者: 郑时有
  • 基金资助:
    上海市优秀学术带头人计划(17XD1403000); 上海市教育委员会科研创新重大项目(2019-01-07-00-07-E00015)

High Temperature Properties of LiNi0.5Mn1.5O4 as Cathode Materials for High Voltage Lithium-Ion Batteries

Jinhuo Gao1, Jiafeng Ruan1,2, Yuepeng Pang1, Hao Sun1, Junhe Yang1, Shiyou Zheng1()   

  1. 1 School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
    2 Department of Materials Science, Fudan University,Shanghai 200433, China
  • Received:2020-07-31 Revised:2020-09-20 Online:2021-08-20 Published:2020-12-28
  • Contact: Shiyou Zheng
  • Supported by:
    Shanghai Outstanding Academic Leaders Plan(17XD1403000); Innovation Program of Shanghai Municipal Education Commission(2019-01-07-00-07-E00015)

随着新能源电动汽车和大容量储能的快速发展,亟需开发高能量密度、高功率密度的锂离子电池。镍锰酸锂(LiNi0.5Mn1.5O4)由于具有高电压平台(4.7V)、较高的能量密度和功率密度、资源丰富、成本低等优点,被认为是最具潜力的锂离子电池正极材料之一。然而,在高温条件下,LiNi0.5Mn1.5O4会与电解液发生严重的界面副反应,导致循环性能变差,这严重制约了其商业化进程。因此,改善LiNi0.5Mn1.5O4的高温特性成为锂离子电池领域的研究热点之一。本文对近期LiNi0.5Mn1.5O4材料相关研究的主要成果进行综述,以LiNi0.5Mn1.5O4的基本特性和现存挑战入手,着重关注离子掺杂、表面包覆和表面掺杂等策略提升材料的高温性能,并为后续研究提出建议和展望。

The rapid development of electric vehicles and large-scale energy storage systems have created a huge demand for high energy density and power density lithium-ion batteries in the market. Because of the advantages such as high voltage(4.7 V vs. Li/Li+), high energy density and power density, abundant resources and low cost, LiNi0.5Mn1.5O4 is considered as one of the most promising lithium-ion battery cathode materials. However, the severe undesirable side reactions between LiNi0.5Mn1.5O4 and electrolyte at elevated temperature leads to worse cycling performance, which limits its commercial application. Therefore, improving the high-temperature performance of LiNi0.5Mn1.5O4 has become one of the research hotspots in the field of lithium-ion batteries. In this paper, the main achievements of recent researches on LiNi0.5Mn1.5O4 materials are reviewed. Starting with the basic characteristics and existing challenges of LiNi0.5Mn1.5O4, strategies such as ion doping, surface coating and surface doping are focused on improving the high-temperature performance. In addition, suggestions and prospects are put forward for subsequent research.

Contents

1 Introduction

2 Structure of LiNi0.5Mn1.5O4 cathode material

3 Synthesis of LiNi0.5Mn1.5O4 cathode material

4 Challenges of LiNi0.5Mn1.5O4 cathode material

5 Modification of LiNi0.5Mn1.5O4 cathode material at high temperature

5.1 Bulk ion doping

5.2 Surface coating

5.3 Surface ion doping

6 Conclusion and outlook

()
图1 LiNi0.5Mn1.5O4的结构示意图:(a) Fd3m结构;(b) P4332结构[13]
Fig. 1 Illustration of LiNi0.5Mn1.5O4 structure:(a) Fd3m space group;(b) P4332 space group[13]. Copyright 2012 RSC Publishing.
图2 LiMn1.5Ni0.5O4材料、Cr掺杂LiMn1.5Ni0.5O4材料的SEM图(a、b)和循环性能(c、d)[48];脱锂过程中材料的(e)体积变化、(f)锂空位形成能[49]
Fig. 2 SEM images(a, b) and cycle performance(c, d) of LiMn1.5Ni0.5O4 and Cr doped LiMn1.5Ni0.5O4[48],(e) Volume change and(f) Li vacancy formation energy in the delithiation process[49]. Copyright 2017 John Wiley and Sons and 2020 Royal Society of Chemistry.
图3 (a~d)La2O3包覆LiNi0.5Mn1.5O4在55 ℃的电化学性能,(e~h)Ta2O5包覆LiNi0.5Mn1.5O4在3.5~4.3 V的电化学性能,(i)La2O3包覆LiNi0.5Mn1.5O4的作用机理图[75];(j~k)不同HF耐受性包覆层包覆的LiNi0.5Mn1.5O4在循环前后的变化图[79]
Fig. 3 (a~d) Electrochemical performance of La2O3 coated LiNi0.5Mn1.5O4 at 55 ℃,(e~h) Electrochemical performance of Ta2O5 coated LiNi0.5Mn1.5O4,(i) mechanism diagram of La2O3 coated LiNi0.5Mn1.5O4[75];(j~k) schematic illustration of LiNi0.5Mn1.5O4 coated with HF barriers and scavengers, before and after electrochemical cycling[79]. Copyright 2020 Elsevier and 2018 American Chemical Society.
图4 (a) LiNbO3包覆LiNi0.5Mn1.5O4的制备示意图,(b,c)LiNbO3包覆LiNi0.5Mn1.5O4的作用机理图[87];(d)Li3V2(PO4)3包覆LiNi0.5Mn1.5O4的作用机理图,(e~i)Li3V2(PO4)3包覆LiNi0.5Mn1.5O4的微观形貌和元素分布图[99]
Fig. 4 (a) Schematic illustration of prepare process,(b,c) mechanism diagram of LiNi0.5Mn1.5O4@LiNbO3[87];(d) mechanism diagram,(e~i) microstructures and element distribution of LiNi0.5Mn1.5O4@Li3V2(PO4)3[99]. Copyright 2017 Royal Society of Chemistry and 2019 American Chemical Society.
图5 Zn表面掺杂对LiNi0.5Mn1.5O4表面结构的影响[115]
Fig. 5 Effects of Zn surface doping on surface structure of LiNi0.5Mn1.5O4[115]. Copyright 2019 American Chemical Society.
图6 Co表面掺杂LiNi0.5Mn1.5O4的电化学性能[120]
Fig. 6 Electrochemical performance of Co surface doped LiNi0.5Mn1.5O4[120]. Copyright 2019 American Chemical Society.
表1 近年来关于LiNi0.5Mn1.5O4改性的代表性工作及相关材料的高温性能
Table 1 High temperature performance of typical research works about LiNi0.5Mn1.5O4 cathode materials in recent years.
Modification Voltage range
(V vs Li/Li+)
Current density Initial capacity
(mAh ·g-1)
Cycle performance ref
Al3+ doping 3.5~5.0 V 1 C 129.9(55 ℃) 86.0%(500 cycles) 32
Cu2+ doping 3.5~5.0 V 5 C 116.0(55 ℃) 98.0%(100 cycles) 36
Ga3+ doping 3.5~4.95V 1 C 121.5(55 ℃) 98.4(50 cycles) 46
Cr3+ doping 3.5~4.9 V 1 C >120(50 ℃) 91.5%(350 cycles) 48
Na+ doping 3.5~4.9 V 5 C 119.7(55 ℃) 81.5%(400 cycles) 52
F- doping 3.5~4.9 V 1 C 122.7(55 ℃) 92.1%(100 cycles) 57
Al3+/Cr3+/F- doping 3.5~5.0 V 10 C 102.7(55 ℃) 95.6%(100 cycles) 59
ZrO2 coating 3.5~4.9V 40 C >120(55 ℃) 76.0%(120 cycles) 68
La2O3 coating 3.5~4.9 V 1 C 106.1(55 ℃) 93.3%(50 cycles) 75
SiO2 coating 3.5~5.0 V 0.5 C >130(55 ℃) 86.0%(100 cycles) 78
Ta2O5 coating 3.5~4.9 V 0.1 C 131.5(55 ℃) 93.0%(100 cycles) 79
GaF3 coating 3.5~5.0 V 1 C 145.3(60 ℃) 82.9%(300 cycles) 83
LiNbO3 coating 3.5~4.9 V 0.5 C >120(60 ℃) 90.0%(100 cycles) 87
Li2ZrO3 coating 3.5~4.95 V 1 C >120(55 ℃) 83.5%(200 cycles) 89
Li2TiO3 coating 3.2~5.0 V 1 C >115(55 ℃) 94.1%(50 cycles) 90
Li4SiO4 coating 3.5~5.0 V 5 C >115(55 ℃) 94.2%(150 cycles) 96
PI coating 3.5~4.9 V 1 C 125.0(55 ℃) 96.0%(50 cycles) 101
La0.7Sr0.3MnO3 coating 3.0~4.9 V 2 C >120(60 ℃) 90.0%(100 cycles) 106
Graphene coating 3.5~4.9 V 2 C 88.7(55 ℃) 94.5%(100 cycles) 108
PANI coating 3.0~4.95 V 0.5 C 112.8(55 ℃) 94.5%(100 cycles) 109
LaFeO3 coating 3.0~5.0 V 1 C >120(55 ℃) 93.3%(100 cycles) 110
Fe surface doping 3.5~5.0 V 1 C 122.0(55 ℃) 86.1%(500 cycles) 117
Co surface doping 3.5~4.95 V 1 C 129.0(55 ℃) 93.0%(200 cycles) 120
[1]
Wang J, Liao H Y, Li B C, Yang G, Wang L, Meng R. Chem. Reag., 2009, 31(11): 948.
(王健, 廖红英, 李冰川, 杨光, 王磊, 孟蓉. 化学试剂, 2009, 31(11): 948.)
[2]
Ruan J F, Pang Y P, Luo S N, Yuan T, Peng C X, Yang J H, Zheng S Y. J. Mater. Chem. A, 2018, 6(42): 20804.
[3]
Ding L. Chin. J. Power Sources, 2015, 39(8): 1780.
(丁玲. 电源技术, 2015, 39(8): 1780.)
[4]
Li M, Wang Y L, Wu X Y, Duan L, Zhang C M, He D N. Prog. Chem., 2017, 29(12): 1526.
(李敏, 王艳丽, 吴晓燕, 段磊, 张春明, 何丹农. 化学进展, 2017, 29(12): 1526.)

doi: 10.7536/PC170732    
[5]
Zhang K Q, Ling Z, Wang L Z. Battery Bimon., 2013, 43(4): 235.
(张凯庆, 凌泽, 王力臻. 电池, 2013, 43(4): 235.)
[6]
Chang Q, Wei A J, Li W, Bai X, Zhang L H, He R, Liu Z F. Ceram. Int., 2019, 45(4): 5100.

doi: 10.1016/j.ceramint.2018.11.213    
[7]
Ulvestad A, Singer A, Clark J N, Cho H M, Kim J W, Harder R, Maser J, Meng Y S, Shpyrko O G. Science, 2015, 348(6241): 1344.

doi: 10.1126/science.aaa1313     pmid: 26089511
[8]
Jung H G, Jang M W, Hassoun J, Sun Y K, Scrosati B. Nat. Commun., 2011, 2(1): 1527.
[9]
Li W D, Dolocan A, Oh P, Celio H, Park S, Cho J, Manthiram A. Nat. Commun., 2017, 8(1): 14589.
[10]
Madsen K E, Wade K A, Haasch R T, Buchholz D B, Bassett K L, Nicolau B G, Gewirth A A. ACS Appl. Mater. Interfaces, 2019, 11(43): 39890.
[11]
Gao X W, Deng Y F, Wexler D, Chen G H, Chou S L, Liu H K, Shi Z C, Wang J Z. J. Mater. Chem. A, 2015, 3(1): 404.

doi: 10.1039/C4TA04018J     URL    
[12]
Kim J H, Pieczonka N P W, Yang L. ChemPhysChem, 2014, 15(10): 1940.

doi: 10.1002/cphc.v15.10     URL    
[13]
Zhang X L, Cheng F Y, Zhang K, Liang Y L, Yang S Q, Liang J, Chen J. RSC Adv., 2012, 2(13): 5669.

doi: 10.1039/c2ra20669b     URL    
[14]
Yi T F, Mei J, Zhu Y R. J. Power Sources, 2016, 316: 85.

doi: 10.1016/j.jpowsour.2016.03.070     URL    
[15]
Luo Y. Doctoral Dissertation of Harbin University of Industry, 2017.
(罗英. 哈尔滨工业大学博士论文, 2017.).
[16]
Hu E Y, Bak S M, Liu J, Yu X Q, Zhou Y N, Ehrlich S N, Yang X Q, Nam K W. Chem. Mater., 2014, 26(2): 1108.

doi: 10.1021/cm403400y     URL    
[17]
Gao Z G, Sun K, Cong L N, Zhang Y H, Zhao Q, Wang R S, Xie H M, Sun L Q, Su Z M. J. Alloys Compd., 2016, 654: 257.

doi: 10.1016/j.jallcom.2015.08.066     URL    
[18]
Betz J, Nowak L, Brinkmann J P, Bärmann P, Diehl M, Winter M, Placke T, Schmuch R. Electrochimica Acta, 2019, 325: 134901.
[19]
Lin H B, Zhang Y M, Hu J N, Wang Y T, Xing L D, Xu M Q, Li X P, Li W S. J. Power Sources, 2014, 257: 37.

doi: 10.1016/j.jpowsour.2014.01.089     URL    
[20]
Lobo L S, Kumar A R. J. Sol Gel Sci. Technol., 2016, 80(3): 821.

doi: 10.1007/s10971-016-4150-9     URL    
[21]
Song Y M, Han J G, Park S, Lee K T, Choi N S. J. Mater. Chem. A, 2014, 2(25): 9506.

doi: 10.1039/C4TA01129E     URL    
[22]
Li Y, Wang J, Zhou Z, Yao Q, Wang Z, Zhou H, Deng J. Int. J. Electrochem. Sci., 2019, 2822.
[23]
Zhao E Q, Wei L, Guo Y D, Xu Y J, Yan W C, Sun D Y, Jin Y C. J. Alloys Compd., 2017, 695: 3393.

doi: 10.1016/j.jallcom.2016.12.022     URL    
[24]
Mokhtar N, Idris N H, Din M F M. Int. J. Electrochem. Sci., 2018, 13(11): 10113.
[25]
Hallot M, Demortière A, Roussel P, Lethien C. Energy Storage Mater., 2018, 15: 396.
[26]
Xu R, Zhang X F, Chamoun R, Shui J L, Li J C M, Lu J, Amine K, Belharouak I. Nano Energy, 2015, 15: 616.

doi: 10.1016/j.nanoen.2015.05.023     URL    
[27]
Shu Y, Xie Y, Yan W C, Meng S, Sun D Y, Jin Y C, He K. J. Power Sources, 2019, 433: 226708.
[28]
Shirazi moghadam Y, Masoudpanah S M, Alamolhoda S, Daneshtalab R. Adv. Powder Technol., 2020, 31(2): 639.

doi: 10.1016/j.apt.2019.11.019     URL    
[29]
Liu G Q, Zhang J Y, Zhang X H, Du Y L, Zhang K, Li G C, Yu H, Li C W, Li Z Y, Sun Q, Wen L. J. Alloys Compd., 2017, 725: 580.

doi: 10.1016/j.jallcom.2017.07.202     URL    
[30]
Chen Y Y, Sun Y, Huang X J. Comput. Mater. Sci., 2016, 115: 109.

doi: 10.1016/j.commatsci.2016.01.005     URL    
[31]
Ulu Okudur F, D'Haen J, Vranken T, de Sloovere D, Verheijen M, Karakulina O M, Abakumov A M, Hadermann J, van Bael M K, Hardy A. RSC Adv., 2018, 8(13): 7287.

doi: 10.1039/C7RA12932G     URL    
[32]
Zhong G B, Wang Y Y, Zhao X J, Wang Q S, Yu Y, Chen C H. J. Power Sources, 2012, 216: 368.

doi: 10.1016/j.jpowsour.2012.05.108     URL    
[33]
Chen A Y, Kong L L, Shu Y, Yan W C, Wu W, Xu Y J, Gao H T, Jin Y C. RSC Adv., 2019, 9(22): 12656.
[34]
Luo Y, Lu T L, Zhang Y X, Yan L Q, Mao S S, Xie J Y. J. Alloys Compd., 2017, 703: 289.

doi: 10.1016/j.jallcom.2017.01.248     URL    
[35]
Yang M C, Xu B, Cheng J H, Pan C J, Hwang B J, Meng Y S. Chem. Mater., 2011, 23(11): 2832.

doi: 10.1021/cm200042z     URL    
[36]
Sha O, Qiao Z, Wang S L, Tang Z Y, Wang H, Zhang X H, Xu Q. Mater. Res. Bull., 2013, 48(4): 1606.

doi: 10.1016/j.materresbull.2012.12.071     URL    
[37]
Sun H Y, Kong X, Wang B S, Luo T B, Liu G Y. Ceram. Int., 2018, 44(5): 4603.

doi: 10.1016/j.ceramint.2017.11.112     URL    
[38]
Shiiba H, Zettsu N, Kida S, Kim D W, Teshima K. J. Mater. Chem. A, 2018, 6(45): 22749.
[39]
Ito A, Li D C, Lee Y, Kobayakawa K, Sato Y. J. Power Sources, 2008, 185(2): 1429.

doi: 10.1016/j.jpowsour.2008.08.087     URL    
[40]
Jin Y Z, Lv Y Z, Xue Y, Wu J, Zhang X G, Wang Z B. RSC Adv., 2014, 4(100): 57041.
[41]
Lin M, Wang S H, Gong Z L, Huang X K, Yang Y. J. Electrochem. Soc., 2013, 160(5): A3036.

doi: 10.1149/2.004305jes     URL    
[42]
Sun H, Kong X, Wang B, Luo T, Liu G. Int. J. Electrochem. Sci., 2017, 8609.
[43]
Chemelewski K R, Manthiram A. J. Phys. Chem. C, 2013, 117(24): 12465.
[44]
Shin D W, Manthiram A. Electrochem. Commun., 2011, 13(11): 1213.

doi: 10.1016/j.elecom.2011.08.041     URL    
[45]
Shin D W, Bridges C A, Huq A, Paranthaman M P, Manthiram A. Chem. Mater., 2012, 24(19): 3720.

doi: 10.1021/cm301844w     URL    
[46]
Lan L F, Li S, Li J, Lu L, Lu Y, Huang S, Xu S J, Pan C Y, Zhao F H. Nanoscale Res. Lett., 2018, 13(1): 251.

doi: 10.1186/s11671-018-2666-3     URL    
[47]
Kiziltas-Yavuz N, Yavuz M, Indris S, Bramnik N N, Knapp M, Dolotko O, Das B, Ehrenberg H, Bhaskar A. J. Power Sources, 2016, 327: 507.

doi: 10.1016/j.jpowsour.2016.07.047     URL    
[48]
Wang J, Nie P, Xu G Y, Jiang J M, Wu Y T, Fu R R, Dou H, Zhang X G. Adv. Funct. Mater., 2018, 28(4): 1704808.
[49]
Li F, Ma J N, Lin J Y, Zhang X H, Yu H, Yang G C. Phys. Chem. Chem. Phys., 2020, 22(7): 3831.

doi: 10.1039/C9CP06545H     URL    
[50]
Li S, Lan L F, Lu L, Lu Y, Li S F, Li J, Pan C Y, Zhao F H. AIP Adv., 2019, 9(2): 025210.
[51]
Wu W, Guo J L, Qin X, Bi C B, Wang J F, Wang L, Liang G C. J. Alloys Compd., 2017, 721: 721.

doi: 10.1016/j.jallcom.2017.06.060     URL    
[52]
Wang J, Lin W Q, Wu B H, Zhao J B. Electrochimica Acta, 2014, 145: 245.

doi: 10.1016/j.electacta.2014.07.140     URL    
[53]
Wang J F, Chen D, Wu W, Wang L, Liang G C. Trans. Nonferrous Met. Soc. China, 2017, 27(10): 2239.

doi: 10.1016/S1003-6326(17)60250-4     URL    
[54]
Deng M M, Zou B K, Shao Y, Tang Z F, Chen C H. J. Solid State Electrochem., 2017, 21(6): 1733.

doi: 10.1007/s10008-017-3545-z     URL    
[55]
Liang G M, Wu Z B, Didier C, Zhang W C, Cuan J, Li B H, Ko K Y, Hung P Y, Lu C Z, Chen Y Z, Leniec G, Kaczmarek S M, Johannessen B, Thomsen L, Peterson V K, Pang W K, Guo Z P. Angew. Chem. Int. Ed., 2020, 59(26): 10594.
[56]
Oh S W, Park S H, Kim J H, Bae Y C, Sun Y K. J. Power Sources, 2006, 157(1): 464.

doi: 10.1016/j.jpowsour.2005.07.056     URL    
[57]
Luo Y, Li H Y, Lu T L, Zhang Y X, Mao S S, Liu Z, Wen W, Xie J Y, Yan L Q. Electrochimica Acta, 2017, 238: 237.

doi: 10.1016/j.electacta.2017.04.043     URL    
[58]
Kim W K, Han D W, Ryu W H, Lim S J, Eom J Y, Kwon H S. J. Alloys Compd., 2014, 592: 48.

doi: 10.1016/j.jallcom.2013.12.248     URL    
[59]
Sha O, Tang Z Y, Wang S L, Yuan W, Qiao Z, Xu Q, Ma L. Electrochimica Acta, 2012, 77: 250.

doi: 10.1016/j.electacta.2012.05.096     URL    
[60]
Li H Y, Luo Y, Xie J Y, Zhang Q S, Yan L Q. J. Alloys Compd., 2015, 639: 346.

doi: 10.1016/j.jallcom.2015.03.114     URL    
[61]
Chao M, Luo L, Li K, Zhou B, Shi Q. Int. J. Electrochem. Sci., 2019, 7643.
[62]
Gu T T, Wang J, Tian J H, Zheng X J, Lu K W, Xin Y, Wang H B, Yang R Z. ChemElectroChem, 2019, 6(8): 2224.

doi: 10.1002/celc.v6.8     URL    
[63]
Zheng X Y, Liu W J, Qu Q T, Zheng H H, Huang Y H. J. Materiomics, 2019, 5(2): 156.

doi: 10.1016/j.jmat.2019.01.007     URL    
[64]
Höweling A, Stoll A, Schmidt D O, Geßwein H, Simon U, Binder J R. J. Electrochem. Soc., 2017, 164(1): A6349.

doi: 10.1149/2.0521701jes     URL    
[65]
Liu J H, Sun Z Q, Xie J N, Chen H Y, Wu N N, Wu B R. J. Power Sources, 2013, 240: 95.

doi: 10.1016/j.jpowsour.2013.03.172     URL    
[66]
Choi S, Kim M C, Moon S H, Kim H, Park K W. Electrochimica Acta, 2019, 326: 135015.
[67]
Noguchi T, Yamazaki I, Numata T, Shirakata M. J. Power Sources, 2007, 174(2): 359.

doi: 10.1016/j.jpowsour.2007.06.139     URL    
[68]
Nisar U, Amin R, Essehli R, Shakoor R A, Kahraman R, Kim D K, Khaleel M A, Belharouak I. J. Power Sources, 2018, 396: 774.

doi: 10.1016/j.jpowsour.2018.06.065     URL    
[69]
Lin M, Ben L, Yang S, Hao W, Huang X. Chem. Mater., 2015, 27(1): 292.

doi: 10.1021/cm503972a     URL    
[70]
Fang X, Lin F, Nordlund D, Mecklenburg M, Ge M Y, Rong J P, Zhang A Y, Shen C F, Liu Y H, Cao Y, Doeff M M, Zhou C W. Adv. Funct. Mater., 2017, 27(7): 1602873.
[71]
Fey G T K, Muralidharan P, Lu C Z, Cho Y D. Electrochimica Acta, 2006, 51(23): 4850.

doi: 10.1016/j.electacta.2006.01.024     URL    
[72]
Yuan W, Zhang H Z, Liu Q, Li G R, Gao X P. Electrochimica Acta, 2014, 135: 199.

doi: 10.1016/j.electacta.2014.04.181     URL    
[73]
Shi S J, Tu J P, Zhang Y J, Zhang Y D, Zhao X Y, Wang X L, Gu C D. Electrochimica Acta, 2013, 108: 441.

doi: 10.1016/j.electacta.2013.07.020     URL    
[74]
Luo X Y, Liao Y H, Zhu Y M, Li M S, Chen F B, Huang Q M, Li W S. J. Power Sources, 2017, 348: 229.

doi: 10.1016/j.jpowsour.2017.02.085     URL    
[75]
Gao J H, Yuan T, Luo S N, Ruan J F, Sun H, Yang J H, Zheng S Y. J. Colloid Interface Sci., 2020, 570: 153.

doi: 10.1016/j.jcis.2020.02.112     URL    
[76]
Sun Y K, Lee Y S, Yoshio M, Amine K. Electrochem. Solid-State Lett., 2002, 5(5): A99.

doi: 10.1149/1.1465375     URL    
[77]
Arrebola J C, Caballero A, Hernán L, Morales J. J. Power Sources, 2010, 195(13): 4278.

doi: 10.1016/j.jpowsour.2010.01.004     URL    
[78]
Fan Y K, Wang J M, Tang Z, He W C, Zhang J Q. Electrochimica Acta, 2007, 52(11): 3870.

doi: 10.1016/j.electacta.2006.10.063     URL    
[79]
Ben L, Yu H, Wu Y, Chen B, Zhao W, Huang X. ACS Appl. Energy Mater., 2018, 1(10): 5589.
[80]
Luo K, Roberts M R, Hao R, Guerrini N, Pickup D M, Liu Y S, Edström K, Guo J H, Chadwick A V, Duda L C, Bruce P G. Nat. Chem., 2016, 8(7): 684.

doi: 10.1038/nchem.2471     URL    
[81]
Shi J Y, Yi C W, Kim K. J. Power Sources, 2010, 195(19): 6860.

doi: 10.1016/j.jpowsour.2010.02.063     URL    
[82]
Deng S X, Xiao B W, Wang B Q, Li X, Kaliyappan K, Zhao Y, Lushington A, Li R Y, Sham T K, Wang H, Sun X L. Nano Energy, 2017, 38: 19.

doi: 10.1016/j.nanoen.2017.05.007     URL    
[83]
Huang Y Y, Zeng X L, Zhou C, Wu P, Tong D G. J. Mater. Sci., 2013, 48(2): 625.

doi: 10.1007/s10853-012-6765-8     URL    
[84]
Tiurin O, Solomatin N, Auinat M, Ein-Eli Y. J. Power Sources, 2020, 448: 227373.
[85]
Chu C T, Mondal A, Kosova N V, Lin J Y. Appl. Surf. Sci., 2020, 530: 147169.
[86]
Deng H F, Nie P, Shen L F, Luo H F, Zhang X G. Prog. Chem., 2014, 26(6): 939.
(邓海福, 聂平, 申来法, 罗海峰, 张校刚. 化学进展, 2014, 26(6): 939.)
[87]
Kim H, Byun D, Chang W, Jung H G, Choi W. J. Mater. Chem. A, 2017, 5(47): 25077.
[88]
Gabrielli G, Axmann P, Diemant T, Behm R J, Wohlfahrt-Mehrens M. ChemSusChem, 2016, 9(13): 1670.

doi: 10.1002/cssc.201600278     pmid: 27254109
[89]
Zhang J N, Sun G, Han Y, Yu F D, Qin X J, Shao G J, Wang Z B. Electrochimica Acta, 2020, 343: 136105.
[90]
Deng H F, Nie P, Luo H F, Zhang Y, Wang J, Zhang X G. J. Mater. Chem. A, 2014, 2(43): 18256.
[91]
Zhao J Z, Liu Y R, He Y, Lu K. J. Alloys Compd., 2019, 779: 978.

doi: 10.1016/j.jallcom.2018.11.152     URL    
[92]
Wu Q, Xue K, Zhang X H, Xie X S, Wang H Q, Zhang J J, Li Q Y. Ceram. Int., 2019, 45(4): 5072.

doi: 10.1016/j.ceramint.2018.11.209     URL    
[93]
Park J S, Meng X B, Elam J W, Hao S Q, Wolverton C, Kim C, Cabana J. Chem. Mater., 2014, 26(10): 3128.

doi: 10.1021/cm500512n     URL    
[94]
Cheng F Q, Xin Y L, Huang Y Y, Chen J T, Zhou H H, Zhang X X. J. Power Sources, 2013, 239: 181.

doi: 10.1016/j.jpowsour.2013.03.143     URL    
[95]
Deng Y L, He L H, Ren J, Zheng Q J, Xu C G, Lin D M. Mater. Res. Bull., 2018, 100: 333.

doi: 10.1016/j.materresbull.2017.12.050     URL    
[96]
Xu Y H, Zhao S X, Deng Y F, Deng H, Nan C W. J. Materiomics, 2016, 2(3): 265.

doi: 10.1016/j.jmat.2016.04.005     URL    
[97]
Deng J C, Xu Y L, Li L, Feng T Y, Li L,. J. Mater. Chem. A, 2016, 4(17): 6561.

doi: 10.1039/C6TA02237E     URL    
[98]
Lin Y B, Yang Y M, Yu R B, Lai H, Huang Z G. J. Power Sources, 2014, 259: 188.

doi: 10.1016/j.jpowsour.2014.02.093     URL    
[99]
Zhao R, Li L, Xu T H, Wang D D, Pan D, He G J, Zhao H L, Bai Y. ACS Appl. Mater. Interfaces, 2019, 11(17): 16233.
[100]
Li L, Zhao R, Pan D, Yi S H, Gao L F, He G J, Zhao H L, Yu C Y, Bai Y. J. Power Sources, 2020, 450: 227677.
[101]
Cho J H, Park J H, Lee M H, Song H K, Lee S Y. Energy Environ. Sci., 2012, 5(5): 7124.

doi: 10.1039/c2ee03389e     URL    
[102]
Chong J, Xun S D, Zhang J P, Song X Y, Xie H M, Battaglia V, Wang R S. Chem. Eur. J., 2014, 20(24): 7479.

doi: 10.1002/chem.201304744     URL    
[103]
Konishi H, Suzuki K, Taminato S, Kim K, Zheng Y M, Kim S, Lim J, Hirayama M, Son J Y, Cui Y T, Kanno R. J. Power Sources, 2014, 269: 293.

doi: 10.1016/j.jpowsour.2014.05.052     URL    
[104]
Chong J, Xun S D, Song X Y, Liu G, Battaglia V S. Nano Energy, 2013, 2(2): 283.

doi: 10.1016/j.nanoen.2012.09.013     URL    
[105]
Mou J R, Deng Y L, Song Z C, Zheng Q J, Lam K H, Lin D M. Dalton Trans., 2018, 47(20): 7020.

doi: 10.1039/C8DT00014J     URL    
[106]
Zhao G Y, Lin Y B, Zhou T, Lin Y, Huang Y D, Huang Z G. J. Power Sources, 2012, 215: 63.

doi: 10.1016/j.jpowsour.2012.04.090     URL    
[107]
Liang G M, Peterson V K, See K W, Guo Z P, Pang W K. J. Mater. Chem. A, 2020, 8(31): 15373.
[108]
Gao C, Liu H P, Bi S F, Fan S S, Meng X H, Li Q Y, Luo C X. J. Materiomics, 2020, 6(4): 712.

doi: 10.1016/j.jmat.2020.05.010     URL    
[109]
Dong H Y, Zhang Y J, Zhang S Q, Tang P P, Xiao X L, Ma M Y, Zhang H S, Yin Y H, Wang D, Yang S T. ACS Omega, 2019, 4(1): 185.

doi: 10.1021/acsomega.8b02571     URL    
[110]
Mou J R, Deng Y L, He L H, Zheng Q J, Jiang N, Lin D. Electrochimica Acta, 2018, 260: 101.

doi: 10.1016/j.electacta.2017.11.059     URL    
[111]
Lee K, Yang G J, Kim H, Kim T, Lee S S, Choi S Y, Choi S, Kim Y. J. Power Sources, 2017, 365: 249.

doi: 10.1016/j.jpowsour.2017.08.080     URL    
[112]
Lu J, Zhan C, Wu T P, Wen J G, Lei Y, Kropf A J, Wu H M, Miller D J, Elam J W, Sun Y K, Qiu X P, Amine K. Nat. Commun., 2014, 5(1): 5693.

doi: 10.1038/ncomms6693     URL    
[113]
Lim J M, Oh R G, Kim D, Cho W, Cho K, Cho M, Park M S. ChemSusChem, 2016, 9(20): 2967.

doi: 10.1002/cssc.201600821     URL    
[114]
Piao J Y, Sun Y G, Duan S Y, Cao A M, Wang X L, Xiao R J, Yu X Q, Gong Y, Gu L, Li Y T, Liu Z J, Peng Z Q, Qiao R M, Yang W L, Yang X Q, Goodenough J B, Wan L J. Chem, 2018, 4(7): 1685.

doi: 10.1016/j.chempr.2018.04.020     URL    
[115]
Piao J Y, Gu L, Wei Z X, Ma J M, Wu J P, Yang W L, Gong Y, Sun Y G, Duan S Y, Tao X S, Bin D S, Cao A M, Wan L J. J. Am. Chem. Soc., 2019, 141(12): 4900.

doi: 10.1021/jacs.8b13438     URL    
[116]
Patel R L, Jiang Y B, Choudhury A, Liang X H. Sci. Rep., 2016, 6(1): 25293.
[117]
Gao Y, He X Q, Ma L, Wu T P, Park J, Liang X H. Electrochimica Acta, 2020, 340: 135951.
[118]
Xiao B W, Liu H S, Liu J, Sun Q, Wang B Q, Kaliyappan K, Zhao Y, Banis M N, Liu Y L, Li R Y, Sham T K, Botton G A, Cai M, Sun X L. Adv. Mater., 2017, 29(47): 1703764.
[119]
Chen Y Y, Ben L B, Chen B, Zhao W W, Huang X J. Adv. Mater. Interfaces, 2018, 5(12): 1800077.
[120]
Xue Y, Zheng L L, Wang J, Zhou J G, Yu F D, Zhou G J, Wang Z B. ACS Appl. Energy Mater., 2019, 2(4): 2982.

doi: 10.1021/acsaem.9b00564     URL    
[1] 朱国辉, 还红先, 于大伟, 郭学益, 田庆华. 废旧锂离子电池选择性提锂[J]. 化学进展, 2023, 35(2): 287-301.
[2] 李芳远, 李俊豪, 吴钰洁, 石凯祥, 刘全兵, 彭翃杰. “蛋黄蛋壳”结构纳米电极材料设计及在锂/钠离子/锂硫电池中的应用[J]. 化学进展, 2022, 34(6): 1369-1383.
[3] 王才威, 杨东杰, 邱学青, 张文礼. 木质素多孔碳材料在电化学储能中的应用[J]. 化学进展, 2022, 34(2): 285-300.
[4] 陈阳, 崔晓莉. 锂离子电池二氧化钛负极材料[J]. 化学进展, 2021, 33(8): 1249-1269.
[5] 陆嘉晟, 陈嘉苗, 何天贤, 赵经纬, 刘军, 霍延平. 锂电池用无机固态电解质[J]. 化学进展, 2021, 33(8): 1344-1361.
[6] 黄国勇, 董曦, 杜建委, 孙晓华, 李勃天, 叶海木. 锂离子电池高压电解液[J]. 化学进展, 2021, 33(5): 855-867.
[7] 张长欢, 李念武, 张秀芹. 柔性锂离子电池的电极[J]. 化学进展, 2021, 33(4): 633-648.
[8] 穆德颖, 刘铸, 金珊, 刘元龙, 田爽, 戴长松. 废旧锂离子电池正极材料及电解液的全过程回收及再利用[J]. 化学进展, 2020, 32(7): 950-965.
[9] 庄全超, 杨梓, 张蕾, 崔艳华. 锂离子电池的电化学阻抗谱分析研究进展[J]. 化学进展, 2020, 32(6): 761-791.
[10] 吴战, 李笑涵, 钱奥炜, 杨家喻, 张文魁, 张俊. 基于无机电致变色材料的变色储能器件[J]. 化学进展, 2020, 32(6): 792-802.
[11] 汪靖伦, 冉琴, 韩冲宇, 唐子龙, 陈启多, 秦雪英. 锂离子电池有机硅功能电解液[J]. 化学进展, 2020, 32(4): 467-480.
[12] 张伟, 齐小鹏, 方升, 张健华, 史碧梦, 杨娟玉. 碳在锂离子电池硅碳复合材料中的作用[J]. 化学进展, 2020, 32(4): 454-466.
[13] 陈豪登, 徐建兴, 籍少敏, 姬文晋, 崔立峰, 霍延平. MOFs衍生金属氧化物及其复合材料在锂离子电池负极材料中的应用[J]. 化学进展, 2020, 32(2/3): 298-308.
[14] 王官格, 张华宁, 吴彤, 刘博睿, 黄擎, 苏岳锋. 废旧锂离子电池正极材料资源化回收与再生[J]. 化学进展, 2020, 32(12): 2064-2074.
[15] 鲁志远, 刘燕妮, 廖世军. 锂离子电池富锂锰基层状正极材料的稳定性[J]. 化学进展, 2020, 32(10): 1504-1514.