English
新闻公告
More
化学进展 2021, Vol. 33 Issue (8): 1344-1361 DOI: 10.7536/PC200772 前一篇   后一篇

• 综述 •

锂电池用无机固态电解质

陆嘉晟1, 陈嘉苗1,2, 何天贤2, 赵经纬2,3,*(), 刘军4,*, 霍延平1,3,*   

  1. 1 广东工业大学轻工化工学院 广州 510006
    2 广州天赐高新材料股份有限公司 广州 510700
    3 中国科学院上海有机化学研究所 有机氟化学 中国科学院重点实验室 上海 200032
    4 华南理工大学材料科学与工程学院,广东省先进储能材料重点实验室 广州 510641
  • 收稿日期:2020-07-31 修回日期:2020-10-09 出版日期:2021-08-20 发布日期:2020-12-28
  • 通讯作者: 赵经纬, 刘军, 霍延平
  • 基金资助:
    国家自然科学基金项目(21975055); 国家自然科学基金项目(61671162); 国家自然科学基金项目(21975053); 广东省重点领域研发计划项目(2020B0101030005)

Inorganic Solid Electrolytes for the Lithium-Ion Batteries

Jiasheng Lu1, Jiamiao Chen1,2, Tianxian He2, Jingwei Zhao2,3(), Jun Liu4, Yanping Huo1,3   

  1. 1 College of light industry and chemical engineering, Guangdong University of Technology,Guangzhou 510006, China
    2 Guangzhou Tinci Materials Technology Co., Ltd,Guangzhou 510700, China
    3 Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences,Shanghai 200032, China
    4 Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, School of Materials Science and Engineering, South China University of Technology,Guangzhou 510641, China
  • Received:2020-07-31 Revised:2020-10-09 Online:2021-08-20 Published:2020-12-28
  • Contact: Jingwei Zhao, Jun Liu, Yanping Huo
  • Supported by:
    National Natural Science Foundation of China(21975055); National Natural Science Foundation of China(61671162); National Natural Science Foundation of China(21975053); Guangdong Province Key Field R&D Program Project(2020B0101030005)

液态锂离子电池存在易燃易爆、易短路等致命的安全问题,同时也存在续航里程焦虑等技术问题,开发安全性能好、能量密度高的锂离子电池是行业发展的迫切需求。与传统液态锂离子电池相比,全固态电池具有使用安全、理论比容量高等优点,所以得到了广泛的研究,被誉为下一代电池主流技术。其中,无机固态电解质在全固态电池中扮演着重要的角色,国内外的科研人员对此进行了大量的研究工作。本文介绍了不同类型无机固态电解质的最新进展,其中包括氧化物固态电解质、硫化物固态电解质和卤化物固态电解质;并对无机固态电解质的界面问题、晶体结构、制备方法以及掺杂改性等方面的研究进行了阐述。最后,对近几年来无机固态电解质还有待解决的问题进行了讨论,同时对其未来的研究方向作出了展望。

Liquid lithium-ion batteries have fatal safety problems such as flammability, explosion, and short-circuit, as well as technical problems such as cruising range anxiety. The development of lithium-ion batteries with good safety performance and high energy density is an urgent need for industrial development. Compared with traditional liquid lithium-ion batteries, all-solid-state batteries have the advantages of safe use and high theoretical specific capacity, so they have been extensively studied and are known as the mainstream technology of next-generation batteries. Among them, the inorganic solid electrolyte plays an important role in the all-solid-state battery, and scientific researchers at home and abroad have conducted a lot of research work on this. This article introduces the latest developments in different types of inorganic solid electrolytes, including oxide solid electrolytes, sulfide solid electrolytes, and halide solid electrolytes. The researches on interface problems, crystal structure, preparation methods, and doping modification of inorganic solid electrolytes are also elaborated. Finally, the problems to be solved in inorganic solid electrolytes in recent years are discussed, and the future research directions are also given.

Contents

1 Introduction

2 Solid oxide electrolytes

2.1 Garnet type solid electrolytes

2.2 Perovskite solid electrolytes

2.3 NASICON type solid electrolytes

2.4 LiPON thin films electrolytes

3 Solid sulfide electrolytes

4 Solid halide electrolytes

5 Conclusion and outlook

()
表1 锂离子无机固态电解质概述
Table 1 A summary of different lithium-ion inorganic solid electrolytes
表2 不同无机固态电解质的离子电导率以及活化能对比
Table 2 Comparison of ionic conductivity and activation energy of different lithium-ion inorganic solid electrolytes
图1 典型石榴石A3B3C2O12的晶体结构[15]
Fig. 1 The crystal structure of a conventional garnet A3B3C2O12[15]. Copyright 2020, Royal Society of Chemistry
图2 (a) Li7-3xGaxLa3Zr2O12的晶体结构;(b) Li+和Ga3+所在环境;(c) Li7-3xGaxLa3Zr2O12中的锂离子扩散途径[23]
Fig. 2 (a) Crystal structure of Li7-3xGaxLa3Zr2O12;(b) Li+ and Ga3+ environment;(c) lithium-ion diffusion pathways in Li7-3xGaxLa3Zr2O12[23]. Copyright 2020, American Chemical Society
图3 含石榴石型LLZT和LLZT-C(C为碳单质)的锂金属电池示意图[26]
Fig. 3 Schematic of Li-metal batteries with garnet LLZT and LLZT-C(C: carbon)[26]. Copyright 2020, American Chemical Society
图4 不同界面的第一性原理计算:(a) LLZO/Li,(b) LLZT/Li,(c) Li2CO3/Li,(d) Li2O/Li;(e) 熔融锂对石榴石表面不同润湿行为的示意图;(f) Li/LLZT/Li电池的恒电流循环[33]
Fig. 4 First-principle calculations of different interfaces of(a) LLZO/Li,(b) LLZT/Li,(c) Li2CO3/Li,(d) Li2O/Li;(e) Schematic of different wetting behaviors of garnet surfaces with molten Li;(f) Galvanostatic cycling of symmetric Li/LLZT/Li cells[33]
图5 四方相晶体LLTO结构[38]
Fig. 5 Crystal structure of tetragonal LLTO[38]. Copyright 2020, American Chemical Society
图6 (a)奈奎斯特曲线图;(b)在0.1 C下的循环性能;(c)倍率性能;(d)65 ℃时Li/PEO/LLTO-41/LFP的恒流充电/放电曲线;(e) 用流延法制备LLTO薄膜的示意图[40]
Fig. 6 (a) The Nyquist plots;(b) cycling performance at 0.1 C;(c) rate performance;(d) galvanostatic charge/discharge curves of Li/PEO/LLTO-41/LFP cell at 65 ℃;(e) Schematic for preparation of LLTO film using tape-casting method[40]. Copyright 2020, John Wiley and Sons
图7 (a) LLTO/LMO,LMO,LLTO以及LLTO+LMO的|Z|与频率的关系图;(b) LLTO/LMO,LLTO和LMO的相角-频率图;(c)从10 kHz到5 Hz的相间Nyquist图,以及基于上述等效电路的拟合曲线;(d)LMO与LLTO的中间相HRTEM图像[43]
Fig. 7 (a) plot of |Z| vs Frequency for LLTO/LMO, LMO, LLTO, and the mathematical addition of LMO and LLTO;(b) Phase angle vs Frequency plot for LLTO/LMO, LLTO and LMO;(c) Nyquist plot of the interphase from 10 kHz to 5 Hz, and the fitted curve based on the equivalent circuit above;(d) HRTEM image of the interphase between LMO and LLTO[43]. Copyright 2020, John Wiley and Sons
图8 (a) 低温LLTO、高温LLTO以及锂补偿LLTO Li+电导率对比;(b)在-20~70 ℃范围内测得的低温LLTO、高温LLTO以及锂补偿LLTO的边界电导率Arrhenius图;(c)LLTO电解质的晶界微结构示意[44]
Fig. 8 (a) A comparison of Li+ conductivities along with schematics of the domain microstructures of the LLTO electrolytes: low-T LLTO, high-T LLTO and Li-excess LLTO. (b) Arrhenius plots of the boundary conductivities for low-T LLTO, high-T LLTO and Li-excess LLTO measured over a temperature range of -20 to 70 ℃. (c) Schematics of the domain microstructures of the LLTO electrolytes[44]. Copyright 2020, Royal Society of Chemistry
图9 在不同pH值下的水中的LSTHF5的化学和电化学稳定性[45]
Fig. 9 The chemical and electrochemical stability of LSTHF5 in water with different pH values[45]. Copyright 2020, John Wiley and Sons
图10 NASICON的菱形R3c结构[49]
Fig. 10 Rhombohedral R3c structure of NASICON[49]. Copyright 2020, Royal Society of Chemistry
图11 原位形成的离子凝胶中间层SSLMB的制备示意图和带离子凝胶修饰的LFP/LATP界面示意图[58]
Fig. 11 Illustration of the fabrication of the SSLMB with in-situ forming ionogel interlayers and the schematics of the LATP/Li metal anode interfaces with the ionogel interlayer.[58]. Copyright 2020, American Chemical Society
图12 (a)以P(AA-co-MA)Li为界面层的Li/LAGP/Li的电循环;(b)添加LiCl的P(AA-co-MA)Li界面层;(c)过电势与界面修改后的Li/Interface/LAGP/Interface/Li对称电池的电流密度[60]
Fig. 12 Galvanic cycle of(a) Li/LAGP/Li with P(AA-co-MA)Li as the interface layer;(b) LiCl-added P(AA-co-MA)Li interface layer;(c) overpotential versus current density of the interface-modified Li/Interface/LAGP/Interface/Li symmetrical cell.[60]. Copyright 2020, American Chemical Society
图13 在F43m空间群中以立方对称结晶的银辉石型Li6PS5X(X = Cl, Br, I)的晶体结构[81]
Fig. 13 Crystal structure of argyrodite-type Li6PS5X(X = Cl, Br, I) that crystallizes with cubic symmetry in the space group F43m.[81]
图14 采用不同LSPS-Cl材料的Li4Ti5O12 + LSPS-Cl + C/LSPS-Cl/玻璃纤维/Li电池在不同温度下退火后的电池性能[90]
Fig. 14 Battery performance of Li4Ti5O12 + LSPS-Cl + C/LSPS-Cl/glass fiber/Li cells incorporating different LSPS-Cl materials annealed at different temperatures[90]. Copyright 2020, Nature
图15 LGPS电解质表面(A)不具有和(B)具有LiTFSI/PYR13TFSI的图片(俯视图);(C)不具有和具有LiTFSI/PYR13TFSI的Li/LGPS/Li对称电池的奈奎斯特曲线;(D)具有LiTFSI/PYR13TFSI的Li/LGPS/Li电池的随时间变化的阻抗响应奈奎斯特曲线[93]
Fig. 15 Photographs(top views) of the LGPS SE pellet surface(A) without and(B) with LiTFSI/PYR13TFSI;(C) Nyquist profiles for the Li/LGPS/Li symmetric cells with and without LiTFSI/PYR13TFSI;(D) time evolution of impedance response of the Li/LGPS/Li cell with LiTFSI/PYR13TFSI at various storage times[93]. Copyright 2020, American Chemical Society
图16 经过Rietveld细化后LYC(左)和LYB(右)的晶体结构[96]
Fig. 16 The crystal structures of LYC(left) and LYB(right) obtained after Rietveld refinement[96]. Copyright 2020, John Wiley and Sons
图17 ab平面上的一维迁移路径[102]
Fig. 17 The 1D migration pathway in the ab plane[102]. Copyright 2020, American Chemical Society
图18 Li3InCl6的水介导合成路线以及水合Li3InCl6·xH2O与脱水的Li3InCl6之间可逆相互转化示意图(绿色为Cl,紫色为In,蓝色为Li)[106]
Fig. 18 Illustration of water-mediated synthesis route for Li3InCl6 SSE and the reversible interconversion between the hydrated Li3InCl6·xH2O and dehydrated Li3InCl6. Green Cl, purple In, blue Li.[106]Copyright 2020, John Wiley and Sons
图19 来自FPMD的Li4Ga4I16、Li7Ga8Br24、Li8Cs4I12、Li20Ge2P4S24、Li40Cl24O8、Li20Cl12O4和Li56Ta8O48的扩散系数[115]
Fig. 19 Diffusion coefficients from FPMD for Li4Ga4I16,Li7Ga8Br24, Li8Cs4I12, Li20Ge2P4S24, Li40Cl24O8, Li20Cl12O4 and Li56Ta8O48[115]. Copyright 2020, Royal Society of Chemistry
[1]
Chen J M, Xiong J W, Ji S M, Huo Y P, Zhao J W, Liang L. Prog. Chem., 2020, 32(4): 481.
(陈嘉苗, 熊靖雯, 籍少敏, 霍延平, 赵经纬, 梁亮. 化学进展, 2020, 32(4): 481.)

doi: 10.7536/PC190627    
[2]
Xiang Y X, Li X, Cheng Y Q, Sun X L, Yang Y. Mater. Today, 2020, 36: 139.

doi: 10.1016/j.mattod.2020.01.018     URL    
[3]
Wang X, Zeng W, Hong L, Xu W W, Yang H K, Wang F, Duan H G, Tang M, Jiang H Q. Nat. Energy, 2018, 3(3): 227.

doi: 10.1038/s41560-018-0104-5     URL    
[4]
Chen X Z, He W J, Ding L X, Wang S Q, Wang H H. Energy Environ. Sci., 2019, 12(3): 938.

doi: 10.1039/C8EE02617C     URL    
[5]
Tan S J, Zeng X X, Ma Q, Wu X W, Guo Y G. Electrochem. Energy Rev., 2018, 1(2): 113.

doi: 10.1007/s41918-018-0011-2     URL    
[6]
Liu Y, Xu B Q, Zhang W, Li L L, Lin Y H, Nan C W. Small, 2020, 16(15): 1902813.
[7]
Gao Z H, Sun H B, Fu L, Ye F L, Zhang Y, Luo W, Huang Y H. Adv. Mater., 2018, 30(17): 1705702.
[8]
Zhang D C, Xu X J, Qin Y L, Ji S M, Huo Y P, Wang Z S, Liu Z B, Shen J D, Liu J. Chem. Eur. J., 2020, 26(8): 1720.

doi: 10.1002/chem.v26.8     URL    
[9]
Zhang D C, Xu X J, Ji S M, Wang Z S, Liu Z B, Shen J D, Hu R Z, Liu J, Zhu M. ACS Appl. Mater. Interfaces, 2020, 12(19): 21586.
[10]
Xu X J, Liu Z B, Ji S M, Wang Z S, Ni Z Y, Lv Y, Liu J W, Liu J. Chem. Eng. J., 2019, 359: 765.

doi: 10.1016/j.cej.2018.11.191     URL    
[11]
Kim J G, Son B, Mukherjee S, Schuppert N, Bates A, Kwon O, Choi M J, Chung H Y, Park S. J. Power Sources, 2015, 282: 299.

doi: 10.1016/j.jpowsour.2015.02.054     URL    
[12]
Wolfenstine J, Allen J L, Sakamoto J, Siegel D J, Choe H. Ionics, 2018, 24(5): 1271.

doi: 10.1007/s11581-017-2314-4     URL    
[13]
Hamon Y, Douard A, Sabary F, Marcel C, Vinatier P, Pecquenard B, Levasseur A. Solid State Ion., 2006, 177(3/4): 257.

doi: 10.1016/j.ssi.2005.10.021     URL    
[14]
Thangadurai V, Narayanan S, Pinzaru D. Chem. Soc. Rev., 2014, 43(13): 4714.

doi: 10.1039/c4cs00020j     URL    
[15]
Cussen E J. J. Mater. Chem., 2010, 20(25): 5167.

doi: 10.1039/b925553b     URL    
[16]
O'Callaghan M P, Lynham D R, Cussen E J, Chen G Z. Chem. Mater., 2006, 18(19): 4681.

doi: 10.1021/cm060992t     URL    
[17]
O'Callaghan M P, Cussen E J. Chem. Commun., 2007(20): 2048.
[18]
O’Callaghan M P, Powell A S, Titman J J, Chen G Z, Cussen E J. Chem. Mater., 2008, 20(6): 2360.

doi: 10.1021/cm703677q     URL    
[19]
Thangadurai V, Adams S, Weppner W. Chem. Mater., 2004, 16(16): 2998.

doi: 10.1021/cm031176d     URL    
[20]
Murugan R, Thangadurai V, Weppner W. Angew. Chem. Int. Ed., 2007, 46(41): 7778.

doi: 10.1002/(ISSN)1521-3773     URL    
[21]
Wagner R, Redhammer G J, Rettenwander D, Tippelt G, Welzl A, Taibl S, Fleig J, Franz A, Lottermoser W, Amthauer G. Chem. Mater., 2016, 28(16): 5943.

doi: 10.1021/acs.chemmater.6b02516     URL    
[22]
Rettenwander D, Wagner R, Langer J L, Maier M E, Wilkening M, Amthauer G. Eur. J. Mineral., 2016, 28(3): 619.

doi: 10.1127/ejm/2016/0028-2543     URL    
[23]
Wu J F, Chen E Y, Yu Y, Liu L, Wu Y, Pang W K, Peterson V K, Guo X. ACS Appl. Mater. Interfaces, 2017, 9(2): 1542.

doi: 10.1021/acsami.6b13902     URL    
[24]
Shin D O, Oh K, Kim K M, Park K Y, Lee B, Lee Y G, Kang K. Sci. Rep., 2015, 5(1): 1.
[25]
Gai J L, Zhao E Q, Ma F R, Sun D Y, Ma X D, Jin Y C, Wu Q L, Cui Y J. J. Eur. Ceram. Soc., 2018, 38(4): 1673.

doi: 10.1016/j.jeurceramsoc.2017.12.002     URL    
[26]
Li Y T, Chen X, Dolocan A, Cui Z M, Xin S, Xue L G, Xu H H, Park K, Goodenough J B. J. Am. Chem. Soc., 2018, 140(20): 6448.

doi: 10.1021/jacs.8b03106     URL    
[27]
Shen X, Zhang R, Chen X, Cheng X B, Li X Y, Zhang Q. Adv. Energy Mater., 2020, 10(10): 1903645.
[28]
Wang C W, Xie H, Ping W W, Dai J Q, Feng G L, Yao Y G, He S M, Weaver J, Wang H, Gaskell K, Hu L B. Energy Storage Mater., 2019, 17: 234.
[29]
Huo H Y, Chen Y, Zhao N, Lin X T, Luo J, Yang X F, Liu Y L, Guo X X, Sun X L. Nano Energy, 2019, 61: 119.

doi: 10.1016/j.nanoen.2019.04.058     URL    
[30]
Wu J F, Pu B W, Wang D, Shi S Q, Zhao N, Guo X X, Guo X. ACS Appl. Mater. Interfaces, 2019, 11(1): 898.

doi: 10.1021/acsami.8b18356     URL    
[31]
Yue J P, Yan M, Yin Y X, Guo Y G. Adv. Funct. Mater., 2018, 28(38): 1707533.
[32]
Liu Q, Geng Z, Han C P, Fu Y Z, Li S, He Y B, Kang F Y, Li B H. J. Power Sources, 2018, 389: 120.

doi: 10.1016/j.jpowsour.2018.04.019     URL    
[33]
Zheng H P, Wu S P, Tian R, Xu Z M, Zhu H, Duan H N, Liu H Z. Adv. Funct. Mater., 2020, 30(6): 1906189.
[34]
Zhang X Y, Xiang Q, Tang S, Wang A X, Liu X J, Luo J Y. Nano Lett., 2020, 20(4): 2871.

doi: 10.1021/acs.nanolett.0c00693     URL    
[35]
Huo H Y, Chen Y, Li R Y, Zhao N, Luo J, Pereira da Silva J G, Mücke R, Kaghazchi P, Guo X X, Sun X L. Energy Environ. Sci., 2020, 13(1): 127.

doi: 10.1039/C9EE01903K     URL    
[36]
Lv X J, Meng F L, Wu Y N, Chin. Ceram., 2019, 55(04): 1.
(吕晓娟, 孟繁丽, 吴亚楠. 中国陶瓷, 2019, 55(04): 1.)
[37]
Stramare S, Thangadurai V, Weppner W. Chem. Mater., 2003, 15(21): 3974.

doi: 10.1021/cm0300516     URL    
[38]
Yashima M, Itoh M, Inaguma Y, Morii Y. J. Am. Chem. Soc., 2005, 127(10): 3491.

doi: 10.1021/ja0449224     URL    
[39]
Sunarso J, Hashim S S, Zhu N, Zhou W. Prog. Energy Combust. Sci., 2017, 61: 57.

doi: 10.1016/j.pecs.2017.03.003     URL    
[40]
Jiang Z Y, Wang S Q, Chen X Z, Yang W L, Yao X, Hu X C, Han Q Y, Wang H H. Adv. Mater., 2020, 32(6): 1906221.
[41]
Zhang S S, Zhao H L, Guo J R, Du Z H, Wang J, Swierczek K. Solid State Ion., 2019, 336: 39.

doi: 10.1016/j.ssi.2019.03.015     URL    
[42]
Lee S J, Bae J J, Son J T. J. Korean Phys. Soc., 2019, 74(1): 73.

doi: 10.3938/jkps.74.73     URL    
[43]
Xu P Y, Rheinheimer W, Shuvo S N, Qi Z M, Levit O, Wang H Y, Ein-Eli Y, Stanciu L A. ChemElectroChem, 2019, 6(17): 4576.

doi: 10.1002/celc.v6.17     URL    
[44]
Kwon W J, Kim H, Jung K N, Cho W, Kim S H, Lee J W, Park M S. J. Mater. Chem. A, 2017, 5(13): 6257.

doi: 10.1039/C7TA00196G     URL    
[45]
Li Y T, Xu H H, Chien P H, Wu N, Xin S, Xue L G, Park K, Hu Y Y, Goodenough J B. Angew. Chem. Int. Ed., 2018, 57(28): 8587.

doi: 10.1002/anie.v57.28     URL    
[46]
Hagman L O, Kierkegaard P, Karvonen P. Acta. Chem. Scand, 1968, 22(6): 1822.

doi: 10.3891/acta.chem.scand.22-1822     URL    
[47]
Goodenough J B, Hong H Y P, Kafalas J A. Mater. Res. Bull., 1976, 11(2): 203.

doi: 10.1016/0025-5408(76)90077-5     URL    
[48]
Anantharamulu N, Koteswara Rao K, Rambabu G, Vijaya Kumar B, Radha V, Vithal M. J. Mater. Sci., 2011, 46(9): 2821.

doi: 10.1007/s10853-011-5302-5     URL    
[49]
Song W X, Ji X B, Wu Z P, Zhu Y R, Yang Y C, Chen J, Jing M J, Li F Q, Banks C E. J. Mater. Chem. A, 2014, 2(15): 5358.

doi: 10.1039/c4ta00230j     URL    
[50]
Noda Y, Nakano K, Otake M, Kobayashi R, Kotobuki M, Lu L, Nakayama M. APL Mater., 2018, 6(6): 060702.
[51]
Bucharsky E C, Schell K G, Hintennach A, Hoffmann M J. Solid State Ion., 2015, 274: 77.

doi: 10.1016/j.ssi.2015.03.009     URL    
[52]
Guo Q P, Han Y, Wang H, Xiong S Z, Li Y J, Liu S K, Xie K. ACS Appl. Mater. Interfaces, 2017, 9(48): 41837.
[53]
Shin Y K, Sengul M Y, Jonayat A S M, Lee W, Gomez E D, Randall C A, van Duin A C T. Phys. Chem. Chem. Phys., 2018, 20(34): 22134.
[54]
He S N, Xu Y L. Solid State Ion., 2019, 343: 115078.
[55]
Ou J H, Li G R, Chen Z W. J. Electrochem. Soc., 2019, 166(10): A1785.

doi: 10.1149/2.0401910jes     URL    
[56]
Safanama D, Adams S. J. Power Sources, 2017, 340: 294.

doi: 10.1016/j.jpowsour.2016.11.076     URL    
[57]
Wang S H, Li S, Wei B, Lu X. J. Electrochem. Soc., 2020, 167(10): 100528.
[58]
Lin Y K, Liu K, Wu M C, Zhao C, Zhao T S. ACS Appl. Energy Mater., 2020, 3(6): 5712.

doi: 10.1021/acsaem.0c00662     URL    
[59]
Cheng Q, Li A J, Li N, Li S, Zangiabadi A, Li T D, Huang W L, Li A C, Jin T W, Song Q Q, Xu W H, Ni N, Zhai H W, Dontigny M, Zaghib K, Chuan X Y, Su D, Yan K, Yang Y. Joule, 2019, 3(6): 1510.

doi: 10.1016/j.joule.2019.03.022    
[60]
He L C, Sun Q M, Chen C, Oh J A S, Sun J G, Li M C, Tu W Q, Zhou H H, Zeng K Y, Lu L. ACS Appl. Mater. Interfaces, 2019, 11(23): 20895.
[61]
Zhang X, Wang S, Xue C J, Xin C Z, Lin Y H, Shen Y, Li L L, Nan C W. Adv. Mater., 2019, 31(11): 1806082.
[62]
Siyal S H, Li M J, Li H, Lan J L, Yu Y H, Yang X P. Appl. Surf. Sci., 2019, 494: 1119.

doi: 10.1016/j.apsusc.2019.07.179     URL    
[63]
Wang L, Hu S M, Su J M, Huang T, Yu A S. ACS Appl. Mater. Interfaces, 2019, 11(45): 42715.
[64]
Zheng F, Kotobuki M, Song S F, Lai M O, Lu L. J. Power Sources, 2018, 389: 198.

doi: 10.1016/j.jpowsour.2018.04.022     URL    
[65]
Yamamoto T, Iwasaki H, Suzuki Y, Sakakura M, Fujii Y, Motoyama M, Iriyama Y. Electrochem. Commun., 2019, 105: 106494.
[66]
Zhang T, Imanishi N, Hasegawa S, Hirano A, Xie J, Takeda Y, Yamamoto O, Sammes N. J. Electrochem. Soc., 2008, 155(12): A965.

doi: 10.1149/1.2990717     URL    
[67]
Kumar B, Kumar J, Leese R, Fellner J P, Rodrigues S J, Abraham K M. J. Electrochem. Soc., 2010, 157(1): A50.

doi: 10.1149/1.3256129     URL    
[68]
Lee J M, Kim S H, Tak Y, Yoon Y S. J. Power Sources, 2006, 163(1): 173.

doi: 10.1016/j.jpowsour.2006.07.036     URL    
[69]
West W C, Whitacre J F, Lim J R. J. Power Sources, 2004, 126(1/2): 134.

doi: 10.1016/j.jpowsour.2003.08.030     URL    
[70]
Bates J B, Dudney N J, Neudecker B, Ueda A, Evans C D. Solid State ion., 2000, 135(1/4): 33.

doi: 10.1016/S0167-2738(00)00327-1     URL    
[71]
Wang W W, Yue X Y, Meng J K, Wang J Y, Wang X X, Chen H, Shi D R, Fu J, Zhou Y N, Chen J, Fu Z W. Energy Storage Mater., 2019, 18: 414.
[72]
Lv S, Li M Y, Luo X Y, Cheng J P, Li Z C. J. Alloys Compd., 2020, 815: 151636.
[73]
He T X, Gao Y P, Wu Y P, Yu L, Fan W Z, Zhao J W, Xu S S, Xu J F. CN 110304927 A, 2019.
[74]
Lv W, Li Z J, Deng Y Q, Yang Q H, Kang F Y. Energy Storage Mater., 2016, 2: 107.
[75]
Liu L L, Wu F, Li H, Chen L Q, J. Chin. Ceram. Soc., 2019, 47(10):1367.
(刘丽露, 李泓, 陈立泉. 硅酸盐学报, 2019, 47(10):1367.)
[76]
Sun S, Ni M Z, Zan F, Xia Q Y, Xu J, Yue J L, Xia H. J. Chin. Ceram. Soc., 2019, 47(10): 1357.
(孙硕, 倪明珠, 昝峰, 夏求应, 徐璟, 岳继礼, 夏晖. 硅酸盐学报, 2019, 47(10): 1357.)
[77]
Chen S J, Xie D J, Liu G Z, Mwizerwa J P, Zhang Q, Zhao Y R, Xu X X, Yao X Y. Energy Storage Mater., 2018, 14: 58.
[78]
Kamaya N, Homma K, Yamakawa Y, Hirayama M, Kanno R, Yonemura M, Kamiyama T, Kato Y, Hama S, Kawamoto K, Mitsui A. Nat. Mater., 2011, 10(9): 682.

doi: 10.1038/nmat3066     URL    
[79]
Kato Y, Hori S, Saito T, Suzuki K, Hirayama M, Mitsui A, Yonemura M, Iba H, Kanno R. Nat. Energy, 2016, 1(4): 1.

doi: 10.1038/ng0492-1     URL    
[80]
Bai Y, Zhao Y B, Li W D, Meng L H, Bai Y P, Chen G R. ACS Sustainable Chem. Eng., 2019, 7(15): 12930.
[81]
Hanghofer I, Gadermaier B, Wilkening H M R. Chem. Mater., 2019, 31(12): 4591.

doi: 10.1021/acs.chemmater.9b01435    
[82]
Deiseroth H J, Kong S T, Eckert H, Vannahme J, Reiner C, Zaiß T, Schlosser M. Angew. Chem. Int. Ed., 2008, 47(4): 755.

doi: 10.1002/(ISSN)1521-3773     URL    
[83]
Takada K. J. Power Sources, 2018, 394: 74.

doi: 10.1016/j.jpowsour.2018.05.003     URL    
[84]
Doux J M, Nguyen H, Tan D H S, Banerjee A, Wang X F, Wu E A, Jo C, Yang H D, Meng Y S. Adv. Energy Mater., 2020, 10(1): 1903253.
[85]
Kasemchainan J, Zekoll S, Spencer Jolly D, Ning Z Y, Hartley G O, Marrow J, Bruce P G. Nat. Mater., 2019, 18(10): 1105.

doi: 10.1038/s41563-019-0438-9     pmid: 31358941
[86]
Zhang Q, Cao D X, Ma Y, Natan A, Aurora P, Zhu H L. Adv. Mater., 2019, 31(44): 1901131.
[87]
Wang Y, Richards W D, Ong S P, Miara L J, Kim J C, Mo Y F, Ceder G. Nat. Mater., 2015, 14(10): 1026.

doi: 10.1038/nmat4369     pmid: 26280225
[88]
Phani Dathar G K, Balachandran J, Kent P R C, Rondinone A J, Ganesh P. J. Mater. Chem. A, 2017, 5(3): 1153.

doi: 10.1039/C6TA07713G     URL    
[89]
Yan M, Wang W P, Yin Y X, Wan L J, Guo Y G. EnergyChem, 2019, 1(1): 100002.
[90]
Wu F, Fitzhugh W, Ye L H, Ning J X, Li X. Nat. Commun., 2018, 9(1): 1.

doi: 10.1038/s41467-017-02088-w     URL    
[91]
Yang B, Jiang H R, Zhou Y C, Liang Z J, Zhao T S, Lu Y C. ACS Appl. Mater. Interfaces, 2019, 11(29): 25940.
[92]
Zhang H, Li X H, Hao S M, Zhang X, Lin J P. Electrochimica Acta, 2019, 325: 134943.
[93]
Umeshbabu E, Zheng B Z, Zhu J P, Wang H C, Li Y X, Yang Y. ACS Appl. Mater. Interfaces, 2019, 11(20): 18436.
[94]
Tomita Y, Ohki H, Yamada K, Okuda T. Solid State Ion., 2000, 136: 351.
[95]
Tomita Y, Matsushita H, Kobayashi K, Maeda Y, Yamada K. Solid State Ion., 2008, 179(21/26): 867.

doi: 10.1016/j.ssi.2008.02.012     URL    
[96]
Asano T, Sakai A, Ouchi S, Sakaida M, Miyazaki A, Hasegawa S. Adv. Mater., 2018, 30(44): 1803075.
[97]
Li X N, Liang J W, Yang X F, Adair K R, Wang C H, Zhao F P, Sun X L. Energy Environ. Sci., 2020, 13(5): 1429.

doi: 10.1039/C9EE03828K     URL    
[98]
Bohnsack A, Stenzel F, Zajonc A, Balzer G, Wickleder M S, Meyer G. Z. Anorg. Allg. Chem., 1997, 623(7): 1067.

doi: 10.1002/(ISSN)1521-3749     URL    
[99]
Bohnsack A, Balzer G, Güdel H U, Wickleder M S, Meyer G. Z. Anorg. Allg. Chem., 1997, 623(9): 1352.

doi: 10.1002/(ISSN)1521-3749     URL    
[100]
Li X N, Liang J W, Adair K R, Li J J, Li W H, Zhao F P, Hu Y F, Sham T K, Zhang L, Zhao S Q, Lu S G, Huang H, Li R Y, Chen N, Sun X L. Nano Lett., 2020, 20(6): 4384.

doi: 10.1021/acs.nanolett.0c01156     URL    
[101]
Liang J W, Li X N, Wang S, Adair K R, Li W H, Zhao Y, Wang C H, Hu Y F, Zhang L, Zhao S Q, Lu S G, Huang H, Li R Y, Mo Y F, Sun X L. J. Am. Chem. Soc., 2020, 142(15): 7012.

doi: 10.1021/jacs.0c00134     URL    
[102]
Park K H, Kaup K, Assoud A, Zhang Q, Wu X H, Nazar L F. ACS Energy Lett., 2020, 5(2): 533.

doi: 10.1021/acsenergylett.9b02599     URL    
[103]
Tomita Y, Matsushita H, Yonekura H, Yamauchi Y, Yamada K, Kobayashi K. Solid State Ion., 2004, 174(1/4): 35.

doi: 10.1016/j.ssi.2004.05.025     URL    
[104]
Yamada K, Kumano K, Okuda T. Solid State Ion., 2006, 177(19/25): 1691.

doi: 10.1016/j.ssi.2006.06.026     URL    
[105]
Tomita Y, Fuji-I A, Ohki H, Yamada K, Okuda T. Chem. Lett., 1998, 27(3): 223.

doi: 10.1246/cl.1998.223     URL    
[106]
Li X N, Liang J W, Chen N, Luo J, Adair K R, Wang C H, Banis M N, Sham T K, Zhang L, Zhao S Q, Lu S G, Huang H, Li R Y, Sun X L. Angew. Chem. Int. Ed., 2019, 58(46): 16427.
[107]
Li W H, Liang J W, Li M S, Adair K R, Li X N, Hu Y F, Xiao Q F, Feng R F, Li R Y, Zhang L, Lu S G, Huang H, Zhao S Q, Sham T K, Sun X L. Chem. Mater., 2020, 32(16): 7019.

doi: 10.1021/acs.chemmater.0c02419     URL    
[108]
Kanno R, Takeda Y, Yamamoto O, Cros C, Gang W, Hagenmuller P. Solid State Ion., 1986, 20(2): 99.

doi: 10.1016/0167-2738(86)90016-0     URL    
[109]
Kanno R, Takeda Y, Takada K, Yamamoto O. J. Electrochem. Soc., 1984, 131(3): 469.

doi: 10.1149/1.2115611     URL    
[110]
Zhao Y S, Daemen L L. J. Am. Chem. Soc., 2012, 134(36): 15042.
[111]
Emly A, Kioupakis E, van der Ven A. Chem. Mater., 2013, 25(23): 4663.

doi: 10.1021/cm4016222     URL    
[112]
Hood Z D, Wang H, Samuthira Pandian A, Keum J K, Liang C D. J. Am. Chem. Soc., 2016, 138(6): 1768.

doi: 10.1021/jacs.5b11851     URL    
[113]
Fang H, Jena P. Proc. Natl. Acad. Sci. U. S. A., 2017, 114(42):11046.
[114]
Yin L H, Yuan H M, Kong L, Lu Z G, Zhao Y S. Chem. Commun., 2020, 56(8): 1251.

doi: 10.1039/C9CC08382K     URL    
[115]
Kahle L, Marcolongo A, Marzari N. Energy Environ. Sci., 2020, 13(3): 928.

doi: 10.1039/C9EE02457C     URL    
[1] 朱国辉, 还红先, 于大伟, 郭学益, 田庆华. 废旧锂离子电池选择性提锂[J]. 化学进展, 2023, 35(2): 287-301.
[2] 王萌, 宋贺, 李烨文. 三维自组装蓝相液晶光子晶体[J]. 化学进展, 2022, 34(8): 1734-1747.
[3] 李芳远, 李俊豪, 吴钰洁, 石凯祥, 刘全兵, 彭翃杰. “蛋黄蛋壳”结构纳米电极材料设计及在锂/钠离子/锂硫电池中的应用[J]. 化学进展, 2022, 34(6): 1369-1383.
[4] 王才威, 杨东杰, 邱学青, 张文礼. 木质素多孔碳材料在电化学储能中的应用[J]. 化学进展, 2022, 34(2): 285-300.
[5] 刘新叶, 梁智超, 王山星, 邓远富, 陈国华. 碳基材料修饰聚烯烃隔膜提高锂硫电池性能研究[J]. 化学进展, 2021, 33(9): 1665-1678.
[6] 陈阳, 崔晓莉. 锂离子电池二氧化钛负极材料[J]. 化学进展, 2021, 33(8): 1249-1269.
[7] 高金伙, 阮佳锋, 庞越鹏, 孙皓, 杨俊和, 郑时有. 高电压锂离子正极材料LiNi0.5Mn1.5O4高温特性[J]. 化学进展, 2021, 33(8): 1390-1403.
[8] 李文涛, 钟海, 麦耀华. 锂二次电池中的原位聚合电解质[J]. 化学进展, 2021, 33(6): 988-997.
[9] 江松, 王家佩, 朱辉, 张琴, 丛野, 李轩科. 二维材料V2C MXene的制备与应用[J]. 化学进展, 2021, 33(5): 740-751.
[10] 黄国勇, 董曦, 杜建委, 孙晓华, 李勃天, 叶海木. 锂离子电池高压电解液[J]. 化学进展, 2021, 33(5): 855-867.
[11] 张长欢, 李念武, 张秀芹. 柔性锂离子电池的电极[J]. 化学进展, 2021, 33(4): 633-648.
[12] 刘晓旸. 高压条件下的凝聚态化学[J]. 化学进展, 2020, 32(8): 1184-1202.
[13] 穆德颖, 刘铸, 金珊, 刘元龙, 田爽, 戴长松. 废旧锂离子电池正极材料及电解液的全过程回收及再利用[J]. 化学进展, 2020, 32(7): 950-965.
[14] 庄全超, 杨梓, 张蕾, 崔艳华. 锂离子电池的电化学阻抗谱分析研究进展[J]. 化学进展, 2020, 32(6): 761-791.
[15] 吴战, 李笑涵, 钱奥炜, 杨家喻, 张文魁, 张俊. 基于无机电致变色材料的变色储能器件[J]. 化学进展, 2020, 32(6): 792-802.
阅读次数
全文


摘要

锂电池用无机固态电解质