English
新闻公告
More
化学进展 2021, Vol. 33 Issue (5): 855-867 DOI: 10.7536/PC200634 前一篇   后一篇

所属专题: 锂离子电池

• 研究论文 •

锂离子电池高压电解液

黄国勇1, 董曦1, 杜建委1, 孙晓华1, 李勃天1, 叶海木1,*()   

  1. 1 中国石油大学(北京) 新能源与材料学院 重质油国家重点实验室 北京 102249
  • 收稿日期:2020-06-10 修回日期:2020-08-24 出版日期:2021-05-20 发布日期:2020-12-22
  • 通讯作者: 叶海木
  • 作者简介:
    * Corresponding author e-mail:
  • 基金资助:
    国家自然科学基金项目(51834008); 北京市自然科学基金项目(2202047); 特种化学电源国家重点实验室开放课题(SKL-ACPS-C-20); 中国石油大学(北京)科研基金(ZX20180416)

High-Voltage Electrolyte for Lithium-Ion Batteries

Guoyong Huang1, Xi Dong1, Jianwei Du1, Xiaohua Sun1, Botian Li1, Haimu Ye1,*()   

  1. 1 College of New Energy and Materials, State Key Laboratory of Heavy Oil, China University of Petroleum,Beijing 102249, China
  • Received:2020-06-10 Revised:2020-08-24 Online:2021-05-20 Published:2020-12-22
  • Contact: Haimu Ye
  • Supported by:
    National Natural Science Foundation of China(51834008); Beijing Municipal Natural Science Foundation(2202047); Opening Project of State Key Laboratory of Advanced Chemical Power Sources(SKL-ACPS-C-20); Science Foundation of China University of Petroleum, Beijing(ZX20180416)

锂离子电池作为一种绿色可充电电池,具有较高能量密度以及功率密度,是便携式电子产品的首选,并逐渐应用于动力汽车领域。为了更好地满足其应用需求,需要进一步提高当前锂离子电池的能量密度。不同于高压正极材料的快速发展,传统电解液在较高工作电压下容易分解,很大程度上阻碍了高能量密度锂离子电池的商业化应用。作为锂离子电池的重要组分,电解液对其多方面性能均具有重要影响,因此亟需提高电解液的工作电压以解决锂离子电池能量密度较低的问题。本文从新型有机溶剂以及高电压添加剂两方面入手,综述近年来国内外高压电解液的研究进展,介绍理论计算对于设计高压电解液的作用,并对高压电解液的发展及前景做出总结和展望。

As a kind of green rechargeable battery with high energy density and power density, lithium-ion batteries are the first choice of portable electronic products and are gradually applied in the field of power vehicles. In order to better meet application requirements, it is necessary to further improve the energy density of current lithium-ion batteries. Different from the rapid development of high-voltage anode materials, traditional electrolyte is easy to decompose under high working voltage, which greatly hinders the commercial application of high energy density lithium-ion batteries. As an important component of lithium-ion batteries, electrolyte has an important impact on performance of lithium-ion batteries in many aspects. Therefore, it is urgent to improve the working voltage of electrolyte to solve the problem of low energy density of lithium-ion batteries. In this paper, the research progress of high-voltage electrolyte at home and abroad in recent years is summarized from two aspects of new organic solvent and high-voltage additive, the effect of theoretical calculation on the design of high-voltage electrolyte is introduced, and the development and prospect of high-voltage electrolyte are summarized and forecast.

Contents

1 Introduction

2 New solvents with wide electrochemical window

2.1 Fluorinated solvents

2.2 Nitrile-based solvents

2.3 Sulfone-based solvents

2.4 Ionic liquids

3 High-voltage electrolyte additives

3.1 Phosphorous additives

3.2 Boronated additives

3.3 Benzene and heterocyclic additives

3.4 Others

4 The effect of theoretical calculation on the preparation of high-voltage electrolyte

5 Conclusion and outlook

()
图1 几种氟代溶剂的分子结构
Fig. 1 The molecular structures of some fluorinated solvents
图2 几种腈类溶剂的分子结构
Fig. 2 The molecular structures of some nitrile-based solvents
图3 几种砜类溶剂的分子结构
Fig. 3 The molecular structures of some sulfone-based solvents
图4 几种离子液体的分子结构
Fig. 4 The molecular structures of some ionic liquids
表1 不同高压溶剂的性能
Table 1 Properties of different high-voltage solvents
图5 不同添加剂在NMC/石墨电池上的成膜机理及相应负极SEI厚度和成分[58]
Fig. 5 Film formation mechanism of different additives of NMC532/AG cells, and the different thicknesses and components in the corresponding SEI on the anode[58]
图6 几种磷类添加剂的分子结构
Fig. 6 The molecular structures of some phosphorous additives
图7 几种硼类添加剂的分子结构
Fig. 7 The molecular structures of some boronated additives
图8 几种苯环及杂环添加剂的分子结构
Fig. 8 The molecular structures of some benzene and heterocyclic additives
图9 几种添加剂的分子结构
Fig. 9 The molecular structure of some additives
表2 不同高压添加剂的性能
Table 2 Properties of different high-voltage additives
Solvent Components Oxidation potential Capacity retention rate/% ref
Phosphorous TMSP LNMO/MCMB, 1 mol/L LiDFOB-SL + 5 wt% TMSP 5.0 V 80.5(0.5 C, 300 cycles) 61
TPP NMC532/graphite, 1 mol/L LiPF6-EC/EMC(3∶7, wt%) + 1 wt% TPP 6.5 V 58.3(1 C, 400 cycles,55 ℃) 62
TPPO NMC811/graphite, 1 mol/L LiPF6-EC/EMC(3∶7, wt%) + 0.5 wt% TPPO 5.4 V 92.0(0.5 C, 100 cycles) 63
TPFPP LLO/graphite, 1 mol/L LiPF6-EC/EMC(3∶7, wt%) + 0.5 wt% TPFPP 5.4 V 90.6(0.3 C, 200 cycles) 64
Boronated TIB NMC622/Li, 1 mol/L LiPF6-EC/EMC/DEC(1∶1∶1, wt%) + 1 wt% TIB >4.5 V 82.7(1 C, 300 cycles) 68
TMB LiCoO2/Li, 1 mol/L LiPF6-EC/DMC(1∶1, vol%) + 2 wt% TPFPP 5.5 V 81.0(0.1 C, 100 cycles) 69
TPFPB LNMO/Li, 1 mol/L LiPF6-EC/EMC(3∶7, wt%) + 1 wt% TPFPB 5.6 V 90.0(0.5 C, 500 cycles) 70
LiBOB LNMO/Li, 1.3 mol/L LiPF6-EC/EMC/DMC(3∶4∶3, vol%) + 1 wt% LiBOB >4.6 V 78.7(0.5 C, 80 cycles, 60 ℃) 73
LiDFOB LiCoPO4/Li, 1 mol/L LiPF6-EC/PC/EMC(1∶1∶3, vol%) + 5 wt% LiDFOB 4.9 V 69.4(0.1 C, 40 cycles) 82
Benzene
Heterocyclic
4-ABA Li1.2Ni0.2Mn0.6O2/Li, 1 mol/L LiPF6-EC/DEC(1∶1, vol%) + 0.25 wt% 4-ABA >4.5 V 94.4(0.1 C, 100 cycles) 84
BzTz LiCoO2/graphite, 1 mol/L LiPF6-EC/DMC(3∶7, vol%) + 1 wt% BzTz 5.6 V 74.0(5 C, 100 cycles) 85
3THP LNMO/Li, 1 mol/L LiPF6-EC/DMC(1∶2, vol%) + 0.25 wt% 3THP 4.9 V 91.0(1 C, 350 cycles) 86
Others VC NMC532/graphite, 1 mol/L LiPF6-EC/DMC/PC(1∶3∶1, vol%) + 2 wt% VC 4.7 V 90.7(1 C, 120 cycles) 90
PS Li-rich-NMC/Li, 1 mol/L LiPF6-EC/EMC(1∶1, wt%) + 1 wt% PS 4.6 V 88.4(0.2 C, 240 cycles) 89
SA NMC811/Li, 1 mol/L LiPF6-EC/EMC(3∶7, wt%) + 3 wt% SA 5.6 V 93.8(1 C, 400 cycles) 91
BDTT NMC532/graphite, 1 mol/L LiPF6-EC/EMC(3∶7, vol%) + 1 wt% VC+2wt% BDTT 86.0(0.5 C, 200 cycles) 92
表3 几种溶剂的HOMO与LUMO能级比较[21]
Table 3 HOMO and LUMO values of several solvents[21]
图10 (a) 溶剂和添加剂分子以及与锂离子溶剂化的有机分子HOMO能级;(b) 不同配合物的HOMO和LUMO能级与配合BODFP的溶剂分子数的关系[96]
Fig. 10 (a) The calculated HOMO values of solvents and additive molecules and the organic molecules solvated with Li ions;(b) The calculated HOMO and LUMO values of different complexes with the number of solvent molecules coordinating with the BODFP[96]
图11 TMSB和TMSB+与LiF分子的溶剂相反应能(ΔG kcal·mol-1)[97]
Fig. 11 Solvent phase reaction energies(ΔG in kcal·mol-1) of TMSB and TMSB+ with a LiF molecule[97]
图12 TPP与HF分子的溶剂相反应能[62]
Fig. 12 Solvent phase reaction energies of TPP with a HF molecule[62]
表4 各类高压溶剂的优缺点
Table 4 Advantages and disadvantages of various high-voltage solvents
[1]
Nitta N, Wu F X, Lee J T, Yushin G. Mater. Today, 2015, 18(5):252.

doi: 10.1016/j.mattod.2014.10.040     URL    
[2]
Zeng X Q, Li M, Abd El-Hady D, Alshitari W, Al-Bogami A S, Lu J, Amine K. Adv. Energy Mater., 2019, 9(27):1900161.

doi: 10.1002/aenm.v9.27     URL    
[3]
Pan H L, Han K S, Engelhard M H, Cao R G, Chen J Z, Zhang J G, Mueller K T, Shao Y Y, Liu J. Adv. Funct. Mater., 2018, 28(38):1707234.

doi: 10.1002/adfm.v28.38     URL    
[4]
Girishkumar G, McCloskey B, Luntz A C, Swanson S, Wilcke W. J. Phys. Chem. Lett., 2010, 1(14):2193.

doi: 10.1021/jz1005384     URL    
[5]
Tu S B, Chen X, Zhao X X, Cheng M R, Xiong P X, He Y W, Zhang Q, Xu Y H. Adv. Mater., 2018, 30(45):1804581.

doi: 10.1002/adma.v30.45     URL    
[6]
Zhao Z W, Huang J, Peng Z Q. Angew. Chem. Int. Ed., 2018, 57(15):3874.

doi: 10.1002/anie.201710156     URL    
[7]
Li J C, Ma C, Chi M F, Liang C D, Dudney N J. Adv. Energy Mater., 2015, 5(4):1401408.

doi: 10.1002/aenm.201401408     URL    
[8]
Santhanam R, Rambabu B. J. Power Sources, 2010, 195(13):4313.

doi: 10.1016/j.jpowsour.2010.01.016     URL    
[9]
Zhong Q, Bonakdarpour A, Zhang M, Gao Y, Dahn J R. ChemInform, 2010, 28(20):205.
[10]
Cherkashinin G, Sharath S U, Jaegermann W. Adv. Energy Mater., 2017, 7(13):1602321.

doi: 10.1002/aenm.201602321     URL    
[11]
Yim T, Woo S G, Lim S H, Cho W, Song J H, Han Y K, Kim Y J. J. Mater. Chem. A, 2015, 3(11):6157.

doi: 10.1039/C4TA06531J     URL    
[12]
Song Y M, Han J G, Park S, Lee K T, Choi N S. J. Mater. Chem. A, 2014, 2(25):9506.

doi: 10.1039/C4TA01129E     URL    
[13]
Flamme B, Rodriguez Garcia G, Weil M, Haddad M, Phansavath P, Ratovelomanana-Vidal V, Chagnes A. Green Chem., 2017, 19(8):1828.

doi: 10.1039/C7GC00252A     URL    
[14]
Choi N S, Yew K H, Lee K Y, Sung M, Kim H, Kim S S. J. Power Sources, 2006, 161(2):1254.

doi: 10.1016/j.jpowsour.2006.05.049     URL    
[15]
Mogi R, Inaba M, Jeong S K, Iriyama Y, Abe T, Ogumi Z. J. Electrochem. Soc., 2002, 149(12):A1578.

doi: 10.1149/1.1516770     URL    
[16]
Hu L B, Zhang Z C, Amine K. Electrochem. Commun., 2013, 35:76.

doi: 10.1016/j.elecom.2013.08.009     URL    
[17]
Xia L, Xia Y G, Wang C S, Hu H S, Lee S, Yu Q, Chen H C, Liu Z P. ChemElectroChem, 2015, 2(11):1707.

doi: 10.1002/celc.201500286     URL    
[18]
Smart M C, Ratnakumar B V, Whitcanack L D, Chin K B, Surampudi S, Croft H, Tice D, Staniewicz R. J. Power Sources, 2003, 119/121:349.

doi: 10.1016/S0378-7753(03)00154-X     URL    
[19]
Matsuda Y, Nakajima T, Ohzawa Y, Koh M, Yamauchi A, Kagawa M, Aoyama H. J. Fluor. Chem., 2011, 132(12):1174.

doi: 10.1016/j.jfluchem.2011.07.019     URL    
[20]
He M N, Hu L B, Xue Z, Su C C, Redfern P, Curtiss L A, Polzin B, von Cresce A, Xu K, Zhang Z C. J. Electrochem. Soc., 2015, 162(9):A1725.

doi: 10.1149/2.0231509jes     URL    
[21]
Zheng X, Liao Y, Zhang Z R, Zhu J P, Ren F C, He H J, Xiang Y X, Zheng Y Z, Yang Y. J. Energy Chem., 2020, 42:62.

doi: 10.1016/j.jechem.2019.05.023     URL    
[22]
Kim C K, Shin D S, Kim K E, Shin K, Woo J J, Kim S, Hong S Y, Choi N S. ChemElectroChem, 2016, 3(6):913.

doi: 10.1002/celc.201600025     URL    
[23]
Xia L, Yu L P, Hu D, Chen Z G. Acta Chim. Sinica, 2017, 75(12):1183.

doi: 10.6023/A17060284    
[24]
Xia L, Lee S, Jiang Y B, Li S Q, Liu Z P, Yu L P, Hu D, Wang S H, Liu Y T, Chen G Z. ChemElectroChem, 2019, 6(14):3747.

doi: 10.1002/celc.v6.14     URL    
[25]
Zhang L L, Ma Y L, Du C Y, Yin G P. Prog. Chem., 2014, 26:553.
( 张玲玲, 马玉林, 杜春雨, 尹鸽平, 化学进展, 2014, 26:553.).

doi: 10.7536/PC130816    
[26]
Ue M, Takeda M, Takehara M, Mori S. J. Electrochem. Soc., 1997, 144(8):2684.

doi: 10.1149/1.1837882     URL    
[27]
Duncan H, Salem N, Abu-Lebdeh Y. J. Electrochem. Soc., 2013, 160(6):A838.

doi: 10.1149/2.088306jes     URL    
[28]
Rohan R, Kuo T C, Lin J H, Hsu Y C, Li C C, Lee J T. J. Phys. Chem. C, 2016, 120(12):6450.

doi: 10.1021/acs.jpcc.6b00980     URL    
[29]
Abu-Lebdeh Y, Davidson I. J. Electrochem. Soc., 2009, 156(1):A60.

doi: 10.1149/1.3023084     URL    
[30]
Abu-Lebdeh Y, Davidson I. J. Power Sources, 2009, 189(1):576.

doi: 10.1016/j.jpowsour.2008.09.113     URL    
[31]
Farhat D, Lemordant D, Jacquemin J, Ghamouss F. J. Electrochem. Soc., 2019, 166(14):A3487.

doi: 10.1149/2.1261914jes    
[32]
Hilbig P, Ibing L, Winter M, Cekic-Laskovic I. Energies, 2019, 12(15):2869.

doi: 10.3390/en12152869     URL    
[33]
Zhang W L, Lan X Y, Shi Z W, Li C L. Chem. Bull., 2017, 80:1021.
( 张文林, 兰晓艳, 史紫薇, 李春利, 化学通报, 2017, 80:1021.).
[34]
Cao G Z. Sci. China Mater., 2018, 61(10):1360.

doi: 10.1007/s40843-018-9296-y     URL    
[35]
Flamme B, Rodriguez Garcia G, Weil M, Haddad M, Phansavath P, Ratovelomanana-Vidal V, Chagnes A. Green Chem., 2017, 19(8):1828.

doi: 10.1039/C7GC00252A     URL    
[36]
Xue L G, Ueno K, Lee S Y, Angell C A. J. Power Sources, 2014, 262:123.

doi: 10.1016/j.jpowsour.2014.03.099     URL    
[37]
Wu F, Zhou H, Bai Y, Wang H L, Wu C. ACS Appl. Mater. Interfaces, 2015, 7(27):15098.

doi: 10.1021/acsami.5b04477     URL    
[38]
Hess S, Wohlfahrt-Mehrens M, Wachtler M. J. Electrochem. Soc., 2015, 162(2):A3084.

doi: 10.1149/2.0121502jes     URL    
[39]
Sun X G, Angell C A. Electrochem. Commun., 2005, 7(3):261.

doi: 10.1016/j.elecom.2005.01.010     URL    
[40]
Lewandowski A, Kurc B, Swiderska-Mocek A, Kusa N. J. Power Sources, 2014, 266:132.

doi: 10.1016/j.jpowsour.2014.04.083     URL    
[41]
Alvarado J, Schroeder M A, Zhang M H, Borodin O, Gobrogge E, Olguin M, Ding M S, Gobet M, Greenbaum S, Meng Y S, Xu K. Mater. Today, 2018, 21(4):341.

doi: 10.1016/j.mattod.2018.02.005     URL    
[42]
Zhang T, Porcher W, Paillard E. J. Power Sources, 2018, 395:212.

doi: 10.1016/j.jpowsour.2018.05.077     URL    
[43]
Flamme B, Haddad M, Phansavath P, Ratovelomanana-Vidal V, Chagnes A. ChemElectroChem, 2018, 5(16):2279.

doi: 10.1002/celc.201701343     URL    
[44]
MacFarlane D R, Tachikawa N, Forsyth M, Pringle J M, Howlett P C, Elliott G D, Davis J H, Watanabe M, Simon P, Angell C A. Energy Environ. Sci., 2014, 7(1):232.

doi: 10.1039/C3EE42099J     URL    
[45]
Watanabe M, Thomas M L, Zhang S G, Ueno K, Yasuda T, Dokko K. Chem. Rev., 2017, 117(10):7190.

doi: 10.1021/acs.chemrev.6b00504     URL    
[46]
Zhang S G, Zhang J H, Zhang Y, Deng Y Q. Chem. Rev., 2017, 117(10):6755.

doi: 10.1021/acs.chemrev.6b00509     URL    
[47]
Eftekhari A, Liu Y, Chen P. J. Power Sources, 2016, 334:221.

doi: 10.1016/j.jpowsour.2016.10.025     URL    
[48]
Seki S, Kobayashi Y, Miyashiro H, Ohno Y, Mita Y, Terada N, Charest P, Guerfi A, Zaghib K. J. Phys. Chem. C, 2008, 112(42):16708.

doi: 10.1021/jp805403e     URL    
[49]
Yue Z, Dunya H, Mei X Y, McGarry C, Mandal B K. Ionics, 2019, 25(12):5979.

doi: 10.1007/s11581-019-03133-y     URL    
[50]
Bordes E, Douce L, Quitevis E L, Pádua A A H, Costa Gomes M. J. Chem. Phys., 2018, 148(19):193840.

doi: 10.1063/1.5010604     URL    
[51]
Le L T M, Vo T D, Ngo K H P, Okada S, Alloin F, Garg A, Le P M L. J. Mol. Liq., 2018, 271:769.

doi: 10.1016/j.molliq.2018.09.068     URL    
[52]
Wu C J, Rath P C, Patra J, Bresser D, Passerini S, Umesh B, Dong Q F, Lee T C, Chang J K. ACS Appl. Mater. Interfaces, 2019, 11(45):42049.

doi: 10.1021/acsami.9b12915     URL    
[53]
Zhang S J, Li J H, Jiang N Y, Li X Q, Pasupath S, Fang Y X, Liu Q B, Dang D. Chem. Asian J., 2019, 14(16):2810.
[54]
Liang F X, Yu J L, wang D, Dong L, Ma C C, Chen J H, Yang B B, Zhu C Z, Gao Y, Li C H. Electrochimica Acta, 2019, 307:83.

doi: 10.1016/j.electacta.2019.03.110     URL    
[55]
Xu K, von Cresce A. J. Mater. Chem., 2011, 21(27):9849.

doi: 10.1039/c0jm04309e     URL    
[56]
Kang X. Chem. Rev., 2014, 114(23):11503.

doi: 10.1021/cr500003w     URL    
[57]
Tsurumaki A, Branchi M, Rigano A, Poiana R, Panero S, Navarra M A. Electrochimica Acta, 2019, 315:17.

doi: 10.1016/j.electacta.2019.04.190    
[58]
Qian Y X, Hu S G, Zou X S, Deng Z H, Xu Y Q, Cao Z Z, Kang Y Y, Deng Y F, Shi Q, Xu K, Deng Y H. Energy Storage Mater., 2019, 20:208.
[59]
Hofmann A, Höweling A, Bohn N, Müller M, Binder J R, Hanemann T. ChemElectroChem, 2019, 6(20):5255.

doi: 10.1002/celc.v6.20     URL    
[60]
Xu G J, Pang C G, Chen B B, Ma J, Wang X, Chai J C, Wang Q F, An W Z, Zhou X H, Cui G L, Chen L Q. Adv. Energy Mater., 2018, 8(9):1870038.

doi: 10.1002/aenm.v8.9     URL    
[61]
Lu D, Xu G J, Hu Z W, Cui Z L, Wang X, Li J D, Huang L, Du X F, Wang Y T, Ma J, Lu X L, Lin H J, Chen C T, Nugroho A A, Tjeng L H, Cui G L. Small Methods, 2019, 3(10):1900546.

doi: 10.1002/smtd.v3.10     URL    
[62]
Zhao W M, Zheng B Z, Liu H D, Ren F C, Zhu J P, Zheng G R, Chen S J, Liu R, Yang X R, Yang Y. Nano Energy, 2019, 63:103815.

doi: 10.1016/j.nanoen.2019.06.011     URL    
[63]
Beltrop K, Klein S, Nölle R, Wilken A, Lee J J, Köster T K J, Reiter J, Tao L, Liang C D, Winter M, Qi X, Placke T. Chem. Mater., 2018, 30(8):2726.

doi: 10.1021/acs.chemmater.8b00413     URL    
[64]
Yue H Y, Dong Z Y, Yang Y G, Han Z L, Wang L, Zhang H S, Yin Y H, Zhang X G, Zhang Z T, Yang S T. J. Colloid Interface Sci., 2020, 559:236.

doi: 10.1016/j.jcis.2019.10.002     URL    
[65]
Zuo X X, Fan C J, Liu J S, Xiao X, Wu J H, Nan J M. J. Power Sources, 2013, 229:308.

doi: 10.1016/j.jpowsour.2012.12.056     URL    
[66]
Yu Q P, Chen Z T, Xing L D, Chen D R, Rong H B, Liu Q F, Li W S. Electrochimica Acta, 2015, 176:919.

doi: 10.1016/j.electacta.2015.07.058     URL    
[67]
Wang Z S, Xing L D, Li J H, Xu M Q, Li W S. J. Power Sources, 2016, 307:587.

doi: 10.1016/j.jpowsour.2015.11.091     URL    
[68]
Qin Z M, Hong S, Hong B, Duan B Y, Lai Y Q, Feng J. J. Electroanal. Chem., 2019, 854:113506.

doi: 10.1016/j.jelechem.2019.113506     URL    
[69]
Liu Q Y, Yang G J, Liu S, Han M, Wang Z X, Chen L Q. ACS Appl. Mater. Interfaces, 2019, 11(19):17435.

doi: 10.1021/acsami.9b03417     URL    
[70]
Yue H Y, Yang Y G, Xiao Y, Dong Z Y, Cheng S G, Yin Y H, Ling C, Yang W G, Yu Y H, Yang S T. J. Mater. Chem. A, 2019, 7(2):594.

doi: 10.1039/C8TA09380F     URL    
[71]
Dong Y N, Young B T, Zhang Y Z, Yoon T, Heskett D R, Hu Y F, Lucht B L. ACS Appl. Mater. Interfaces, 2017, 9(24):20467.

doi: 10.1021/acsami.7b01481     URL    
[72]
Shkrob I A, Zhu Y, Marin T W, Abraham D P. J. Phys. Chem. C, 2013, 117(45):23750.

doi: 10.1021/jp407714p     URL    
[73]
Ha S Y, Han J G, Song Y M, Chun M J, Han S I, Shin W C, Choi N S. Electrochimica Acta, 2013, 104:170.

doi: 10.1016/j.electacta.2013.04.082     URL    
[74]
Xu M Q, Zhou L, Dong Y N, Chen Y J, Garsuch A, Lucht B L. J. Electrochem. Soc., 2013, 160(11):A2005.

doi: 10.1149/2.053311jes     URL    
[75]
Pieczonka N P W, Yang L, Balogh M P, Powell B R, Chemelewski K, Manthiram A, Krachkovskiy S A, Goward G R, Liu M H, Kim J H. J. Phys. Chem. C, 2013, 117(44):22603.

doi: 10.1021/jp408717x     URL    
[76]
Larush-Asraf L, Biton M, Teller H, Zinigrad E, Aurbach D. J. Power Sources, 2007, 174(2):400.

doi: 10.1016/j.jpowsour.2007.06.171     URL    
[77]
Zhang S S. Electrochem. Commun., 2006, 8:1423.

doi: 10.1016/j.elecom.2006.06.016     URL    
[78]
Zhang S S. J. Power Sources, 2007, 163(2):713.

doi: 10.1016/j.jpowsour.2006.09.040     URL    
[79]
Liu J, Chen Z H, Busking S, Amine K. Electrochem. Commun., 2007, 9(3):475.

doi: 10.1016/j.elecom.2006.10.022     URL    
[80]
Li J, Xie K Y, Lai Y Q, Zhang Z A, Li F Q, Hao X, Chen X J, Liu Y X. J. Power Sources, 2010, 195(16):5344.

doi: 10.1016/j.jpowsour.2010.03.038     URL    
[81]
Xu M Q, Zhou L, Hao L S, Xing L D, Li W S, Lucht B L. J. Power Sources, 2011, 196(16):6794.

doi: 10.1016/j.jpowsour.2010.10.050     URL    
[82]
Hu M, Wei J P, Xing L Y, Zhou Z. J. Appl. Electrochem., 2012, 42(5):291.

doi: 10.1007/s10800-012-0398-0     URL    
[83]
Xia L, Lee S, Jiang Y B, Xia Y G, Chen G Z, Liu Z P. ACS Omega, 2017, 2(12):8741.

doi: 10.1021/acsomega.7b01196     URL    
[84]
Zhuang Y, Lei Y Q, Guan M Y, Du F H, Cao H S, Dai H, Zhou Q, Adkins J, Zheng J W. Electrochimica Acta, 2020, 331:135465.

doi: 10.1016/j.electacta.2019.135465     URL    
[85]
Hamenu L, Madzvamuse A, Mohammed L, Lee Y M, Ko J M, Bon C Y, Kim S J, Cho W I, Baek Y G, Park J. J. Ind. Eng. Chem., 2017, 53:241.

doi: 10.1016/j.jiec.2017.04.031     URL    
[86]
Tu W Q, Xia P, Li J H, Zeng L Z, Xu M Q, Xing L D, Zhang L P, Yu L, Fan W Z, Li W S. Electrochimica Acta, 2016, 208:251.

doi: 10.1016/j.electacta.2016.05.029     URL    
[87]
Xia J, Harlow J E, Petibon R, Burns J C, Chen L P, Dahn J R. J. Electrochem. Soc., 2014, 161(4):A547.

doi: 10.1149/2.049404jes     URL    
[88]
Birrozzi A, Laszczynski N, Hekmatfar M, von Zamory J, Giffin G A, Passerini S. J. Power Sources, 2016, 325:525.

doi: 10.1016/j.jpowsour.2016.06.054     URL    
[89]
Pires J, Timperman L, Castets A, Peña J S, Dumont E, Levasseur S, Dedryvère R, Tessier C, Anouti M. RSC Adv., 2015, 5(52):42088.

doi: 10.1039/C5RA05650K     URL    
[90]
Hekmatfar M, Hasa I, Eghbal R, Carvalho D V, Moretti A, Passerini S. Adv. Mater. Interfaces, 2020, 7(1):1901500.

doi: 10.1002/admi.v7.1     URL    
[91]
Shi C G, Shen C H, Peng X X, Luo C X, Shen L F, Sheng W J, Fan J J, Wang Q, Zhang S J, Xu B B, Xian J J, Wei Y M, Huang L, Li J T, Sun S G. Nano Energy, 2019, 65:104084.

doi: 10.1016/j.nanoen.2019.104084     URL    
[92]
Park E J, Kwon Y G, Yoon S, Cho K Y. J. Power Sources, 2019, 441:126668.

doi: 10.1016/j.jpowsour.2019.05.074     URL    
[93]
Xiang F Y, Wang P P, Cheng H. Energy Technol., 2020, 8(5):1901277.

doi: 10.1002/ente.v8.5     URL    
[94]
Liu Q, Xu H L, Wu F, Mu D B, Shi L L, Wang L, Bi J Y, Wu B R. ACS Appl. Energy Mater., 2019, 2(12):8878.

doi: 10.1021/acsaem.9b01917    
[95]
Wu B R, Liu Q, Mu D B, Xu H L, Wang L, Shi L L, Gai L, Wu F. RSC Adv., 2016, 6(57):51738.

doi: 10.1039/C6RA09480E     URL    
[96]
Yang T X, Zeng H N, Wang W L, Zhao X Y, Fan W Z, Wang C Y, Zuo X X, Zeng R H, Nan J M. J. Mater. Chem. A, 2019, 7(14):8292.

doi: 10.1039/C9TA01293A     URL    
[97]
Han Y K, Yoo J, Yim T. Electrochimica Acta, 2016, 215:455.

doi: 10.1016/j.electacta.2016.08.131     URL    
[98]
Zhang G, Musgrave C B. J. Phys. Chem. A, 2007, 111(8):1554.

pmid: 17279730
[1] 张晓菲, 李燊昊, 汪震, 闫健, 刘家琴, 吴玉程. 第一性原理计算应用于锂硫电池研究的评述[J]. 化学进展, 2023, 35(3): 375-389.
[2] 朱国辉, 还红先, 于大伟, 郭学益, 田庆华. 废旧锂离子电池选择性提锂[J]. 化学进展, 2023, 35(2): 287-301.
[3] 陈峥, 姜振华. 浅析高分子树脂无溶剂生产技术中的高分子凝聚态相关化学问题[J]. 化学进展, 2022, 34(7): 1576-1589.
[4] 蒋茹, 刘晨旭, 杨平, 游书力. 手性催化与合成中的一些凝聚态化学问题[J]. 化学进展, 2022, 34(7): 1537-1547.
[5] 李芳远, 李俊豪, 吴钰洁, 石凯祥, 刘全兵, 彭翃杰. “蛋黄蛋壳”结构纳米电极材料设计及在锂/钠离子/锂硫电池中的应用[J]. 化学进展, 2022, 34(6): 1369-1383.
[6] 王许敏, 李书萍, 何仁杰, 余创, 谢佳, 程时杰. 准固相转化机制硫正极[J]. 化学进展, 2022, 34(4): 909-925.
[7] 何闯, 鄂爽, 闫鸿浩, 李晓杰. 碳点在润滑领域中的应用[J]. 化学进展, 2022, 34(2): 356-369.
[8] 王才威, 杨东杰, 邱学青, 张文礼. 木质素多孔碳材料在电化学储能中的应用[J]. 化学进展, 2022, 34(2): 285-300.
[9] 黄祺, 邢震宇. 锂硒电池研究进展[J]. 化学进展, 2022, 34(11): 2517-2539.
[10] 李金涛, 张明祖, 何金林, 倪沛红. 低共熔溶剂在高分子合成中的应用[J]. 化学进展, 2022, 34(10): 2159-2172.
[11] 陈阳, 崔晓莉. 锂离子电池二氧化钛负极材料[J]. 化学进展, 2021, 33(8): 1249-1269.
[12] 陆嘉晟, 陈嘉苗, 何天贤, 赵经纬, 刘军, 霍延平. 锂电池用无机固态电解质[J]. 化学进展, 2021, 33(8): 1344-1361.
[13] 高金伙, 阮佳锋, 庞越鹏, 孙皓, 杨俊和, 郑时有. 高电压锂离子正极材料LiNi0.5Mn1.5O4高温特性[J]. 化学进展, 2021, 33(8): 1390-1403.
[14] 张长欢, 李念武, 张秀芹. 柔性锂离子电池的电极[J]. 化学进展, 2021, 33(4): 633-648.
[15] 王德超, 辛洋洋, 李晓倩, 姚东东, 郑亚萍. 多孔液体在气体捕集与分离领域的应用[J]. 化学进展, 2021, 33(10): 1874-1886.
阅读次数
全文


摘要

锂离子电池高压电解液