English
新闻公告
More
化学进展 2021, Vol. 33 Issue (8): 1404-1413 DOI: 10.7536/PC200764 前一篇   后一篇

所属专题: 锂离子电池

• 综述 •

锂离子电容电池关键电极材料

蔡克迪1, 严爽1, 徐天野1, 郎笑石1,2,*(), 王振华3,*()   

  1. 1 渤海大学化学与材料工程学院 锦州 121013
    2 辽宁省超级电容器工程技术研究中心 锦州 121013
    3 北京理工大学化学与化工学院 北京 100081
  • 收稿日期:2020-07-28 修回日期:2020-10-13 出版日期:2021-08-20 发布日期:2020-11-19
  • 通讯作者: 郎笑石, 王振华
  • 基金资助:
    国家自然科学基金项目(22075030)

Investigation of Electrode Materials for Lithium Ion Capacitor Battery

Kedi Cai1, Shuang Yan1, Tianye Xu1, Xiaoshi Lang1,2(), Zhenhua Wang3()   

  1. 1 College of Chemistry and Materials Engineering, Bohai University,Jinzhou 121013, China
    2 Liaoning Engineering Technology Research Center of Supercapacitor,Jinzhou 121013, China
    3 College of Chemistry and Chemical Engineering, Beijing Institute of Technology,Beijing 100081, China
  • Received:2020-07-28 Revised:2020-10-13 Online:2021-08-20 Published:2020-11-19
  • Contact: Xiaoshi Lang, Zhenhua Wang
  • Supported by:
    National Natural Science Foundation of China(22075030)

锂离子电容电池兼具锂离子电池和超级电容器的优势,凭借高能量密度、高功率密度、长循环寿命和快速充放电等优势成为具有前景的新型储能系统。然而,电池型电极和电容型电极之间的动力学不平衡、能量密度不太理想和循环稳定性较差等关键问题仍然存在,若要有效解决该问题需要在该领域开发出新型正负极电极材料。因此,本文详细介绍了锂离子电容电池正负极材料(例如金属氧化物、碳材料、硫化物等)的研究进展以及技术路线,并针对目前存在的问题进行了分析,同时对电极材料未来的研究方向进行了展望,以及对其他化学电源的研究提供了新思路和手段。

With the advantages of both lithium ion battery and supercapacitor, lithium ion capacitor battery has become a promising new energy storage system with its advantages of high energy density, high power density, long cycle life and fast charging and discharging. However, some key problems still exist, such as dynamic imbalance, less ideal energy density and poor cycling stability between battery electrode and capacitor electrode. The electrode material is an important part of the battery and seriously affects the overall electrochemical performance. To solve this problem effectively, a variety of new type of anode and cathode electrode materials should be developed in this field. Therefore, this paper introduces in detail the research progress and technical route of cathode(layered metal oxides, graphene composite anode and other novel cathode materials) and anode(transition metal oxides, carbon materials, lithium compounds and sulfides) materials for lithium ion capacitor batteries, and analyzes the existing problems. It is found that the properties of electrode materials can be improved by nano treatment, material coating and heteroatomic doping. At the same time, the future research direction of electrode materials is prospected, and new ideas and means are provided for the research of other chemical power sources.

Contents

1 Introduction

2 Anode materials

2.1 Transition metal oxide

2.2 Carbon materials

2.3 Lithium compound

2.4 Sulfide

3 Cathode materials

3.1 Layered metal oxide

3.2 Graphene composite cathode

3.3 Other new cathode materials

4 Conclusion and outlook

()
图1 锂离子电容电池优势及挑战
Fig. 1 Diagram of advantages of Li-ion capacitor batteries
图2 MoS2/NC复合材料的合成工艺[37]
Fig. 2 Synthesis of MoS2/NC composite material[37]
图3 Li1.2Mn0.56Ni0.16Co0.08O2材料的制备过程[46]
Fig. 3 Preparation process of Li1.2Mn0.56Ni0.16Co0.08O2[46]
图4 (a)LiNi0.88Co0.095Mn0.025O2@Al复合材料的合成工艺,(b)1 C速率下的循环性能,(c)不同速率下的循环性能[47]
Fig. 4 (a) Synthesis of LiNi0.88Co0.095Mn0.025O2@Al composite material,(b) cycle capability at 1 C rate,(c) rate capability under different C-rates[47].
图5 (a)rGO/V2O5的合成工艺示意图,(b)真空300 ℃退火2h后rGO/V2O5纳米颗粒的SEM图像,(c)不同速率下的循环性能[56]
Fig. 5 (a) Schematic diagram of the synthesis of rGO/V2O5,(b) SEM images of V2O5 nanoparticles anchored on rGO nanosheets after annealing in vacuum at 300 ℃ for 2 h,(c) The rate performance at various rates from C/9 to 10 C[56].
[1]
Wang Y G, Song Y F, Xia Y Y. Chem. Soc. Rev., 2016, 45(21): 5925.

doi: 10.1039/C5CS00580A     URL    
[2]
Hou H S, Banks C E, Jing M J, Zhang Y, Ji X B. Adv. Mater., 2015, 27(47): 7861.

doi: 10.1002/adma.201503816     URL    
[3]
Shi D Y, Zheng R, Liu C S, Chen D M, Zhao J W, Du M. Inorg. Chem., 2019, 58(11): 7229.

doi: 10.1021/acs.inorgchem.9b00206     URL    
[4]
Li Z X, Zou K Y, Zhang X, Han T, Yang Y. Inorg. Chem., 2016, 55(13): 6552.

doi: 10.1021/acs.inorgchem.6b00746     URL    
[5]
Huang J L, Zhao B T, Liu T, Mou J R, Jiang Z J, Liu J, Li H X, Liu M L. Adv. Funct. Mater., 2019, 29(31): 1902255.
[6]
Wang F X, Wu X W, Yuan X H, Liu Z C, Zhang Y, Fu L J, Zhu Y S, Zhou Q M, Wu Y P, Huang W. Chem. Soc. Rev., 2017, 46(22): 6816.

doi: 10.1039/C7CS00205J     URL    
[7]
Jagadale A, Zhou X, Xiong R, Dubal D P, Xu J, Yang S. Energy Storage Mater., 2019, 19: 314.
[8]
Han P X, Xu G J, Han X Q, Zhao J W, Zhou X H, Cui G L. Adv. Energy Mater., 2018, 8(26): 1801243.
[9]
Ding J, Hu W B, Paek E, Mitlin D. Chem. Rev., 2018, 118(14): 6457.

doi: 10.1021/acs.chemrev.8b00116     pmid: 29953230
[10]
Evans D A. [2020-07-01]. http://www.evanscap.com/pdf/98SW.pdf
[11]
Amatucci G G, Badway F du Pasquier A, Zheng T. J. Electrochem. Soc., 2001, 148(8): A930.

doi: 10.1149/1.1383553     URL    
[12]
Li H Q, Cheng L, Xia Y Y. Electrochem. Solid-State Lett., 2005, 8(9): A433.

doi: 10.1149/1.1960007     URL    
[13]
Shao S M. Roll. Stock., 2008, 46(12): 21.
(邵树民. 铁道车辆, 2008, 46(12): 21.)
[14]
Liu J Q, Zheng M B, Shi X Q, Zeng H B, Xia H. Adv. Funct. Mater., 2016, 26(6): 919.

doi: 10.1002/adfm.v26.6     URL    
[15]
Jiao Y, Liu Y, Yin B S, Zhang S W, Qu F Y, Wu X. Nano Energy, 2014, 10: 90.

doi: 10.1016/j.nanoen.2014.09.002     URL    
[16]
Zhong Y, Ma Y F, Guo Q B. Sci. Rep., 2017(7): 40927.
[17]
Zheng X, Jiao Y, Chai F, Qu F Y, Umar A, Wu X. J. Colloid Interface Sci., 2015, 457: 345.

doi: 10.1016/j.jcis.2015.07.023     URL    
[18]
Wang P, Zheng Z K, Cheng X L, Sui L L, Gao S, Zhang X F, Xu Y M, Zhao H, Huo L H. J. Mater. Chem. A, 2017, 5(37): 19846.
[19]
Dong Y D, Xing L, Hu F, Umar A, Wu X. Mater. Res. Bull., 2018, 107: 391.

doi: 10.1016/j.materresbull.2018.07.038     URL    
[20]
Li H, Wu L J, Zhang S G. J. Alloys Compd., 2020, 155008.
[21]
Yin D, Huang G, Sun Q. Electrochim. Acta, 2016, 215: 410.

doi: 10.1016/j.electacta.2016.08.110     URL    
[22]
Zhao X, Wang H E, Cao J, Cai W, Sui J H. Chem. Commun., 2017, 53(77): 10723.
[23]
Lee S H, Yoo G, Cho J, Seokgyu R, Youn S K, Jeeyoung Y. Alloys Compd., 2020, 154566.
[24]
Wu Z S, Ren W C, Xu L, Li F, Cheng H M. ACS Nano, 2011, 5(7): 5463.

doi: 10.1021/nn2006249     URL    
[25]
Gomez-Urbano J L, Moreno-Fernandez G, Arnaiz M. Carbon, 2020, 162: 273.

doi: 10.1016/j.carbon.2020.02.052     URL    
[26]
Sun B, Zhang Q, Xiang H. Energy Storage Mater., 2020, 24: 450.
[27]
Jiang J, Zhang Y, Li Z. J. Colloid Interf. Sci., 2020, 567: 75.

doi: 10.1016/j.jcis.2020.01.120     URL    
[28]
Lee S H, Kim J M. Mater. Lett., 2018, 228: 220.

doi: 10.1016/j.matlet.2018.06.006     URL    
[29]
Liu Y, Wang W Q, Chen J, Li X W, Cheng Q L, Wang G C. J. Energy Chem., 2020, 50: 344.

doi: 10.1016/j.jechem.2020.03.075     URL    
[30]
Lang X S, Zhao Y L, Cai K D, Li L, Chen D M, Zhang Q G. Energy Technol., 2019, 7(12): 1900543.
[31]
Zhou Y L, Zhu Q, Tian J, Jiang F Y. Nanomaterials, 2017, 7(9): 252.

doi: 10.3390/nano7090252     URL    
[32]
Tran V C, Sahoo S, Shim J J. Mater. Lett., 2018, 210: 105.

doi: 10.1016/j.matlet.2017.08.136     URL    
[33]
Chen T H, Liu Z S. Mater. Lett., 2019, 236: 248.

doi: 10.1016/j.matlet.2018.10.114     URL    
[34]
Jia H, Wang Z, Zheng X. Electrochim. Acta, 2019, 312: 54.

doi: 10.1016/j.electacta.2019.04.192     URL    
[35]
Govindasamy M, Shanthi S, Elaiyappillai E, Wang S F, Johnson P M. Electrochim. Acta, 2019, 293: 328.

doi: 10.1016/j.electacta.2018.10.051    
[36]
Gao Y P, Huang K J, Wu X, Hou Z Q, Liu Y Y. J. Alloys Compd., 2018, 741: 174.

doi: 10.1016/j.jallcom.2018.01.110     URL    
[37]
Wang X X, Tian J H, Cheng X, Na R, Wang D D, Shan Z Q. ACS Appl. Mater. Interfaces, 2018, 10(42): 35953.
[38]
Sun Z Q, Yang X, Lin H M, Zhang F, Wang Q, Qu F Y. Inorg. Chem. Front., 2019, 6(3): 659.

doi: 10.1039/C8QI01230J     URL    
[39]
Ohzuku T, Makimura Y. Chem. Lett., 2001, 30(8): 744.

doi: 10.1246/cl.2001.744     URL    
[40]
Li S, Zhu K, Zhao D, Zhao Q, Zhang N. Ionics Kiel, 2018.
[41]
Li L, Wu L, Wu F, Song S P, Zhang X Q, Fu C, Yuan D D, Xiang Y. J. Electrochem. Soc., 2017, 164(9): A2138.
[42]
Talebi-Esfandarani M, Savadogo O. Rare Met., 2016, 35(4): 303.

doi: 10.1007/s12598-015-0449-x     URL    
[43]
Wang X F, Feng Z J, Hou X L, Liu L L, He M, He X S, Huang J T, Wen Z H. Chem. Eng. J., 2020, 379: 122371.
[44]
Julien C, Mauger A, Vijh A, Zaghib K.. Lithium Batteries. Cham: Springer International Publishing, 2016: 201.
[45]
Zhang Y Y, Liang Q Q, Huang C, Gao P, Shu H B, Zhang X Y, Yang X K, Liu L, Wang X Y. J. Solid State Electrochem., 2018, 22(7): 1995.

doi: 10.1007/s10008-018-3905-3     URL    
[46]
Shi S J, Wang T, Cao M, Wang J W, Zhao M X, Yang G. ACS Appl. Mater. Interfaces, 2016, 8(18): 11476.
[47]
Yang X, Tang Y W, Shang G Z, Wu J, Lai Y Q, Li J, Qu Y H, Zhang Z A. ACS Appl. Mater. Interfaces, 2019, 11(35): 32015.
[48]
Cai K, Li Y Y, Lang X, Li L, Zhang Q. Intern. J. Energy R., 2019, 43(13): 7664.
[49]
Liu H Q, Tang Y P, Wang C. Adv. Funct. Mater., 2017, 27(12): 1606269.
[50]
Zhang Y, Lai J Y, Gong Y D, Hu Y M, Liu J, Sun C W, Wang Z L. ACS Appl. Mater. Interfaces, 2016, 8(50): 34309.
[51]
Yan Y, Li B, Guo W, Pang H, Xue H G. J. Power Sources, 2016, 329: 148.

doi: 10.1016/j.jpowsour.2016.08.039     URL    
[52]
Chen Z, Augustyn V, Wen J. Adv. Mater., 2011, 23(6): 791.

doi: 10.1002/adma.201003658     URL    
[53]
Qu Q T, Zhu Y S, Gao X W, Wu Y P. Adv. Energy Mater., 2012, 2(8): 950.

doi: 10.1002/aenm.v2.8     URL    
[54]
Xing L L, Zhao G G, Huang K J, Wu X. Dalton Trans., 2018, 47(7): 2256.

doi: 10.1039/C7DT04660J     URL    
[55]
Yao L, Zhang C R, Huang N T. Electrochim. Acta, 2019, 295: 14.

doi: 10.1016/j.electacta.2018.10.134    
[56]
Pandey G P, Liu T, Brown E, Yang Y Q, Li Y H, Sun X S, Fang Y P, Li J. ACS Appl. Mater. Interfaces, 2016, 8(14): 9200.

doi: 10.1021/acsami.6b02372     URL    
[57]
Wang B, Al Abdulla W, Wang D L, Zhao X S. Energy Environ. Sci., 2015, 8(3): 869.

doi: 10.1039/C4EE03825H     URL    
[58]
Wang B, Xie Y, Liu T, Zhao X S. Nano Energy, 2017, 42: 363.

doi: 10.1016/j.nanoen.2017.11.040     URL    
[59]
Legagneur V, An Y, Mosbah A, Portal R, La S A, Verbaere D, Guyomard Y. Solid State Ionics, 2001, 139(1/2): 37.

doi: 10.1016/S0167-2738(00)00813-4     URL    
[60]
Yamada A, Iwane N, Harada Y, Nishimura S I, Koyama Y, Tanaka I. Adv. Mater., 2010, 22(32): 3583.

doi: 10.1002/adma.201001039    
[61]
NytÉn A, Kamali S, Häggström L, Gustafsson T, Tomas J O. J. Mater. Chem. A, 2006, 16: 2266-2272.
[1] 刘振东, 潘嘉杰, 刘全兵. 机器学习在设计高性能锂电池正极材料与电解质中的应用[J]. 化学进展, 2023, 35(4): 577-592.
[2] 董宝坤, 张婷, 何翻. 柔性热电材料的研究进展及应用[J]. 化学进展, 2023, 35(3): 433-444.
[3] 李锋, 何清运, 李方, 唐小龙, 余长林. 光催化产过氧化氢材料[J]. 化学进展, 2023, 35(2): 330-349.
[4] 李璇, 黄炯鹏, 张一帆, 石磊. 二维材料的一维纳米带[J]. 化学进展, 2023, 35(1): 88-104.
[5] 王琦桐, 丁嘉乐, 赵丹莹, 张云鹤, 姜振华. 储能薄膜电容器介电高分子材料[J]. 化学进展, 2023, 35(1): 168-176.
[6] 李婧, 朱伟钢, 胡文平. 基于有机复合材料的近红外和短波红外光探测器[J]. 化学进展, 2023, 35(1): 119-134.
[7] 宝利军, 危俊吾, 钱杨杨, 王雨佳, 宋文杰, 毕韵梅. 酶响应性线形-树枝状嵌段共聚物的合成、性能及应用[J]. 化学进展, 2022, 34(8): 1723-1733.
[8] 唐森林, 高欢, 彭颖, 李明光, 陈润锋, 黄维. 钙钛矿光伏电池的非辐射复合损耗及调控策略[J]. 化学进展, 2022, 34(8): 1706-1722.
[9] 蒋峰景, 宋涵晨. 石墨基液流电池复合双极板[J]. 化学进展, 2022, 34(6): 1290-1297.
[10] 乔瑶雨, 张学辉, 赵晓竹, 李超, 何乃普. 石墨烯/金属-有机框架复合材料制备及其应用[J]. 化学进展, 2022, 34(5): 1181-1190.
[11] 职怡缤, 于兰, 李欢欢, 陶冶, 陈润锋, 黄维. 芳基硅磷光主体材料在有机电致发光器件中的应用[J]. 化学进展, 2022, 34(5): 1109-1123.
[12] 李晓微, 张雷, 邢其鑫, 昝金宇, 周晋, 禚淑萍. 磁性NiFe2O4基复合材料的构筑及光催化应用[J]. 化学进展, 2022, 34(4): 950-962.
[13] 李婧婧, 李洪基, 黄强, 陈哲. 掺杂对钠离子电池正极材料性能影响机制的研究[J]. 化学进展, 2022, 34(4): 857-869.
[14] 庞欣, 薛世翔, 周彤, 袁蝴蝶, 刘冲, 雷琬莹. 二维黑磷基纳米材料在光催化中的应用[J]. 化学进展, 2022, 34(3): 630-642.
[15] 徐妍, 苑春刚. 纳米零价铁复合材料制备、稳定方法及其水处理应用[J]. 化学进展, 2022, 34(3): 717-742.
阅读次数
全文


摘要

锂离子电容电池关键电极材料