English
新闻公告
More
化学进展 2023, Vol. 35 Issue (2): 287-301 DOI: 10.7536/PC220727 前一篇   后一篇

• 综述 •

废旧锂离子电池选择性提锂

朱国辉1,2, 还红先1,2, 于大伟1,2,*(), 郭学益1,2, 田庆华1,2   

  1. 1 中南大学 冶金与环境学院 长沙 410083
    2 有色金属资源循环利用国家地方联合工程研究中心 长沙 410083
  • 收稿日期:2022-07-20 修回日期:2022-09-30 出版日期:2023-02-24 发布日期:2022-10-30
  • 基金资助:
    湖南省自然科学基金(2021JJ30854); 国家自然科学基金(52274413)

Selective Recovery of Lithium from Spent Lithium-Ion Batteries

Guohui Zhu1,2, Hongxian Huan1,2, Dawei Yu1,2(), Xueyi Guo1,2, Qinghua Tian1,2   

  1. 1 School of Metallurgy and Environment, Central South University,Changsha 410083, China
    2 National and Regional Joint Engineering Research Centre of Nonferrous Metal Resource Recycling,Changsha 410083, China
  • Received:2022-07-20 Revised:2022-09-30 Online:2023-02-24 Published:2022-10-30
  • Contact: *e-mail: dawei.yu@csu.edu.cn
  • About author:
    These authors contributed equally to this work.
  • Supported by:
    Natural Science Foundation of Hunan Province(2021JJ30854); National Natural Science Foundation of China(52274413)

新能源汽车行业的蓬勃发展不仅使锂离子电池需求量激增,大批锂离子电池在达到一定循环次数后也会因无法继续使用而报废。目前研究者们已经对废旧锂离子电池中有价金属的提取方法进行了许多研究,但回收过程中重点关注的对象是钴和镍,锂作为锂离子电池中的主要成分没有给予足够的重视。随着锂资源供需关系的日趋紧张,近年来通过将废旧锂离子电池中的锂优先选择性提取以提高其回收效率的研究不断增多。基于此,本文系统梳理了从不同正极材料(如钴酸锂、锰酸锂、镍钴锰酸锂和磷酸铁锂)中选择性提锂的方法,包括高温转型、选择性浸出、机械化学及电化学法,为后续有关退役锂离子电池选择性提锂的研究及产业实践提供参考。

The transition towards electric vehicles (EVs) has resulted in a proliferating demand for lithium-ion batteries (LIBs). The continuous growth in the EV industry results in a colossal number of LIBs being discarded after reaching their end-of-life. Researchers have carried out numerous investigations on the extraction of valuable metals from spent LIBs. The recycling processes have mainly been concerned with the recovery of the valuable metals of cobalt and nickel, with less attention being placed on lithium recovery. With the imbalance of the supply and demand of lithium resources, research on selective recovery of lithium from spent LIBs has increased in recent years. This paper provides a comprehensive overview of the high-temperature selective conversion, selective leaching, mechanical and electrochemical recycling methods that facilitate selective lithium recovery. It provides recommendations for future research and development to enhance the selective extraction of lithium from spent LIBs.

Contents

1 Introduction

2 Selective lithium extraction from spent LIBs cathode material

2.1 High-temperature transition

2.2 Selective leaching

2.3 Mechanical/electrochemical extraction

2.4 Comparison of advantages and shortcomings of different treatments

2.5 Influence of impurities

3 Recovery of lithium from electrolyte

4 Conclusion and outlook

()
表1 不同类型正极材料组成、结构、锂含量、主要用途、市场份额及回收经济效益对比[4,16,29]
Table 1 Comparison of different types of cathode composition, structure, proportion of lithium, typical use, market share and recycling economic benefits[4,16,29]
图1 通过高温转型实现电极活性材料/含锂熔渣选择性提锂示意图
Fig.1 Schematic diagram of selective lithium extraction from electrode material and lithium-bearing slag by high temperature transition
图2 不同温度下碳酸锂在水中的溶解度[37]
Fig.2 Solubility of lithium carbonate in water at different temperatures[37]
图3 LCO正极材料铝热还原选择性提锂示意图[52]
Fig.3 Schematic diagram of selective lithium extraction from LCO cathode by aluminothermic reduction[52], Copyright 2019, American Chemical Society
表2 不同硝酸盐分解温度对比[58]
Table 2 Comparison of the decomposition temperatures of relevant nitrate compounds[58]
图4 CaCl2氯化NCM选择性提锂过程示意图[64]
Fig.4 Schematic diagram of the selective chlorination of the NCM cathode using CaCl2[64]
图5 硫酸化焙烧法从废LCO电池选择性提锂示意图[68]
Fig.5 Schematic diagram of selective lithium extraction from spent LCO batteries by sulfation roasting[68]. Copyright 2019, RSC
图6 H2O2-CH3COOH体系从废旧LFP回收锂的流程[76]
Fig.6 Process for recovering lithium from spent LFP by the H2O2-CH3COOH system[76]
图7 机械活化法从废旧LFP选择性回收锂的流程[80]
Fig.7 Selective recovery of lithium from spent LFP by mechanical activation[80]
图8 电化学法从LFP中选择性回收Li的示意图[82]
Fig.8 Schematic illustration of the selective recovery of Li from LFP by electrochemical treatment[82]. Copyright 2020, Elsevier
图9 不同高温转型方法适用的正极材料类型、焙烧温度及焙烧产物所需浸出体系对比
Fig.9 Comparison of high temperature processes for the treatment of different cathode materials with regard to the roasting temperature and required leaching conditions for the roasted products
表3 选择性浸出使用试剂对比
Table 3 Comparison of leaching reagent and reduction/oxidation agent in selective leaching
表4 选择性提锂不同方法的能量消耗、试剂成本、尾气排放、浸出体系、处理能力对比
Table 4 Comparision of various process treatments in terms of the required energy, reagent costs, exhaust gas emission, acid/alkaline leaching, and processing capacity
图10 电解液中回收锂流程图
Fig.10 Flowsheet for lithium recovery from electrolyte
[1]
Nagaura T. Prog. Batter. Sol. Cells, 1990, 9: 209.
[2]
Fan E S, Li L, Wang Z P, Lin J, Huang Y X, Yao Y, Chen R J, Wu F. Chem. Rev., 2020, 120(14): 7020.

doi: 10.1021/acs.chemrev.9b00535     URL    
[3]
Duffner F, Kronemeyer N, Tübke J, Leker J, Winter M, Schmuch R. Nat. Energy, 2021, 6(2): 123.

doi: 10.1038/s41560-020-00748-8    
[4]
Harper G, Sommerville R, Kendrick E, Driscoll L, Slater P, Stolkin R, Walton A, Christensen P, Heidrich O, Lambert S, Abbott A, Ryder K, Gaines L, Anderson P. Nature, 2019, 575(7781): 75.

doi: 10.1038/s41586-019-1682-5    
[5]
Chen M Y, Zheng Z F, Wang Q, Zhang Y B, Ma X T, Shen C, Xu D P, Liu J, Liu Y T, Gionet P, O’Connor I, Pinnell L, Wang J, Gratz E, Arsenault R, Wang Y. Sci. Rep., 2019, 9: 1654.

doi: 10.1038/s41598-018-38238-3    
[6]
Swain B. Sep. Purif. Technol., 2017, 172: 388.

doi: 10.1016/j.seppur.2016.08.031     URL    
[7]
Sonoc A, Jeswiet J, Soo V K. Procedia CIRP, 2015, 29: 752.

doi: 10.1016/j.procir.2015.02.039     URL    
[8]
Jiang C X, Chen B L, Zhang D Y, Ge L, Wang Y M, Xu T W. CIESC J., 2022(2): 481.
(蒋晨啸, 陈秉伦, 张东钰, 葛亮, 汪耀明, 徐铜文. 化工学报, 2022(2): 481.).
[9]
Zhang X F, Tan X M, Liu W Z, Wang W, Zhang Z L. Conservation and Utillization of Mineral Resources, 2020, 40(5): 17.
(张秀峰, 谭秀民, 刘维燥, 王威, 张利珍. 矿产保护与利用, 2020, 40(5): 17.).
[10]
Dessemond C, Lajoie-Leroux F, Soucy G, Laroche N, Magnan J F. Minerals, 2019, 9(6): 334.

doi: 10.3390/min9060334     URL    
[11]
Su T, Guo M, Liu Z, Li Q. J Salt Lake Res, 2019, 27(3): 104.
(苏彤, 郭敏, 刘忠, 李权. 盐湖研究, 2019, 27(3): 104.).
[12]
Liu C W, Lin J, Cao H B, Zhang Y, Sun Z. J. Clean. Prod., 2019, 228: 801.

doi: 10.1016/j.jclepro.2019.04.304     URL    
[13]
Zhang H J, Chen X, Zou X, Liu W K, Zheng S L, Zhang Y, Li P. Chin. J. Process. Eng., 2020, 20(5): 503.
(张贺杰, 陈兴, 邹兴, 刘文科, 郑诗礼, 张懿, 李平. 过程工程学报, 2020, 20(5): 503.).
[14]
Liu G F, Lin J C, Tian T T. China Resour. Compr. Util., 2020, 38(1): 96.
(刘光富, 林锦灿, 田婷婷. 中国资源综合利用, 2020, 38(1): 96.).
[15]
Baum Z J, Bird R E, Yu X, Ma J. ACS Energy Lett., 2022, 7(2): 712.

doi: 10.1021/acsenergylett.1c02602     URL    
[16]
Yang Y, Okonkwo E G, Huang G Y, Xu S M, Sun W, He Y H. Energy Storage Mater., 2021, 36: 186.
[17]
Assefi M, Maroufi S, Yamauchi Y, Sahajwalla V. Curr. Opin. Green Sustain. Chem., 2020, 24: 26.
[18]
Al-Thyabat S, Nakamura T, Shibata E, Iizuka A. Miner. Eng., 2013, 45: 4.

doi: 10.1016/j.mineng.2012.12.005     URL    
[19]
Chen X P, Cao L, Kang D Z, Li J Z, Zhou T, Ma H R. Waste Manag., 2018, 80: 198.

doi: 10.1016/j.wasman.2018.09.013     URL    
[20]
Zhu S G, He W Z, Li G M, Zhou X, Zhang X J, Huang J W. Trans. Nonferrous Met. Soc. China, 2012, 22(9): 2274.

doi: 10.1016/S1003-6326(11)61460-X     URL    
[21]
Yang Y, Lei S Y, Song S L, Sun W, Wang L S. Waste Manag., 2020, 102: 131.

doi: 10.1016/j.wasman.2019.09.044     URL    
[22]
Cao N, Zhang Y L, Chen L L, Chu W, Huang Y G, Jia Y, Wang M. J. Power Sources, 2021, 483: 229163.

doi: 10.1016/j.jpowsour.2020.229163     URL    
[23]
Arshad F, Li L, Amin K, Fan E S, Manurkar N, Ahmad A, Yang J B, Wu F, Chen R J. ACS Sustainable Chem. Eng., 2020, 8(36): 13527.

doi: 10.1021/acssuschemeng.0c04940     URL    
[24]
Zheng Z. Advanced Materials Industry, 2020, (06): 49.
(郑洲. 新材料产业, 2020, (06): 49.).
[25]
Yi T F, Yue C B, Zhu Y R, Zhu R S, Hu X G. Rare Met. Mater. Eng., 2009, 38(9): 1687.
(伊廷锋, 岳彩波, 朱彦荣, 诸荣孙, 胡信国. 稀有金属材料与工程, 2009, 38(9): 1687.).
[26]
Makuza B, Tian Q H, Guo X Y, Chattopadhyay K, Yu D W. J. Power Sources, 2021, 491: 229622.

doi: 10.1016/j.jpowsour.2021.229622     URL    
[27]
Zhao L, Yin J, Gong J H, Li S, Liu R Y, Gao T. Environ Protec Chem Ind, 2021, 41(3): 255.
(赵磊, 殷进, 龚佳豪, 李硕, 刘瑞勇, 高婷. 化工环保, 2021, 41(3): 255.).
[28]
Kumar J, Neiber R R, Park J, Ali Soomro R, Greene G W, Ali Mazari S, Young Seo H, Jin H, Shon M, Wook Chang D, Yong Cho K. Chem. Eng. J., 2022, 431: 133993.

doi: 10.1016/j.cej.2021.133993     URL    
[29]
Jin S, Mu D Y, Lu Z A, Li R H, Liu Z, Wang Y, Tian S, Dai C S. J. Clean. Prod., 2022, 340: 130535.

doi: 10.1016/j.jclepro.2022.130535     URL    
[30]
Li T, Luo Y H, Liu C. Dianchi, 2021, 51(04): 425.
(李涛, 骆艳华, 刘晨. 电池, 2021, 51(04): 425.).
[31]
Recycling of Spent Lithium-Ion Batteries: Processing Methods and Environmental Impacts. Ed.: An L. Cham: Springer International Publishing, 2019.
[32]
Hendrickson T P, Kavvada O, Shah N, Sathre R, D Scown C. Environ. Res. Lett., 2015, 10(1): 014011.

doi: 10.1088/1748-9326/10/1/014011     URL    
[33]
Dang H, Li N, Chang Z D, Wang B F, Zhan Y F, Wu X, Liu W B, Ali S, Li H D, Guo J H, Li W J, Zhou H L, Sun C Y. Sep. Purif. Technol., 2020, 233: 116025.

doi: 10.1016/j.seppur.2019.116025     URL    
[34]
Dang H, Chang Z D, Wu X, Ma S H, Zhan Y F, Li N, Liu W B, Li W J, Zhou H L, Sun C Y. Chin. J. Chem. Eng., 2022, 41: 294.

doi: 10.1016/j.cjche.2021.09.008     URL    
[35]
Ren G X, Xiao S W, Xie M Q, Pan B, Fan Y Q, Wang F G, Xia X.,. Advances in Molten Slags, Fluxes, and Salts: Proceedings of the 10th International Conference on Molten Slags, Fluxes and Salts 2016. Cham: Springer International Publishing, 2016: 211.
[36]
Wang Y, Zheng X H, Tao T Y, Liu X Q, Li L, Sun Z. Chem. Ind. Eng. Prog, 2022, 41(08):4530.
(王玥, 郑晓洪, 陶天一, 刘秀庆, 李丽, 孙峙. 化工进展, 2022, 41(08):4530.).
[37]
Wang B, Deng X C, Shi Y F, Dong C C, Fan F Y, Zhu C L, Fan J. Inorganic Chemicals Industry, 2021, 53(07): 73.
(王斌, 邓小川, 史一飞, 董超超, 樊发英, 朱朝梁, 樊洁. 无机盐工业, 2021, 53(07): 73.).
[38]
Makuza B, Yu D W, Huang Z, Tian Q H, Guo X Y. Resour. Conserv. Recycl., 2021, 174: 105784.

doi: 10.1016/j.resconrec.2021.105784     URL    
[39]
Liu P C, Xiao L, Tang Y W, Chen Y F, Ye L G, Zhu Y R. J. Therm. Anal. Calorim., 2019, 136(3): 1323.

doi: 10.1007/s10973-018-7732-7    
[40]
Hu J T, Zhang J L, Li H X, Chen Y Q, Wang C Y. J. Power Sources, 2017, 351: 192.

doi: 10.1016/j.jpowsour.2017.03.093     URL    
[41]
Liao C B, Ren G X, Xiao S W. Nonferrous Met. Extr. Metall., 2020, (12): 42.
(廖财斌, 任国兴, 肖松文. 有色金属(冶炼部分), 2020, (12): 42.).
[42]
Zhao W, Hu X, Wang M, Li C, Gao J, Yang L, Xu C.CN 109672002B, 2020.
[43]
Konishi M, Arai T.JP 2019039028A, 2019.
[44]
Wang H B, Deng C Q, Li S L, Qin S C, Zheng Z C, Li Q.CN 113913606A, 2022.
[45]
Ghamouss F, Mallouki M, Bertolotti B, Chikh L, Vancaeyzeele C, Alfonsi S, Fichet O. J. Power Sources, 2012, 197: 267.

doi: 10.1016/j.jpowsour.2011.09.052     URL    
[46]
Lide D. CRC handbook of chemistry and physics on CD-ROM, 2000. 85.
[47]
Liu F P, Peng C, Ma Q X, Wang J L, Zhou S L, Chen Z M, Wilson B P, Lundström M. Sep. Purif. Technol., 2021, 259: 118181.

doi: 10.1016/j.seppur.2020.118181     URL    
[48]
Liu C, Dong A G, Chen S X, Fu Y F, Wang W W, Chen X G, Sun N L. China Nonferrous Metall., 2020, 49(4): 69.
(刘诚, 董爱国, 陈宋璇, 付云枫, 王玮玮, 陈学刚, 孙宁磊. 中国有色冶金, 2020, 49(4): 69.).
[49]
Huang Z, Liu F, Makuza B, Yu D W, Guo X Y, Tian Q H. ACS Sustainable Chem. Eng., 2022, 10(2): 756.

doi: 10.1021/acssuschemeng.1c05721     URL    
[50]
Pinegar H, Marthi R, Yang P L, Smith Y R. ACS Sustainable Chem. Eng., 2021, 9(22): 7447.

doi: 10.1021/acssuschemeng.0c08695     URL    
[51]
Guo M M, Xi X L, Zhang Y H, Yu S W, Long X L, Jiang Z K, Nie Z R, Xu K H. Chin. J. Nonferrous Met., 2020, 30(6): 1415.
(郭苗苗, 席晓丽, 张云河, 余顺文, 龙小林, 蒋振康, 聂祚仁, 许开华. 中国有色金属学报, 2020, 30(6): 1415.).
[52]
Wang W, Zhang Y, Liu X, Xu S. ACS Sustain. Chem. Eng., 2019, 7(14): 12222.
[53]
Wang W Q, Zhang Y C, Zhang L, Xu S M. J. Clean. Prod., 2020, 249: 119340.

doi: 10.1016/j.jclepro.2019.119340     URL    
[54]
Markevich E, Salitra G, Aurbach D. Electrochem. Commun., 2005, 7(12): 1298.

doi: 10.1016/j.elecom.2005.09.010     URL    
[55]
Zhang S C, Kenta Oi. Ion Exch. Adsorpt., 1992, 8(4): 305.
(张绍成, 大井健太. 离子交换与吸附, 1992, 8(4): 305.).
[56]
Patnaik P. Handbook of inorganic chemicals. McGraw-Hill New York, 2003, 529.
[57]
Peng C, Liu F P, Wang Z L, Wilson B P, Lundström M. J. Power Sources, 2019, 415: 179.

doi: 10.1016/j.jpowsour.2019.01.072     URL    
[58]
Yuvaraj S, Lin F Y, Tsong-Huei C, Chuin-Tih Y. J. Phys. Chem. B, 2003, 107(4): 1044.

doi: 10.1021/jp026961c     URL    
[59]
Jung Y, Yoo B, Park S, Kim Y, Son S. Metals, 2021, 11(9): 1336.

doi: 10.3390/met11091336     URL    
[60]
Burgess J. Metal ions in solution. Chichester: Horwood [u.a.], 1978. 481.
[61]
Barrios O C, González Y C, Barbosa L I, Orosco P. Miner. Eng., 2022, 176: 107321.

doi: 10.1016/j.mineng.2021.107321     URL    
[62]
Fan E S, Li L, Lin J, Wu J W, Yang J B, Wu F, Chen R J. ACS Sustainable Chem. Eng., 2019, 7(19): 16144.

doi: 10.1021/acssuschemeng.9b03054     URL    
[63]
Qu X, Xie H W, Chen X, Tang Y Q, Zhang B L, Xing P F, Yin H Y. ACS Sustainable Chem. Eng., 2020, 8(16): 6524.

doi: 10.1021/acssuschemeng.0c01205     URL    
[64]
Huang Y, Shao P H, Yang L M, Zheng Y F, Sun Z, Fang L L, Lv W G, Yao Z W, Wang L H, Luo X B. Resour. Conserv. Recycl., 2021, 174: 105757.

doi: 10.1016/j.resconrec.2021.105757     URL    
[65]
Xiao J F, Niu B, Song Q M, Zhan L, Xu Z M. J. Hazard. Mater., 2021, 404: 123947.

doi: 10.1016/j.jhazmat.2020.123947     URL    
[66]
Wang D H, Zhang X D, Chen H J, Sun J Y. Miner. Eng., 2018, 126: 28.

doi: 10.1016/j.mineng.2018.06.023     URL    
[67]
Lin J, Li L, Fan E S, Liu C W, Zhang X D, Cao H B, Sun Z, Chen R J. ACS Appl. Mater. Interfaces, 2020, 12(16): 18482.

doi: 10.1021/acsami.0c00420     URL    
[68]
Lin J, Liu C W, Cao H B, Chen R J, Yang Y X, Li L, Sun Z. Green Chem., 2019, 21(21): 5904.

doi: 10.1039/C9GC01350D     URL    
[69]
Tao S D, Li J, Wang L H, Hu L S, Zhou H M. Ionics, 2019, 25(12): 5643.

doi: 10.1007/s11581-019-03070-w    
[70]
Jie Y F, Yang S H, Li Y, Zhao D Q, Lai Y Q, Chen Y M. Minerals, 2020, 10(11): 949.

doi: 10.3390/min10110949     URL    
[71]
Liao Y P, Zhou Y L, Zhang G H, Lin W J, Dai H M, Yi P F, Wang Y, Liu M. CN109095481A, 2018.
[72]
Xu P, Chen Q, Zhang X H, Cao H B, Wang J W, Zhang Y, Sun S. Chin. J. Process. Eng., 2019, 19(5): 853.
(徐平, 陈钦, 张西华, 曹宏斌, 王景伟, 张懿, 孙峙. 过程工程学报, 2019, 19(5): 853.).
[73]
Li H, Xing S Z, Liu Y, Li F J, Guo H, Kuang G. ACS Sustainable Chem. Eng., 2017, 5(9): 8017.

doi: 10.1021/acssuschemeng.7b01594     URL    
[74]
Chen X P, Ma H R, Luo C B, Zhou T. J. Hazard. Mater., 2017, 326: 77.

doi: 10.1016/j.jhazmat.2016.12.021     URL    
[75]
Zeng X L, Li J H, Shen B Y. J. Hazard. Mater., 2015, 295: 112.

doi: 10.1016/j.jhazmat.2015.02.064     URL    
[76]
Yang Y X, Meng X Q, Cao H B, Lin X, Liu C M, Sun Y, Zhang Y, Sun Z. Green Chem., 2018, 20(13): 3121.

doi: 10.1039/C7GC03376A     URL    
[77]
Zhang J L, Hu J T, Liu Y B, Jing Q K, Yang C, Chen Y Q, Wang C Y. ACS Sustainable Chem. Eng., 2019, 7(6): 5626.

doi: 10.1021/acssuschemeng.9b00404     URL    
[78]
Li H G. Metallurgical Principles (2nd Edition). Science Press, 2018, 296.
(李洪桂. 冶金原理第二版. 科学出版社, 2018, 296.).
[79]
Wang M M, Zhang C C, Zhang F S. Waste Manag., 2017, 67: 232.

doi: 10.1016/j.wasman.2017.05.013     URL    
[80]
Liu K, Liu L L, Tan Q Y, Li J H. Green Chem., 2021, 23(3): 1344.

doi: 10.1039/D0GC03683H     URL    
[81]
Fan M C, Wozny J, Gong J, Kang Y Q, Wang X S, Zhang Z X, Zhou G M, Zhao Y, Li B H, Kang F Y. Rare Met., 2022, 41(6): 1843.

doi: 10.1007/s12598-021-01918-7    
[82]
Li Z, Liu D F, Xiong J C, He L H, Zhao Z W, Wang D Z. Waste Manag., 2020, 107: 1.

doi: 10.1016/j.wasman.2020.03.017     URL    
[83]
Yu J Z, Wang X, Zhou M Y, Wang Q. Energy Environ. Sci., 2019, 12(9): 2672.

doi: 10.1039/C9EE01478K     URL    
[84]
Gao H, Wu Q, Hu Y X, Zheng J P, Amine K, Chen Z H. J. Phys. Chem. Lett., 2018, 9(17): 5100.

doi: 10.1021/acs.jpclett.8b02229     URL    
[85]
Li M, Cheng L L, Yang Y M, Niu F, Zhang X L, Liu D H. Chin. J. Rare Met., 2022, 46(3): 349.
(李棉, 程琍琍, 杨幼明, 牛飞, 张小林, 刘东辉. 稀有金属, 2022, 46(3): 349.).
[86]
Yang C, Zhang J L, Yu B Y, Huang H, Chen Y Q, Wang C Y. Sep. Purif. Technol., 2021, 267: 118609.

doi: 10.1016/j.seppur.2021.118609     URL    
[87]
Li D F, Wang C Y, Yin F, Chen Y Q, Jie X W, Yang Y Q, Wang J. Chin. J. Process Eng., 2009, 9(02): 264.
(李敦钫, 王成彦, 尹飞, 陈永强, 揭晓武, 杨永强, 王军. 过程工程学报, 2009, 9(02): 264.).
[88]
Chen Y M, Shi P F, Chang D, Jie Y F, Yang S H, Wu G Q, Chen H Y, Zhu J N, Hu F, Wilson B P, Lundstrom M. Sep. Purif. Technol., 2021, 258: 118078.

doi: 10.1016/j.seppur.2020.118078     URL    
[89]
Xu P, Liu C W, Zhang X H, Zheng X H, Lv W G, Rao F, Yao P F, Wang J W, Sun Z. ACS Sustainable Chem. Eng., 2021, 9(5): 2271.

doi: 10.1021/acssuschemeng.0c08213     URL    
[90]
Li L P, Huang K Q. Guangzhou Chem., 2022, 47(4): 1.
(李立平, 黄铿齐. 广州化学, 2022, 47(4): 1.).
[91]
Li H B, Li M C, Li Y H, Tian H Y, Yang L, Zhou M, Gao J, He X. CN109573974A, 2019.
[92]
Mu D Y, Liu Z, Jin S, Liu Y L, Tian S, Dai C S. Prog. Chem., 2020, 32(7): 950.
(穆德颖, 刘铸, 金珊, 刘元龙, 田爽, 戴长松. 化学进展, 2020, 32(7): 950.).
[93]
Lai Y Q, Zhang Z A, Yan X L, Fang J, Hong B, Zhang K, Li J.CN 106684487A, 2017.
[94]
Chen S, Ruan D S, Zhou Y, Li Q. Battery Bimon., 2022, 52 (1): 114.
(陈嵩, 阮丁山, 周游, 李强. 电池, 2022, 52(1): 114.).
[95]
Zhang Y Y, Xiang W Q, Zhao W J, Chen M Y, Sheng N, Dai J L, Xu W G. Zhejiang Chem. Ind., 2018, 49(8): 12.
(张勇耀, 项文勤, 赵卫娟, 陈明炎, 盛楠, 戴佳亮, 徐卫国. 浙江化工, 2018, 49(8): 12.).
[96]
Zhou L S, Liu H G, Ye X H, Guo X F, Liu D F, Zhang H Y.CN 102496752A, 2012.
[97]
Lu J W, Pan Y L, Zheng L X, Qian S Y, Zhen A G, Kong F Z, Zhan W, Zheng H J. Zhejiang Chem. Ind., 2021, 52(10): 40.
(陆剑伟, 潘曜灵, 郑灵霞, 钱舜尧, 甄爱钢, 孔繁振, 詹稳, 郑华均. 浙江化工, 2021, 52(10): 40.).
[98]
Zhu H S, Li G, Chen Z Y, Chen X, Liu J C.CN 108682914A, 2018.
[1] 李芳远, 李俊豪, 吴钰洁, 石凯祥, 刘全兵, 彭翃杰. “蛋黄蛋壳”结构纳米电极材料设计及在锂/钠离子/锂硫电池中的应用[J]. 化学进展, 2022, 34(6): 1369-1383.
[2] 王才威, 杨东杰, 邱学青, 张文礼. 木质素多孔碳材料在电化学储能中的应用[J]. 化学进展, 2022, 34(2): 285-300.
[3] 陈阳, 崔晓莉. 锂离子电池二氧化钛负极材料[J]. 化学进展, 2021, 33(8): 1249-1269.
[4] 陆嘉晟, 陈嘉苗, 何天贤, 赵经纬, 刘军, 霍延平. 锂电池用无机固态电解质[J]. 化学进展, 2021, 33(8): 1344-1361.
[5] 高金伙, 阮佳锋, 庞越鹏, 孙皓, 杨俊和, 郑时有. 高电压锂离子正极材料LiNi0.5Mn1.5O4高温特性[J]. 化学进展, 2021, 33(8): 1390-1403.
[6] 黄国勇, 董曦, 杜建委, 孙晓华, 李勃天, 叶海木. 锂离子电池高压电解液[J]. 化学进展, 2021, 33(5): 855-867.
[7] 张长欢, 李念武, 张秀芹. 柔性锂离子电池的电极[J]. 化学进展, 2021, 33(4): 633-648.
[8] 穆德颖, 刘铸, 金珊, 刘元龙, 田爽, 戴长松. 废旧锂离子电池正极材料及电解液的全过程回收及再利用[J]. 化学进展, 2020, 32(7): 950-965.
[9] 庄全超, 杨梓, 张蕾, 崔艳华. 锂离子电池的电化学阻抗谱分析研究进展[J]. 化学进展, 2020, 32(6): 761-791.
[10] 吴战, 李笑涵, 钱奥炜, 杨家喻, 张文魁, 张俊. 基于无机电致变色材料的变色储能器件[J]. 化学进展, 2020, 32(6): 792-802.
[11] 汪靖伦, 冉琴, 韩冲宇, 唐子龙, 陈启多, 秦雪英. 锂离子电池有机硅功能电解液[J]. 化学进展, 2020, 32(4): 467-480.
[12] 张伟, 齐小鹏, 方升, 张健华, 史碧梦, 杨娟玉. 碳在锂离子电池硅碳复合材料中的作用[J]. 化学进展, 2020, 32(4): 454-466.
[13] 陈豪登, 徐建兴, 籍少敏, 姬文晋, 崔立峰, 霍延平. MOFs衍生金属氧化物及其复合材料在锂离子电池负极材料中的应用[J]. 化学进展, 2020, 32(2/3): 298-308.
[14] 王官格, 张华宁, 吴彤, 刘博睿, 黄擎, 苏岳锋. 废旧锂离子电池正极材料资源化回收与再生[J]. 化学进展, 2020, 32(12): 2064-2074.
[15] 蒋志敏, 王莉, 沈旻, 陈慧闯, 马国强, 何向明. 锂离子电池正极界面修饰用电解液添加剂[J]. 化学进展, 2019, 31(5): 699-713.
阅读次数
全文


摘要

废旧锂离子电池选择性提锂