English
新闻公告
More
化学进展 2020, Vol. 32 Issue (7): 950-965 DOI: 10.7536/PC191106 前一篇   后一篇

所属专题: 锂离子电池

• 综述 •

废旧锂离子电池正极材料及电解液的全过程回收及再利用

穆德颖1,3, 刘铸1, 金珊1, 刘元龙1, 田爽2,**(), 戴长松1,**()   

  1. 1. 哈尔滨工业大学化工与化学学院 哈尔滨 150001
    2. 中国科学院宁波材料技术与工程研究所 宁波 315201
    3. 哈尔滨商业大学食品工程学院 哈尔滨 150076
  • 收稿日期:2019-11-08 出版日期:2020-07-24 发布日期:2020-07-10
  • 通讯作者: 田爽, 戴长松
  • 基金资助:
    宁波市科技创新2025重大专项(2019B10114); 黑龙江省教育厅创新人才培养计划项目(UNPYSCT-2018138)

The Recovery and Recycling of Cathode Materials and Electrolyte from Spent Lithium Ion Batteries in Full Process

Deying Mu1,3, Zhu Liu1, Shan Jin1, Yuanlong Liu1, Shuang Tian2,**(), Changsong Dai1,**()   

  1. 1. School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
    2. Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, China
    3. School of Food Science and Engineering, Harbin University of Commerce, Harbin 150076, China
  • Received:2019-11-08 Online:2020-07-24 Published:2020-07-10
  • Contact: Shuang Tian, Changsong Dai
  • About author:
    ** e-mail: (Shuang Tian);
    .(Changsong Dai)
  • Supported by:
    Foundation of Key Program of Sci-Tech Innovation in Ningbo(2019B10114); University Nursing Program for Young Scholars with Creative Talents in Heilongjiang Province(UNPYSCT-2018138)

作为发展势头迅猛的新型储能形式,锂离子电池缓解了能源领域对化石燃料的依赖,同时减轻了日益严峻的环境压力,但是数量巨大的废旧锂离子电池具有危险废弃物和高附加值可用资源的双重属性。因此,通过不同技术手段的创新和组合,实现组成成分日益多样化的废旧锂离子电池的高效回收和再利用具有巨大的挑战和特殊重要的现实意义。本文从预处理工艺出发,详细阐述了放电失活、分类拆解、粉碎筛分、酸浸除杂等一系列过程的技术手段和要求;从原料再生、结构修复以及再制备三个方面探讨了具有代表性的再利用思路,分析了各技术方法的优势和存在的问题。此外,对废旧电解液的无害化处理和回收进行了专题讨论,重点介绍了超临界CO2萃取工艺。最后,针对现阶段存在的问题提出展望,为后续开展废旧锂离子电池回收的相关研究及工业应用提供参考。

As a new type of energy storage devices with rapid development momentum, lithium ion batteries(LIBs)alleviate the dependence on fossil fuels in energy field and reduce the increasingly severe environmental pressure. A large number of spent lithium ion batteries are not only hazardous wastes, but also resources with high added value from different perspectives. Therefore, it is of great challenge and practical significance to realize high-efficient recycling and reuse of spent lithium ion batteries with progressively diverse components through innovation and combination of different technical means. Starting from the pretreatment process, the technical means and requirements of a series of processes such as deactivation and discharge, dismantling and classification, crushing and sieving, separation process, acid leaching and impurity removal are described in detail. This review discusses the typical strategies of reuse from three aspects and analyzes the advantages and disadvantages of various techniques in the process of material regeneration, structural repair and re-synthesis of cathode materials. In addition, the harmless treatment and recovery of spent electrolyte are discussed, especially the application of supercritical CO2 extraction process. Finally, the outlook is put forward in view of the existing problems at the present stage to provide references for subsequent research and industrial applications of spent lithium ion battery recycling.

Contents

1 Introduction

2 Overview of spent lithium ion battery recycling

3 Pretreatment of spent lithium ion batteries

3.1 Discharge and deactivation

3.2 Dismantling and classification

3.3 Crushing and sieving

3.4 Separation

4 Dissolution and purification of spent materials

4.1 Acid leaching process

4.2 Removal of impurities

5 Recycle and reuse of spent materials

5.1 Recovery of metals and raw materials

5.2 Direct regeneration of cathode materials

5.3 Re-synthesis of cathode materials

6 Non-hazardous treatment and recovery of spent electrolyte

6.1 Harmless disposal by conventional physical and chemical methods

6.2 Reclamation by supercritical CO2 extraction

7 Conclusion and outlook

()
图1 全球日平均CO2含量及CO2辐射强迫[3]
Fig.1 Daily averaged CO2 from four global monitoring division baseline observatories and CO2 radiative forcing[3]
图2 废旧锂离子电池回收处理的分类及再利用最终产物
Fig.2 Classification of battery recycling processes and final reused products
图3 废旧锂离子电池预处理全过程分类简图
Fig.3 Simplified diagram of whole pretreatment processes for spent lithium ion batteries
表1 近三年利用有机和无机酸浸出废旧锂离子电池的代表性研究工作
Table 1 Typical research works about the inorganic and organic acid leaching for spent lithium-ion batteries in recent years
图4 不同条件对浸出效率的影响:(a)初始乳酸浓度,(b)固液比,(c)双氧水用量,(d)在优化条件下,各金属的浸出效率[48]
Fig.4 Effect on leaching efficiency of (a) initial acid concentration, (b) solid/liquid ratio, (c) amount of H2O2, and (d) metal leaching efficiencies under optimized conditions[48]
图5 在不同pH条件下,浸出溶液中金属离子的浓度变化及不同缓冲液的影响[55]
Fig.5 The changing concentrations of metal ions in the solution through adjusting pH value of leaching solution(a, b) and the effect of different pH buffer(c, d) [55]
图6 废旧正极材料直接修复的原理与过程[70,71]
Fig.6 Mechanism and process of direct regeneration in spent cathode materials[70,71]
图7 超临界CO2萃取废旧锂离子电池电解液过程演示(a)及再利用电解液成分(b和c)及电化学窗口(d)[100]
Fig.7 Schematic diagram of supercritical CO2 extraction of spent electrolyte(a), the components (b, c) and electrochemical window (d) of recovered electrolyte[100]
[1]
Dunn J B , Gaines L , Sullivan J , Wang M Q . Environmental Science & Technology, 2012,46(22):12704. doi: 10.1021/es302420z https://www.ncbi.nlm.nih.gov/pubmed/23075406

URL     pmid: 23075406
[2]
Adesina O , Anzai I A , Avalos J L , Barstow B . Chem, 2017,2(1):20.
[3]
Butler J H , Montzka S A . The NOAA Annual Greenhouse Gas Index(AGGI), Updated Spring 2019. [2010-11]. https://www.esrl.noaa.gov/gmd/aggi/aggi. https://www.esrl.noaa.gov/gmd/aggi/aggi
[4]
Xiong S Q , Ji J P , Ma X M . Energies, 2019,12(5):834. doi: 10.3390/en12050834 https://www.mdpi.com/1996-1073/12/5/834
[5]
Dehghani-Sanij A R , Tharumalingam E , Dusseault M B , Fraser R . Renewable & Sustainable Energy Reviews, 2019,104:192.
[6]
Soltani M , Ronsmans J , Kakihara S , Kakihara S , Jaguemont J , van den Bossche P , van Mierlo J . Applied Sciences-Basel., 2018,8(7):1176.
[7]
Fang S C , Ke B R , Chung C Y . Energies, 2017,10(7):890. doi: 10.3390/en10070890 http://www.mdpi.com/1996-1073/10/7/890
[8]
Liu T F , Zhang Y P , Chen C , Lin Z , Zhang S Q , Lu J . Nature Communications, 2019,10:1965. doi: 10.1038/s41467-019-09933-0 https://www.ncbi.nlm.nih.gov/pubmed/31036805

URL     pmid: 31036805
[9]
Larcher D , Tarascon J M . Nature Chemistry, 2015,7(1):19. doi: 10.1038/nchem.2085 https://www.ncbi.nlm.nih.gov/pubmed/25515886

URL     pmid: 25515886
[10]
Arambarri J , Hayden J , Elkurdy M , Meyers B , Hamatteh Z S A , Abbassi B , Omar W . Environ. Eng. Res., 2019,24(4):699. doi: 10.4491/eer.2018.383 http://eeer.org/journal/view.php?doi=10.4491/eer.2018.383
[11]
Chen M Y , Ma X T , Chen B , Arsenault R , Karlson P , Simon N , Wang Y . Joule, 2019,3(11):2622. doi: 10.1016/j.joule.2019.09.014 https://linkinghub.elsevier.com/retrieve/pii/S254243511930474X
[12]
Liu C W , Lin J , Cao H B , Zhang Y , Sun Z . Journal of Cleaner Production, 2019,228:801. doi: 10.1016/j.jclepro.2019.04.304 https://linkinghub.elsevier.com/retrieve/pii/S0959652619314015
[13]
林娇(Lin J), 刘春伟(Liu C W), 曹宏斌(Cao H B), 李丽(Li L), 陈仁杰(Chen R J), 孙峙(Sun Z) . 化学进展 (Progress in Chemistry), 2018,30(9):1445. http://manu56.magtech.com.cn/progchem/CN/10.7536/PC180424
[14]
Zhang G W , He Y Q , Wang H F , Feng Y , Xie W N , Zhu X N . Journal of Cleaner Production, 2019,231:1418. doi: 10.1016/j.jclepro.2019.04.279 https://linkinghub.elsevier.com/retrieve/pii/S0959652619313708
[15]
Zhang G W , Du Z X , He Y Q , Wang H F , Xie W N , Zhang T . Sustainability, 2019,11:2363. doi: 10.3390/su11082363 https://www.mdpi.com/2071-1050/11/8/2363
[16]
Ren G X , Xiao S W , Xie M Q , Pan B , Chen J , Wang F G , Xia X . Trans. Nonferrous Met. Soc. China 2017,27:450. doi: 10.1016/S1003-6326(17)60051-7 https://linkinghub.elsevier.com/retrieve/pii/S1003632617600517
[17]
Winslow K M , Laux S J , Townsend T G . Resources Conservation and Recycling, 2018,129:263. doi: 10.1016/j.resconrec.2017.11.001 https://linkinghub.elsevier.com/retrieve/pii/S0921344917303774
[18]
Yao Y L , Zhu M Y , Zhao Z , Tong B H , Fan Y Q , Hua Z S . ACS Sustainable Chemistry & Engineering, 2018,6(11):13611.
[19]
Khatri B R , Tipre D R , Dave S R . Journal of Sustainable Metallurgy, 2019,5(2):250. doi: 10.1007/s40831-019-00223-z https://doi.org/10.1007/s40831-019-00223-z
[20]
Swain B . Separation and Purification Technology, 2017,172:388 doi: 10.1016/j.seppur.2016.08.031 https://linkinghub.elsevier.com/retrieve/pii/S1383586616305652
[21]
Ordoñez J , Gago E J , Girard A . Renewable & Sustainable Energy Reviews, 2016,60:195. doi: 10.1016/j.renene.2013.05.011 https://linkinghub.elsevier.com/retrieve/pii/S0960148113002565
[22]
Barik S P , Prabaharan G , Kumar L . Journal of Cleaner Production, 2017,147:37. doi: 10.1016/j.jclepro.2017.01.095 https://linkinghub.elsevier.com/retrieve/pii/S0959652617301099
[23]
Harper G , Sommerville R , Kendrick E , Driscoll L , Slater P , Stolkin R , Walton A , Christensen P , Heidrich O , Lambert S , Abbott A , Ryder K S , Gaines L , Anderson P . Nature, 2019,575(7781):75. doi: 10.1038/s41586-019-1682-5 https://www.ncbi.nlm.nih.gov/pubmed/31695206

URL     pmid: 31695206
[24]
Zeng X , Li J , Singh N . Critical Reviews in Environmental Science and Technology, 2014,44(10):1129. doi: 10.1080/10643389.2013.763578 c7ca9e19-2af8-4036-ad96-b2d5b1313fe4 http://dx.doi.org/10.1080/10643389.2013.763578
[25]
Li J , Wang G , Xu Z . Waste Management, 2016,52:221. doi: 10.1016/j.wasman.2016.03.011 https://www.ncbi.nlm.nih.gov/pubmed/27021697

URL     pmid: 27021697
[26]
宋秀玲(Song X L), 戴书琪(Dai S Q), 徐永胜(Xu Y S), 谢娅婷(Xie Y T) . 应用化学 (Applied Chemical Industry), 2015,44(4):594.
[27]
谢英豪(Xie Y H), 欧彦楠(Ou Y N), 余海军(Yu H J), 詹园园(Zhan Y Y), 张学梅(Zhang X M), 李长东(Li C D) . 工业安全与环保 (Industrial Safety and Environmental Protection), 2017,43(9):44.
[28]
Bernardes A M , Espinosa D , Tenorio J . Journal of Power Sources, 2004,130(1/2):291. doi: 10.1016/j.jpowsour.2003.12.026 https://linkinghub.elsevier.com/retrieve/pii/S0378775303012230
[29]
Zhang G , He Y , Feng Y , Wang H , Zhang T , Xie W . Journal of Cleaner Production, 2018,199:62. doi: 10.1016/j.jclepro.2018.07.143 https://linkinghub.elsevier.com/retrieve/pii/S0959652618321280
[30]
Wang M M , Tan Q Y , Liu L L , Li J . ACS Sustainable Chemistry & Engineering, 2019,7(15):12799.
[31]
穆德颖(Mu D Y), 马文路(Ma W L), 杨威(Yang W), 戴长松(Dai C S) . 化工环保 (Environmental Protection of Chemical Industry), 2020,1:63.
[32]
Rudnik E , Knapczyk-Korczak J . Metallurgical Research & Technology, 2019,116(6):603.
[33]
Li H , Xing S , Liu Y , Li F , Guo H , Kuang G . ACS Sustainable Chemistry & Engineering, 2017,5(9):8017.
[34]
Almeida J R , Moura M N , Barrada R V , Barbieri E , Carneiro M , Ferreira S . Science of the Total Environment, 2019,685:589. doi: 10.1016/j.scitotenv.2019.05.243 https://www.ncbi.nlm.nih.gov/pubmed/31181535

URL     pmid: 31181535
[35]
Bahaloo-Horeh N , Mousavi S M . Waste Management, 2017,60:666. doi: 10.1016/j.wasman.2016.10.034 https://www.ncbi.nlm.nih.gov/pubmed/27825532

URL     pmid: 27825532
[36]
Chen X P , Guo C X , Ma H R , Li J Z , Zhou T , Cao L . Waste Management, 2018,75:459. doi: 10.1016/j.wasman.2018.01.021 https://www.ncbi.nlm.nih.gov/pubmed/29366798

URL     pmid: 29366798
[37]
Cheng Q . 2018 2nd International Conference on Power and Energy Engineering. IOP Conference Series-Earth and Environmental Science. 1922018.
[38]
He L P , Sun S Y , Song X F , Yu J G . Waste Manag., 2017,64:171. doi: 10.1016/j.wasman.2017.02.011 https://www.ncbi.nlm.nih.gov/pubmed/28325707

URL     pmid: 28325707
[39]
Chen X , Guo C , Ma H , Li J , Zhou T , Cao L . Waste Manag., 2018,75:459. doi: 10.1016/j.wasman.2018.01.021 https://www.ncbi.nlm.nih.gov/pubmed/29366798

URL     pmid: 29366798
[40]
Guan J , Li Y , Guo Y , Su R , Gao G , Song H . ACS Sustainable Chemistry & Engineering, 2016,5(1):1026.
[41]
Chen X , Ma H , Luo C , Zhou T . Journal of Hazardous Materials, 2017,326:77. doi: 10.1016/j.jhazmat.2016.12.021 https://www.ncbi.nlm.nih.gov/pubmed/27987453

URL     pmid: 27987453
[42]
Meng Q , Zhang Y , Dong P . Waste Manag., 2017,64:214. doi: 10.1016/j.wasman.2017.03.017 https://www.ncbi.nlm.nih.gov/pubmed/28325708

URL     pmid: 28325708
[43]
Li L , Bian Y , Zhang X , Yao Y , Xue Q , Fan E . Waste Manag., 2019,85:437. doi: 10.1016/j.wasman.2019.01.012 https://www.ncbi.nlm.nih.gov/pubmed/30803599

URL     pmid: 30803599
[44]
Yu M , Zhang Z , Xue F , Yang B , Guo G , Qiu J . Separation and Purification Technology, 2019,215:398. doi: 10.1016/j.seppur.2019.01.027 https://linkinghub.elsevier.com/retrieve/pii/S1383586618336876
[45]
Gao W , Song J , Cao H , Lin X , Zhang X , Zheng X . Journal of Cleaner Production, 2018,178:833. doi: 10.1016/j.jclepro.2018.01.040 https://linkinghub.elsevier.com/retrieve/pii/S0959652618300519
[46]
He L P , Sun S Y , Mu Y Y , Song X F , Yu J G . ACS Sustainable Chemistry & Engineering, 2017,5(1):714.
[47]
Zhuang L Q , Sun C H , Zhou T , Li H , Dai A Q . Waste Management, 2019,85:175. doi: 10.1016/j.wasman.2018.12.034 https://linkinghub.elsevier.com/retrieve/pii/S0956053X18307761
[48]
Li L , Fan E S , Guan Y B , Zhang X X , Xue Q , Wei L , Wu F , Chen R J . ACS Sustainable Chemistry & Engineering, 2017,5:5224.
[49]
Li L , Bian Y F , Zhang X X , Guan Y B , Fan E S , Wu F . Waste Management, 2018,71:362. doi: 10.1016/j.wasman.2017.10.028 https://www.ncbi.nlm.nih.gov/pubmed/29110940

URL     pmid: 29110940
[50]
Li L , Bian Y F , Zhang X X , Xue Q , Fan E S , Wu F . Journal of Power Sources, 2018,377:70. doi: 10.1016/j.jpowsour.2017.12.006 https://linkinghub.elsevier.com/retrieve/pii/S0378775317316026
[51]
Bahaloo-Horeh N , Mousavi S M , Baniasadi M . Journal of Cleaner Production, 2018,197:1546. doi: 10.1016/j.jclepro.2018.06.299 https://linkinghub.elsevier.com/retrieve/pii/S0959652618319589
[52]
张颢竞(Zhang H J), 程洁红(Cheng J H), 朱诚(Zhu C), 杨嘉(Yang J), 顾铭(Gu M) . 湿法冶金 (Hydrometallurgy of China), 2019,38(101):22.
[53]
Pagnanelli F , Moscardini E , Altimari P , Atia T A , Toro L . Waste Manag., 2016,51:214. doi: 10.1016/j.wasman.2015.11.003 https://www.ncbi.nlm.nih.gov/pubmed/26564258

URL     pmid: 26564258
[54]
Nayl A A , Hamed M M , Rizk S E . Journal of the Taiwan Institute of Chemical Engineers, 2015,55:119. doi: 10.1016/j.jtice.2015.04.006 https://linkinghub.elsevier.com/retrieve/pii/S1876107015001352
[55]
Peng F W , Mu D Y , Li R H , Liu Y L , Ji Y P , Dai C S . RSC Advances, 2019,9(38):21922. doi: 10.1039/C9RA02331C http://xlink.rsc.org/?DOI=C9RA02331C
[56]
Kang J , Senanayake G , Sohn J , Shin S M . Hydrometallurgy, 2010,100:168. doi: 10.1016/j.hydromet.2009.10.010 https://linkinghub.elsevier.com/retrieve/pii/S0304386X09002539
[57]
谌谷春(Shen G C), 唐新村(Tang X C), 王志敏(Wang Z M), 瞿毅(Zhai Y), 陈亮(Chen L), 肖元化(Xiao Y H) . 无机化学学报 (Chinese Journal of Inorganic Chemistry), 2011,27(10):1987. 35a8bdfe-00eb-4f12-9d53-de6f8ec641eb http://www.wjhxxb.cn/wjhxxbcn/ch/reader/view_abstract.aspx?file_no=20111016&flag=1
[58]
Peng C , Liu F P , Wang Z L , Wilson B P , Lundstrom M . Journal of Power Sources, 2019,415:179. doi: 10.1016/j.jpowsour.2019.01.072 https://linkinghub.elsevier.com/retrieve/pii/S0378775319300825
[59]
Chen L , Tang X , Zhang Y , Li L , Zeng Z , Zhang Y . Hydrometallurgy, 2011,108:80. doi: 10.1016/j.hydromet.2011.02.010 c8d228d6-72bd-4496-86e8-af9a7f51900d http://dx.doi.org/10.1016/j.hydromet.2011.02.010
[60]
Vishvakarma S , Dhawan N . Journal of Sustainable Metallurgy, 2019,5(2):204. doi: 10.1007/s40831-018-00208-4 https://doi.org/10.1007/s40831-018-00208-4
[61]
Zhang J L , Hu J T , Liu Y B , Jing Q K , Yang C , Chen Y Q , Wang C Y . ACS Sustainable Chemistry & Engineering, 2019,7(6):5626.
[62]
Yu J Z , Wang X , Zhou M Y , Wang Q . Energy & Environmental Science, 2019,12(9):2672.
[63]
Song Y , He L , Zhao Z , Liu X . Separation and Purification Technology, 2019,229:115823. doi: 10.1016/j.seppur.2019.115823 https://linkinghub.elsevier.com/retrieve/pii/S1383586619305362
[64]
Atia T A , Elia G , Elia G , Hahn R , Altimari P , Pagnanelli F . Journal of Energy Chemistry, 2019,35:220. doi: 10.1016/j.jechem.2019.03.022 https://linkinghub.elsevier.com/retrieve/pii/S2095495619302384
[65]
Huang Z , Zhu J , Qiu R J , Ruan J J , Qiu R L . Journal of Cleaner Production, 2019,229:1148. doi: 10.1016/j.jclepro.2019.05.049 https://linkinghub.elsevier.com/retrieve/pii/S0959652619315653
[66]
Gies E . Nature, 2015,526(7575):S100. doi: 10.1038/526S100a https://www.ncbi.nlm.nih.gov/pubmed/26509947

URL     pmid: 26509947
[67]
Sloop S E . US984606, 2016.
[68]
Sloop S E . US9825341, 2017.
[69]
Sloop S E , Crandon L , Allen M , Lerner M M , Zhang H , Sirisaksoontorn W , Gaines L , Kim J , Lee M . Sustainable Materials and Technologies, 2019,2:00113.
[70]
Shi Y , Chen G , Chen Z . Green Chemistry, 2018,20(4):851. doi: 10.1039/C7GC02831H http://xlink.rsc.org/?DOI=C7GC02831H
[71]
Shi Y , Chen G , Liu F , Yue X , Chen Z . ACS Energy Letters, 2018,3(7):1683.
[72]
Li X , Zhang J , Song D , Song J , Zhang L . Journal of Power Sources, 2017,345:78. doi: 10.1016/j.jpowsour.2017.01.118 https://linkinghub.elsevier.com/retrieve/pii/S0378775317301386
[73]
Dos Santos C S , Alves J C , da Silva S P , Evangelista Sita L , da Silva PRC , de Almeida L C . Journal of Hazardous Materials, 2018,362:458. https://www.ncbi.nlm.nih.gov/pubmed/30265977

URL     pmid: 30265977
[74]
Methekar R , Anwani S . Innovations in Infrastructure(Part of Advances in Intelligent Systems and Computing). Springer, 2019,757:233.
[75]
Xu B , Dong P , Duan J G , Wang D , Huang X S , Zhang Y J . Ceramics International, 2019,45(9):11792. doi: 10.1016/j.ceramint.2019.03.057 https://linkinghub.elsevier.com/retrieve/pii/S0272884219305966
[76]
Kim S K , Yang D H , Sohn J S , Jung Y C . Metals and Materials International, 2012,18(2):321. doi: 10.1007/s12540-012-2016-4 54793bb5-b20b-4294-b213-eca670811018 http://link.springer.com/article/10.1007/s12540-012-2016-4
[77]
Yang Y , Xu S , He Y . Waste Manag., 2017,64:219. doi: 10.1016/j.wasman.2017.03.018 https://www.ncbi.nlm.nih.gov/pubmed/28336333

URL     pmid: 28336333
[78]
Park S , Kim D , Ku H , Jo M , Kim S , Song J . Electrochimica Acta, 2019,296:814. doi: 10.1016/j.electacta.2018.11.001 https://linkinghub.elsevier.com/retrieve/pii/S0013468618324654
[79]
Zhang Y N , Zhang Y Y , Zhang Y J , Dong P , Meng Q , Xu M L . Journal of Alloys and Compounds, 2019,783:357. doi: 10.1016/j.jallcom.2018.12.359 https://linkinghub.elsevier.com/retrieve/pii/S0925838818349302
[80]
Chen M Y , Zheng Z F , Wang Q , Zhang Y B , Ma X T , Shen C . Scientific Reports, 2019,9:1654. doi: 10.1038/s41598-018-38238-3 https://www.ncbi.nlm.nih.gov/pubmed/30733518

URL     pmid: 30733518
[81]
Li L , Chen R J , Zhang X X , Wu F , Ge J , Xie M . Chinese Science Bulletin, 2012,57(32):4188. doi: 10.1007/s11434-012-5200-5 http://link.springer.com/10.1007/s11434-012-5200-5
[82]
Yao L , Feng Y , Xi G . RSC Advances, 2015,5(55):44107. doi: 10.1039/C4RA16390G http://xlink.rsc.org/?DOI=C4RA16390G
[83]
Li L , Bian Y , Zhang X , Guan Y , Fan E , Wu F . Waste Management, 2018,71:362. doi: 10.1016/j.wasman.2017.10.028 https://www.ncbi.nlm.nih.gov/pubmed/29110940

URL     pmid: 29110940
[84]
Wang X , Wang X , Zhang R , Wang Y , Shu H . Waste Management, 2018,78:208. doi: 10.1016/j.wasman.2018.05.029 https://www.ncbi.nlm.nih.gov/pubmed/32559906

URL     pmid: 32559906
[85]
Kim D S , Sohn J S , Lee C K , Lee J H , Han K S , Lee Y I . Journal of Power Sources, 2004,132:145. doi: 10.1016/j.jpowsour.2003.09.046 https://linkinghub.elsevier.com/retrieve/pii/S0378775303009820
[86]
赵光金(Zhao G J) . 电源技术 (Chinese Journal of Power Sources), 2020,44(1):139.
[87]
Chen Y M , Liu N N , Jie Y F , Hu F , Li Y , Wilson B P , Xi Y , Lai Y Q , Yang S H . ACS Sustainable Chemistry & Engineering, 2019,7(22):18228.
[88]
Nan J , Han D , Zuo X . Journal of Power Sources, 2005,152:278. doi: 10.1016/j.jpowsour.2005.03.134 https://linkinghub.elsevier.com/retrieve/pii/S0378775305005677
[89]
郭雅峰(Guo Y F), 夏志东(Xia Z D), 毛倩瑾(Mao Q J), 丁 涛(Ding T) . 电子元件与材料 (Electronic Components and Materials), 2007,26(5):36.
[90]
Liu W , Zhong X H , Han J W , Qin W Q , Liu T , Zhao C X , Chang Z Y . ACS Sustainable Chemistry & Engineering, 2019,7(1):1289.
[91]
Zhang G , He Y , Wang H , Feng Y , Xie W , Zhu X . ACS Sustainable Chemistry & Engineering, 2020,8(5):220.
[92]
Zhong X H , Liu W , Han J W , Jia F , Qin W Q , Liu T , Zhao C X . Waste Manag., 2019,89:83. doi: 10.1016/j.wasman.2019.03.068 https://www.ncbi.nlm.nih.gov/pubmed/31079762

URL     pmid: 31079762
[93]
Lain M J . Journal of Power Sources, 2001,97(8):736.
[94]
王楠(Wang N) . CN108365290A, 2018.
[95]
Sun L , Qiu K . Waste Manag., 2012,32(8):1575. doi: 10.1016/j.wasman.2012.03.027 https://www.ncbi.nlm.nih.gov/pubmed/22534072

URL     pmid: 22534072
[96]
Sloop S E . US8846225, 2014.
[97]
Gruetzke M , Kraft V , Weber W , Wendt C , Friesen A , Klamor S . Journal of Supercritical Fluids, 2014,94:216. doi: 10.1016/j.supflu.2014.07.014 502f1387-a100-4a63-8147-67c53de171eb http://dx.doi.org/10.1016/j.supflu.2014.07.014
[98]
Gruetzke M , Kraft V , Hoffmann B , Klamor S , Diekmann J , Kwade A . Journal of Power Sources, 2015,273:83. doi: 10.1016/j.jpowsour.2014.09.064 https://linkinghub.elsevier.com/retrieve/pii/S0378775314014724
[99]
Mönnighoff X , Friesen A , Konersmann B , Horsthemke F , Grützke M , Winter M , Nowak S . Journal of Power Sources, 2017,352:56. doi: 10.1016/j.jpowsour.2017.03.114 https://linkinghub.elsevier.com/retrieve/pii/S0378775317304202
[100]
Liu Y , Mu D , Li R , Ma Q , Zheng R , Dai C . Journal of Physical Chemistry C, 2017,121(8):4181. doi: 10.1021/acs.jpcc.6b12970 https://pubs.acs.org/doi/10.1021/acs.jpcc.6b12970
[101]
Liu Y , Mu D , Zheng R , Dai C . RSC Advances, 2014,4(97):54525. doi: 10.1039/c4ra10530c 8cfcd62f-abf5-4550-9997-b839a068dff7 http://dx.doi.org/10.1039/c4ra10530c
[1] 周天瑜, 王彦博, 赵翌琳, 李洪吉, 刘春波, 车广波. 水相识别分子印迹聚合物在样品预处理中的应用[J]. 化学进展, 2022, 34(5): 1124-1135.
[2] 王许敏, 李书萍, 何仁杰, 余创, 谢佳, 程时杰. 准固相转化机制硫正极[J]. 化学进展, 2022, 34(4): 909-925.
[3] 黄祺, 邢震宇. 锂硒电池研究进展[J]. 化学进展, 2022, 34(11): 2517-2539.
[4] 黄国勇, 董曦, 杜建委, 孙晓华, 李勃天, 叶海木. 锂离子电池高压电解液[J]. 化学进展, 2021, 33(5): 855-867.
[5] 徐昌藩, 房鑫, 湛菁, 陈佳希, 梁风. 金属-二氧化碳电池的发展:机理及关键材料[J]. 化学进展, 2020, 32(6): 836-850.
[6] 汪靖伦, 冉琴, 韩冲宇, 唐子龙, 陈启多, 秦雪英. 锂离子电池有机硅功能电解液[J]. 化学进展, 2020, 32(4): 467-480.
[7] 王官格, 张华宁, 吴彤, 刘博睿, 黄擎, 苏岳锋. 废旧锂离子电池正极材料资源化回收与再生[J]. 化学进展, 2020, 32(12): 2064-2074.
[8] 黄秉乾, 王立艳, 韦漩, 徐伟超, 孙振, 李庭刚. 低共熔溶剂预处理木质纤维素生产生物丁醇[J]. 化学进展, 2020, 32(12): 2034-2048.
[9] 刘燕晨, 黄斌, 邵奕嘉, 沈牧原, 杜丽, 廖世军. 钾离子电池及其最新研究进展[J]. 化学进展, 2019, 31(9): 1329-1340.
[10] 蒋志敏, 王莉, 沈旻, 陈慧闯, 马国强, 何向明. 锂离子电池正极界面修饰用电解液添加剂[J]. 化学进展, 2019, 31(5): 699-713.
[11] 赵云, 亢玉琼, 金玉红, 王莉, 田光宇, 何向明. 锂离子电池硅基负极及其相关材料[J]. 化学进展, 2019, 31(4): 613-630.
[12] 黄路露, 孙凯玲, 刘明瑞, 李静, 廖世军. 非水系锂空气电池碳基正极材料[J]. 化学进展, 2019, 31(10): 1406-1416.
[13] 白蕾, 王艳凤, 霍淑慧, 卢小泉. 金属-有机骨架及其功能材料在食品和水有害物质预处理中的应用[J]. 化学进展, 2019, 31(1): 191-200.
[14] 常增花, 王建涛, 武兆辉, 赵金玲, 卢世刚. 高浓度锂盐电解液[J]. 化学进展, 2018, 30(12): 1960-1974.
[15] 李亚琦, 左朋建*, 李睿楠, 马玉林, 尹鸽平*. 镁硫二次电池电解液[J]. 化学进展, 2017, 29(5): 553-562.