English
新闻公告
More
化学进展 2014, Vol. 26 Issue (12): 1899-1913 DOI: 10.7536/PC140801 前一篇   后一篇

• 综述与评论 •

化学驱动的[2]轮烷型分子梭

杨再文*, 刘向荣, 赵顺省, 何金梅   

  1. 西安科技大学化学与化工学院 西安 710054
  • 收稿日期:2014-08-01 修回日期:2014-09-01 出版日期:2014-12-15 发布日期:2014-12-19
  • 通讯作者: 杨再文 E-mail:yangzaiwen@tom.com
  • 基金资助:

    国家自然科学基金项目(No. 21301139, 21373158, 21103135)和陕西省教育厅科研计划项目(No. 2013JK0651)资助

Chemically Driven [2] Rotaxane Molecular Shuttles

Yang Zaiwen*, Liu Xiangrong, Zhao Shunsheng, He Jinmei   

  1. College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
  • Received:2014-08-01 Revised:2014-09-01 Online:2014-12-15 Published:2014-12-19
  • Supported by:

    The work was supported by the National Natural Science Foundation of China (No. 21301139, 21373158, 21103135) and the Scientific Research Program Funded by Shaanxi Provincial Education Department (No. 2013JK0651)

机械互锁的轮烷型分子梭在分子机器化学领域具有重要的位置,可通过"积小为大"的方法在分子水平进行新材料的自组装.在外界的刺激下,大环分子可以在轴分子的不同识别位点间或态间往复穿梭,从而引起体系物理或化学性质的交替变化,这种变化又构成了一类基本的机械开关,可以用来执行特定的功能,在分子开关、信息储存和处理等领域具有潜在的应用前景,是超分子化学领域的研究热点.本文以[2]轮烷型分子梭的驱动力(外部刺激)为主线,分别从酸碱驱动、离子配位作用驱动和溶剂极性改变引起的疏水驱动等角度,综述了近年来化学驱动的[2]轮烷型分子梭在合成和应用方面的最新研究进展,同时介绍了其他力(如热力学参数熵、互锁体系中修饰基团尺寸大小、外加化学氧化剂或还原剂、得失电子引起的电化学氧化还原以及紫外-可见光照射诱发的偶氮苯顺反光异构化等方式)驱动的轮烷型分子梭的进展,最后对化学驱动的[2]轮烷型分子梭的未来发展趋势进行了展望.

Mechanically interlocked rotaxane molecular shuttles occupy an important position in the area of molecular machines chemistry, and is a good "bottom-up" strategy for the self-assembly of new materials at the molecular level. In such shuttles, a macrocycle can be translocated between different "stations" or recognition sites of the thread in response to an external stimulus. The alternation of relative positions of the interlocked components can result in varying physical or chemical properties. The alternative variation of properties constitutes a basic kind of mechanical switch, capable of performing particular functions. The above-mentioned molecular shuttles have attracted wide attentions of supramolecular chemists due to their potential applications as molecular devices for switches, information storage and processing, and so on. In this paper, the new research progress in chemically driven [2]rotaxane molecular shuttles on syntheses and applications in recent years is reviewed, based on the driving forces (i.e. external stimuli) such as acid/base driven, ion coordination interaction driven, hydrophobic interaction driven induced by the change of solvent polarity. And the other forces driven [2]rotaxane molecular shuttles are also summarized such as thermodynamical entropy, the size of the decorated groups in the interlocked system, chemical oxidants or reductants, electrochemical redox related to electron gain or loss, photoisomerization of the azobenzene unit between trans and cis isomer induced by UV or visible light irradiation, and so on. Furthermore, the future development of such [2]rotaxane molecular shuttles is prospected.

Contents
1 Introduction
2 Chemically driven [2]rotaxane molecular shuttles
2.1 Acid/base driven [2]rotaxane molecular shuttles
2.2 Ion coordination interaction driven [2]rotaxane molecular shuttles
2.3 Hydrophobic interaction driven induced by the change of solvent polarity [2]rotaxane molecular shuttles
2.4 Other forces driven [2]rotaxane molecular shuttles
3 Conclusion and outlook

中图分类号: 

()

[1] 黄飞鹤(Hang F H), 翟春熙(Zhai C X), 郑波(Zheng B), 李世军(Li S J). 超分子聚合物(Supramolecular Polymers). 杭州:浙江大学出版社(Hangzhou: Zhejiang University Press), 2012.
[2] 莱恩(Lehn J M). 沈兴海(Shen X H)(译). 超分子化学:概念和展望(Supramolecular Chemistry: Concepts and Perspectives). 北京:北京大学出版社(Beijing: Peking University Press), 2002.
[3] 罗勤慧(Luo Q H). 大环化学——主-客体化合物和超分子(Macrocyclic Chemistry——Host-guest Compounds and Supramolecules). 北京:科学出版社(Beijing: Science Press), 2009.
[4] Kay E R, Leigh D A, Zerbetto F. Angew. Chem. Int. Ed., 2007, 46: 72.
[5] Neal E A, Goldup S M. Chem. Commun., 2014, 50: 5128.
[6] Yang W, Li Y, Liu H, Chi L, Li Y. Small, 2012, 8 (4): 504.
[7] Sauvage J P, Collin J P, Durot S, Frey J, Heitz V, Sour A, Tock C. C. R. Chimie, 2010, 13: 315.
[8] Silvi S, Venturi M, Credi A. J. Mater. Chem., 2009, 19: 2279.
[9] Berná J, Alajarín M, Orenes R A. J. Am. Chem. Soc., 2010, 132: 10741.
[10] Guenet A, Graf E, Kyritsakas N, Hosseini M W. Chem. Eur. J., 2011, 17: 6443.
[11] Leontiev A V, Serpell C J, White N G, Beer P D. Chem. Sci., 2011, 2: 922.
[12] Zhang Z, Han C, Yu G, Huang F. Chem. Sci., 2012, 3: 3026.
[13] Bruns C J, Stoddart J F. Acc. Chem. Res., 2014, 47 (7): 2186.
[14] Liu Y, Flood A H, Bonvallet P A, Vignon S A, Northrop B H, Tseng H R, Jeppesen J O, Huang T J, Brough B, Baller M, Magonov S, Solares S D, Goddard W A, Ho C M, Stoddart J F. J. Am. Chem. Soc., 2005, 127 (27): 9745.
[15] Sherman W B, Seeman N C. Nano. Lett., 2004, 4 (7): 1203.
[16] Shin J S, Pierce N A. J. Am. Chem. Soc., 2004, 126 (35): 10834.
[17] Badji D? J D, Balzani V, Credi A, Silvi S, Stoddart J F. Science, 2004, 303: 1845.
[18] Badji D? J D, Ronconi C M, Stoddart J F, Balzani V, Silvi S, Credi A. J. Am. Chem. Soc., 2006, 128 (5): 1489.
[19] Zhang J N, Li H, Zhou W, Yu S L, Qu D H, Tian H. Chem. Eur. J., 2013, 19: 17192.
[20] Li Y, Liu H, Li Y. Curr. Org. Chem., 2011, 15: 96.
[21] Barnes J C, Fahrenbach A C, Dyar S M, Frasconi M, Giesener M A, Zhu Z, Liu Z, Hartlieb K J, Carmieli R, Wasielewski M R, Stoddart J F. Proc. Natl. Acad. Sci. U.S.A., 2012, 109 (29): 11546.
[22] Baggerman J, Haraszkiewicz N, Wiering P G, Fioravanti G, Marcaccio M, Paolucci F, Kay E R, Leigh D A, Brouwer A M. Chem. Eur. J., 2013, 19: 5566.
[23] Dongen S F M, Cantekin S, Elemans J A A W, Rowan A E, Nolte R J M. Chem. Soc. Rev., 2014, 43: 99.
[24] Mercurio J M, Tyrrell F, Cookson J, Beer P D. Chem. Commun., 2013, 49: 10793.
[25] Zapata F, Blackburn O A, Langton M J, Faulkner S, Beer P D. Chem. Commun., 2013, 49: 8157.
[26] Lin Y H, Lai C C, Liu Y H, Peng S M, Chiu S H. Angew. Chem. Int. Ed., 2013, 52: 10231.
[27] Chiu C W, Lai C C, Chiu S H. J. Am. Chem. Soc., 2007, 129 (12): 3500.
[28] Crowley J D, Goldup S M, Lee A L, Leigh D A, McBurney R T. Chem. Soc. Rev., 2009, 38: 1530.
[29] 翟春熙(Zhai C X), 黄飞鹤(Huang F H). 中国科学B辑:化学(Science in China B: Chemistry),2009, 39 (4): 315.
[30] 马骧(Ma X), 王巧纯(Wang Q C), 田禾(Tian H). 化学进展(Progress in Chemistry), 2009, 21 (1): 106.
[31] 吴旋(Wu X), 段群鹏(Duan Q P), 倪梦飞(Ni M F), 胡晓玉(Hu X Y), 王乐勇(Wang L Y). 有机化学(Chinese Journal of Organic Chemistry), 2014, 34: 437.
[32] Rescifina A, Chiacchio U, Corsaro A, Romeo G. Curr. Org. Chem., 2012, 16: 127.
[33] Tokunaga Y, Ikezaki S, Kimura M, Hisada K, Kawasaki T. Chem. Commun., 2013, 49: 11749.
[34] Scarel F, Valenti G, Gaikwad S, Marcaccio M, Paolucci F, Mateo-Alonso A. Chem. Eur. J., 2012, 18: 14063.
[35] Dey S K, Coskun A, Fahrenbach A C, Barin G, Basuray S N, Trabolsi A, Botros Y Y, Stoddart J F. Chem. Sci., 2011, 2: 1046.
[36] Brouwer A M, Frochot C, Gatti F G, Leigh D A, Mottier L, Paolucci F, Roffia S, Wurpel G W H. Science, 2001, 291: 2124.
[37] Saha S, Stoddart J F. Chem. Soc. Rev., 2007, 36: 77.
[38] Zhang T, Mu L, She G, Shi W. Chem. Commun., 2012, 48: 452.
[39] Jia C, Wu B, Li S, Yang Z, Zhao Q, Liang J, Li Q S, Yang X J. Chem. Commun., 2010, 46: 5376.
[40] Jia C, Wu B, Li S, Huang X, Zhao Q, Li Q S, Yang X J. Angew. Chem. Int. Ed., 2011, 50: 486.
[41] Li S, Jia C, Wu B, Luo Q, Huang X, Yang Z, Li Q S, Yang X J. Angew. Chem. Int. Ed., 2011, 50: 5721.
[42] Yang Z, Wu B, Huang X, Liu Y, Li S, Xia Y, Jia C, Yang X J. Chem. Commun., 2011, 47: 2880.
[43] Yang Z, Huang X, Zhao Q, Li S, Wu B. CrystEngComm, 2012, 14: 5446.
[44] Nguyen T D, Tseng H R, Celestre P C, Flood A H, Liu Y, Stoddart J F, Zink J I. Proc. Natl. Acad. Sci. U.S.A., 2005, 102 (29): 10029.
[45] Kihara N, Hashimoto M, Takata T. Org. Lett., 2004, 6 (11): 1693.
[46] Vella S J, Tiburcio J, Loeb S J. Chem. Commun., 2007: 4752.
[47] Berná J, Goldup S M, Lee A L, Leigh D A, Symes M D, Teobaldi G, Zerbetto F. Angew. Chem. Int. Ed., 2008, 47: 4392.
[48] Li J, Li Y, Guo Y, Xu J, Lv J, Li Y, Liu H, Wang S, Zhu D. Chem. Asian J., 2008, 3: 2091.
[49] Leigh D A, Lusby P J, McBurney R T, Symes M D. Chem. Commun., 2010, 46: 2382.
[50] Crowley J D, Leigh D A, Lusby P J, McBurney R T, Perret-Aebi L E, Petzold C, Slawin A M Z, Symes M D. J. Am. Chem. Soc., 2007, 129 (48): 15085.
[51] Tokunaga Y, Kawabata M, Matsubara N. Org. Biomol. Chem., 2011, 9: 4948.
[52] Yang W, Li Y, Zhang J, Yu Y, Liu T, Liu H, Li Y. Org. Biomol. Chem., 2011, 9: 6022.
[53] Zhu K, Vukotic V N, Noujeim N, Loeb S J. Chem. Sci., 2012, 3: 3265.
[54] Liu L, Liu Y, Liu P, Wu J, Guan Y, Hu X, Lin C, Yang Y, Sun X, Ma J, Wang L. Chem. Sci., 2013, 4: 1701.
[55] Jiang L, Okano J, Orita A, Otera J. Angew. Chem. Int. Ed., 2004, 43: 2121.
[56] Zhou W, Li J, He X, Li C, Lv J, Li Y, Wang S, Liu H, Zhu D. Chem. Eur. J., 2008, 14: 754.
[57] Goldup S M, Leigh D A, Lusby P J, McBurney R T, Slawin A M Z. Angew. Chem. Int. Ed., 2008, 47: 3381.
[58] Barrell M J, Leigh D A, Lusby P J, Slawin A M Z. Angew. Chem. Int. Ed., 2008, 47: 8036.
[59] Crowley J D, Hänni K D, Leigh D A, Slawin A M Z. J. Am. Chem. Soc., 2010, 132: 5309.
[60] Berná J, Franco-Pujante C, Alajarín M. Org. Biomol. Chem., 2014, 12: 474.
[61] Meng Z, Xiang J F, Chen C F. Chem. Sci., 2014, 5: 1520.
[62] Mateo-Alonso A, Ehli C, Rahman G M A, Guldi D M, Fioravanti G, Marcaccio M, Paolucci F, Prato M. Angew. Chem. Int. Ed., 2007, 46: 3521.
[63] Moretto A, Menegazzo I, Crisma M, Shotton E J, Nowell H, Mammi S, Toniolo C. Angew. Chem. Int. Ed., 2009, 48: 8986.
[64] Günba? D D, Zalewskiz L, Brouwer A M. Chem. Commun., 2011, 47: 4977.
[65] Dong S, Yuan J, Huang F. Chem. Sci., 2014, 5: 247.
[66] Umehara T, Kawai H, Fujiwara K, Suzuki T. J. Am. Chem. Soc., 2008, 130: 13981.
[67] Lee C F, Leigh D A, Pritchard R G, Schultz D, Teat S J, Timco G A, Winpenny R E P. Nature, 2009, 458: 314.
[68] Tramontozzi D A, Suhan N D, Eichhorn S H, Loeb S J. Chem. Eur. J., 2010, 16: 4466.
[69] Altieri A, Aucagne V, Carrillo R, Clarkson G J, D'Souza D M, Dunnett J A, Leigh D A, Mullen K M. Chem. Sci., 2011, 2: 1922.
[70] Ye T, Kumar A S, Saha S, Takami T, Huang T J, Stoddart J F, Weiss P S. ACS Nano, 2010, 4 (7): 3697.
[71] Yasuda T, Tanabe K, Tsuji T, Coti K K, Aprahamian I, Stoddart J F, Kato T. Chem. Commun., 2010, 46: 1224.
[72] Coskun A, Friedman D C, Li H, Patel K, Khatib H A, Stoddart J F. J. Am. Chem. Soc., 2009, 131: 2493.
[73] Zhu L, Yan H, Wang X J, Zhao Y. J. Org. Chem., 2012, 77: 10168.

[1] 薛敏, 范芳芳, 杨勇, 陈传峰. 柱芳烃机械互锁结构的制备及功能化[J]. 化学进展, 2019, 31(4): 491-504.
[2] 张双进, 杨扬, 孙小强, 尹芳华, 强琚莉, 王乐勇. 酸碱驱动的分子机器研究与应用[J]. 化学进展, 2016, 28(2/3): 244-259.
[3] 叶杨, 林喆萍, 金雯露, 王淑萍, 吴静, 李世军. 金属配位与主客体识别协同组装构筑机械互锁结构[J]. 化学进展, 2015, 27(6): 763-774.
[4] 许国贺, 李杰, 邓瑾妮, 殷绿, 郑朝晖, 丁小斌. 基于主客体识别的刺激响应型分子梭[J]. 化学进展, 2015, 27(12): 1732-1742.
[5] 孙书, 石建兵, 董宇平, 胡晓玉, 王乐勇. 准聚轮烷的研究进展[J]. 化学进展, 2014, 26(08): 1409-1426.
[6] 王光霞, 车延科, 江华. 旋转型单分子机器[J]. 化学进展, 2014, 26(06): 909-918.
[7] 刘鹏, 邵学广, 蔡文生*. 准轮烷/轮烷在药物载体中的应用[J]. 化学进展, 2013, 25(05): 692-697.
[8] 董海青, 李永勇, 李兰, 时东陆. 生物医用类环糊精/聚合物(准)聚轮烷[J]. 化学进展, 2011, 23(5): 914-922.
[9] 孙涛 张华承 李月明 辛飞飞 孔丽 郝爱友. 基于环糊精和富勒烯偶联体系的新型分子机器*[J]. 化学进展, 2010, 22(11): 2156-2164.
[10] 邓超 韩军 滕明瑜 赵德阳 王乐勇. 分子陀螺的设计、合成与组装[J]. 化学进展, 2010, 22(06): 1021-1034.
[11] 赵三平 徐卫林. 环糊精超分子水凝胶*[J]. 化学进展, 2010, 22(05): 916-926.
[12] 陈琳 石乃恩 钱妍 解令海 范曲立 黄维. 点击化学与功能有机/聚合物材料*[J]. 化学进展, 2010, 22(0203): 406-416.
[13] 马骧,王巧纯,田禾. 光驱动分子梭*[J]. 化学进展, 2009, 21(01): 106-115.
[14] 杨辉,谭业邦,黄晓玲,王月霞. 葫芦脲的研究进展*[J]. 化学进展, 2009, 21(01): 164-173.
[15] 靖波,陈晓,柴永存. 环糊精与大分子组装(准)聚轮烷*[J]. 化学进展, 2006, 18(10): 1361-1368.
阅读次数
全文


摘要

化学驱动的[2]轮烷型分子梭