English
新闻公告
More
化学进展 2020, Vol. 32 Issue (6): 761-791 DOI: 10.7536/PC191116 前一篇   后一篇

所属专题: 电化学有机合成 锂离子电池

• 综述与评论 •

锂离子电池的电化学阻抗谱分析研究进展

庄全超1,**(), 杨梓1, 张蕾1, 崔艳华2,**()   

  1. 1. 中国矿业大学材料与物理学院 徐州 221116
    2. 中国工程物理研究院电子工程研究所 绵阳 621900
  • 收稿日期:2019-11-21 修回日期:2020-02-23 出版日期:2020-06-05 发布日期:2020-04-13
  • 通讯作者: 庄全超, 崔艳华
  • 作者简介:
    ** Corresponding author e-mail: (Quanchao Zhuang); (Yanhua Cui)
  • 基金资助:
    国家自然科学基金项目(U1730136); 中央高校基本科研业务费(2017XKQY062)

Research Progress on Diagnosis of Electrochemical Impedance Spectroscopy in Lithium Ion Batteries

Quanchao Zhuang1,**(), Zi Yang1, Lei Zhang1, Yanhua Cui2,**()   

  1. 1. School of Materials and Physics, China University of Mining and Technology, Xuzhou 221116, China
    2. Institute of Electronic Engineering, China Academy of Engineering Physics, Mianyang 621900, China
  • Received:2019-11-21 Revised:2020-02-23 Online:2020-06-05 Published:2020-04-13
  • Contact: Quanchao Zhuang, Yanhua Cui
  • Supported by:
    the National Natural Science Foundation of China(U1730136); the Fundamental Research Funds for the Central Universities(2017XKQY062)

锂离子电池的电化学阻抗谱(EIS)是研究电化学系统最有力的实验方法之一,在过去的20多年中,EIS 被广泛应用于锂离子电池研究和生产领域,包括研究电极界面反应机理和容量衰减机制,测定相关电极过程动力学参数和电池的健康状态、荷电状态以及电池的内阻。本文分析了锂离子电池中电极极化过程包含的3 个基本物理化学过程———电子输运、离子输运和电化学反应过程,探讨了每一基本物理化学过程包含的步骤及其EIS 谱特征,详细论述了与电子输运相关的基本物理化学过程———接触阻抗和感抗产生的机制;介绍了多孔电极理论及其在锂离子电池中的应用,阐述了基于多孔电极理论进行阻抗谱数值模拟的建模原理与方法。 综述了石墨、硅、二元3d 过渡金属氧化物、LiCoO2、尖晶石LiMn2O4、LiFePO4、尖晶石Li4Ti5O12、过渡金属氟化物材料等电极的典型阻抗谱特征和各时间常数的归属问题。最后讨论了EIS现存的问题及未来的发展方向。

Electrochemical impedance spectroscopy (EIS) is one of the most powerful experimental methods to study electrochemical systems, and has been extensively used in the analysis of lithium battery systems, especially to determine kinetic and transport parameters, understand reaction mechanisms, and to study degradation effects in past two decades. In this paper, the electrode polarization process in lithium ion batteries which includes three basic physical and chemical processes, namely, electronic transport process, ionic transport process and electrochemical reaction process, is briefly described, and the EIS characteristics of each transport and reaction stage of the three basic physical and chemical processes are discussed, especially the mechanism of inductance formation and contact impedance is expounded in detail. Moreover, porous electrode theory and its application in lithium ion batteries are reviewed, and emphasis is put upon the principle and method of numerical simulation of impedance with physics-based lithium-ion batteries models. Furthermore, the typical EIS characteristics and the attribution of each time constant of the electrode materials for lithium ion batteries such as graphite, silicon, simple binary transition metal oxides, LiCoO2, spinel LiMn2O4, LiFePO4, spinel Li4Ti5O12 and transition metal oxides are also discussed. Finally, the challenges currently faced by EIS are identified and possible directions and approaches in addressing these challenges are suggested.

Contents

1 Introduction
2 Theoretical basis for EIS analysis of lithium ion batteries

2.1 Schottky contact impedance

2.2 The mechanism of inductance formation

2.3 Porous electrode theory and numerical simulation of impedance and their applications in lithium ion batteries

3 The EIS characteristics of lithium ion battery electrodes

3.1 The EIS characteristics of lithium ion battery anode

3.2 The EIS characteristics of lithium ion battery cathode

4 Conclusion and prospect
()
图1 嵌锂过程物理机制的模型示意图
Fig. 1 Schematic presentation of model for the physical mechanism of lithium ion insertion
图2 LiCoO2电极首次脱锂过程中EIS随电极电位E升高的变化[40]
Fig. 2 Variations of impedance spectra of LiCoO2 electrode with the polarization potential in the first delithiation[40]
图3 LiCoO2电极在首次脱锂过程中,局域浓差电池模型示意图[40]
Fig. 3 Pictorial representation model for the SEI film growth and the concentration cell[40]
图4 单个嵌入化合物颗粒示意图以及描述活性材料颗粒-SEI膜和SEI膜-电解液界面等效电路图[54]
Fig. 4 Schematic diagram of intercalation particle, with a detailed picture of the particle-film and film-solution interface and an equivalent-circuit diagram of the interfaces[54]
图5 由球形颗粒组成的多孔电极结构示意图[54]
Fig. 5 Schematic diagram showing the construction of a porous electrode consisting of spherical particles[54]
图6 多孔电极中电流的分流动示意图,其中电流可以在固相和固相中流动[54]
Fig. 6 Schematic diagram showing the differential flow of current in a porous electrode in which current can flow in both the solid and solution phases[54]
图7 石墨电极首次锂离子嵌入过程中电极极化电位在3.0~0.1 V时EIS的Nyquist图[64]
Fig. 7 Nyquist plots of the graphite electrode at various potentials from 3.0 to 0.1 V during the first lithium-ion insertion[64]
图8 混合颗粒多孔电极的示意图[64]
Fig. 8 Schematic view of two general models of the porous electrode[64]
图9 圆柱孔模型;灰色区域不导电。I-流向孔的轴向电流,j-流向孔壁的局部电流
Fig. 9 Model of a cylindrical pore; gray area is not conductive. I: axial current flowing to pore, j: local current flowing to pore walls
图10 单个圆柱孔的阻抗谱图
Fig. 10 Complex plane plot of impedance of single pore
图11 均匀传输线模型示意图均匀传输线表示理想极化多孔电极的阻抗;rs和cdl分别是孔长的一个小元素的溶液电阻和双层电容
Fig. 11 Schematic diagram of uniform transmission line model. Uniform transmission line representing impedance of flooded ideally polarized porous electrode; rs and cdl are the solution resistance and double-layer capacitance, respectively, of a small element of the pore length
图12 具有孔内溶液的单位孔长度电阻rs和电极材料的单位孔长度电阻re的电容性多孔电极的均匀传输线模型
Fig. 12 Transmission line for the capacitive porous electrode with the resistance of the solution in pores, rs, and of the electrode material, re
图13 0.1、0.2、0.4、0.6 mm极片厚度石墨电极在首次放电过程的电化学阻抗谱[77]
Fig. 13 Nyquist plots of graphite electrodes with thickness of 0.1, 0.2, 0.4 and 0.6 mm in the first discharge process[77]
图14 添加2%DTD+1%MMDS添加剂的1 M LiPF6-EC:EMC电解液中LiNi1/3Co1/3Mn1/3O2正极材料首次充电过程的阻抗谱图[77]
Fig. 14 Nyquist plots of the LiNi1/3Co1/3Mn1/3O2 cathode during the first charge process in 1 M LiPF6-EC:EMC electrolyte with 2%DTD+1%MMDS[77]
图15 石墨电极首次阴极极化过程中EIS图随电极极化电位的变化[81,82]
Fig. 15 Nyquist diagram of the graphite electrode in the first lithiation[81,82]
图16 Si/C复合材料电极首次嵌锂过程中的EIS谱[91]
Fig. 16 Nyquist diagram of the Si/C electrode in the first lithiation[91]
图17 α-Fe2O3/C复合材料电极首次放电过程中EIS谱特征随电极极化电位的变化[99]
Fig. 17 Nyquist plots of the α-Fe2O3/C composite electrode at various polarization potentials during the first discharge process[99]
图18 LixNi0.75Co0.25O2电极的Nyquist图[119]
Fig. 18 Nyquist diagram of LixNi0.75Co0.25O2 electrode[119]
图19 LiCoO2电极首次脱锂过程3.6 ~ 4.3 V下的Nyquist谱及拟合图[123]
Fig. 19 Nyquist spectrum and fitting diagram of LiCoO2 electrode at various potentials from 3.6 to 4.3 V in the first delithiation[123]
图20 10 ℃下尖晶石LiMn2O4电极的首次充电过程中,EIS谱特征随电极极化电位(3.5~4.3 V)的变化[129]
Fig. 20 Nyquist plots of the spinel LiMn2O4 electrode at various potentials from 3.5 to 4.3 V during the first delithiation at 10°C[129]
图21 石墨导电剂为50 wt%的LiFePO4电极首次脱锂过程3.3~4.2 V下的Nyquist图[141]
Fig. 21 Nyquist plots of the LiFePO4 electrode with 50 weight percent (wt%) graphite as conductive agent at various potentials from 3.3 to 4.2 V during the first delithiation[141]
图22 商品化尖晶石Li4Ti5O12电极首次嵌锂过程2.8 ~ 1.0 V范围内Nyquist图随电极极化电位的变化[146]
Fig. 22 Nyquist plots of the Li4Ti5O12 electrode at a series of potentials from 2.8 to 1.0 V in the first lithiation process [146]
图23 NiF2/C复合材料电极首次放电过程中阻抗谱特征随电极极化电位(3.15~1.2 V)的变化[31]
Fig. 23 Nyquist plots of the NiF2/C electrode at various potentials from 3.15 to 1.2 V during the first discharge process[31]
[1]
Schmitt J, Maheshwari A, Heck M, Lux S, Vetter M.J. Power Sources, 2017, 353: 183.
[2]
Jalkanen K, Karppinen J, Skogström L, Laurila T, Nisula M, Vuorilehto K. Appl. Energy.., 2015, 154: 160.
[3]
Xie Y, Li J, Yuan C.Electrochim Acta, 2014, 127: 266.
[4]
Reichert M, Andre D, Rösmann A, Janssen P, Bremes H G, Sauer D U, Passerini S, Winter M.J. Power Sources, 2013, 239: 45.
[5]
Cui Y, Zuo P, Du C, Gao Y, Yang J, Cheng X, Ma Y, Yin G. Energy, 2018, 144: 647.
[6]
Berecibar M, Gandiaga I, Villarreal I, Omar N, Van Mierlo J, Van den Bossche P. Renewable Sustainable Energy Rev., 2016, 56: 572.
[7]
Xu J, Mi C C, Cao B, Cao J.J. Power Sources, 2013, 233: 277.
[8]
Maheshwari A, Heck M, Santarelli M. Electrochim Acta, 2018, 273: 335.
[9]
Zhu X, Fernández Macía L, Jaguemont J, de Hoog J, Nikolian A, Omar N, Hubin A. Electrochim Acta, 2018, 287: 10.
[10]
Vyroubal P, Maxa J, Kazda T, Vondrak J. ECS Trans., 2014, 48: 289.https://iopscience.iop.org/article/10.1149/04801.0289ecst

doi: 10.1149/04801.0289ecst     URL    
[11]
Levi M D, Aurbach D.J. Phys. Chem. B, 1997, 101: 4630.
[12]
Song J Y, Lee H H, Wang Y Y, Wan, C C.J. Power Sources, 2002, 111: 255.
[13]
Xu M, Dewald H D.Electrochim Acta, 2005, 50: 5473.
[14]
Raijmakers L H J, Lammers M J G, Notten P H L. Electrochim Acta, 2018, 259: 517.
[15]
Gruet D, Delobel B, Sicsic D, Lucas I T, Vivier V.Electrochim Acta, 2019, 295: 787.
[16]
庄全超(Zhuang Q C), 徐守冬(Xu S D), 邱祥云(Qiu X Y), 崔永丽(Cui Y L), 方亮(Fang L)化学进展(Prog. Chem.), 2010, 22: 1044.http://manu56.magtech.com.cn/progchem/CN/Y2010/V22/I06/1044
[17]
Zhuang Q C, Qiu X Y, Xu S D, Qiang Y H, Sun S G. Lithium Ion Batteries-New Developments, 2012, 189.
[18]
Choi S, Kwon T W, Coskun A, Choi J W. Science, 2017, 357: 279.https://www.ncbi.nlm.nih.gov/pubmed/28729506

URL     pmid: 28729506
[19]
Kovalenko I, Zdyrko B, Magasinski A, Hertzberg B, Milicw Z, Burtovyy R, Luzinov I, Yushin G. Science, 2011, 334: 75.https://www.ncbi.nlm.nih.gov/pubmed/21903777

doi: 10.1126/science.1209150     URL     pmid: 21903777
[20]
Yan X, Zhang Y, Zhu K, Gao Y, Zhang D, Chen G, Wang C Z, Wei Y J.J. Power Sources, 2014, 246: 95.
[21]
Takeno M, Fukutsuka T, Miyazaki K, Abe T J. Electrochem. Soc., 2017, 164: A3862.
[22]
Fukutsuka T, Koyamada K, Maruyama S, Miyazaki K, Abe T.Electrochim Acta, 2016, 199: 380.
[23]
Abraham D, Reynolds E, Schultz P, Jansen A, Dees D J. Electrochem. Soc., 2006, 153.
[24]
Wu H C, Lee E, Wu N L. Electrochem. Commun., 2010, 12: 488.
[25]
Wu H C, Lee E, Wu N L, Jow T R.J. Power Sources, 2012, 197: 301.
[26]
Nara H, Mukoyama D, Shimizu R, Momma T, Osaka T.J. Power Sources, 2019, 409: 139.https://linkinghub.elsevier.com/retrieve/pii/S0378775318309856

doi: 10.1016/j.jpowsour.2018.09.014     URL    
[27]
Sze S M. Physics of Semiconductor Devices, 2nd edNew Jersey: Wiley, 1981.
[28]
Li S S. Metal-Semiconductor Contacts, Clarendon: Oxford, 1988.
[29]
Card H C, Rhoderick E H. J. Phys. D: Appl. Phys., 1971, 4: 1589.https://iopscience.iop.org/article/10.1088/0022-3727/4/10/319

doi: 10.1088/0022-3727/4/10/319     URL    
[30]
施敏(Shi M), 伍国珏(Wu G J). 半导体器件物理(Physicsof Semiconductor Device). 西安:西安交通大学出版社(Xi'an: Xi'an Jiao Tong University Press), 2008.
[31]
Shi Y L, Shen M F, Xu S D, Qiu X Y, Jiang L, Qiang Y H, Zhuang Q C, Sun S G. Int. J. Electrochem. Sci., 2011, 6: 3399.
[32]
Chuah L S. Microelectron. Int., 2008, 25: 3.
[33]
Hampson N A, Karunathilaka S A G R, Leek R. J. Appl. Electrochem., 1980, 10: 3.
[34]
Bünzli C, Kaiser H, Novák P.J. Electrochem. Soc., 2015, 162: A218.
[35]
Huang C, Zhuang S, Tu F.J. Electrochem. Soc., 2013, 160: A376.
[36]
Hong J, Wang C, Kasavajjula U.J. Power Sources, 2006, 162: 1289.https://linkinghub.elsevier.com/retrieve/pii/S0378775306014285

doi: 10.1016/j.jpowsour.2006.08.004     URL    
[37]
Gnanaraj J S, Thompson R W, Iaconatti S N, DiCarlo J F, Abraham K MElectrochem. Solid-State Lett., 2005, 8: A128.https://iopscience.iop.org/article/10.1149/1.1850390

doi: 10.1149/1.1850390     URL    
[38]
Radvanyi E, Van Havenbergh K, Porcher W, Jouanneau S, Bridel J S, Put S, Franger S.Electrochim Acta, 2014, 137: 751.
[39]
Hoshi Y, Narita Y, Honda K, Ohtaki T, Shitanda I, Itagaki M.J. Power Sources, 2015, 288: 168.
[40]
Zhuang Q, Xu J, Fan X, Wei G, Dong Q, Jiang Y, Huang L, Sun S. Sci. China B: Chem., 2007, 50: 776.http://link.springer.com/10.1007/s11426-007-0088-7

doi: 10.1007/s11426-007-0088-7     URL    
[41]
庄全超(Zhuang Q C), 魏涛(Wei T), 魏国祯(Wei G Z), 董全峰(Dong Q F), 孙世刚(Sun S G)化学学报(Acta Chim. Sinica), 2009, 67: 2184.e3f91e9f-7835-4890-8d6e-db2391cacedchttp://sioc-journal.cn/Jwk_hxxb/CN/abstract/abstract330224.shtml
[42]
庄全超(Zhuang Q C). 厦门大学博士论文(Doctoral Dissertation of Xiamen University), 2007.
[43]
Ahn S. Electrochem Solid-State Lett., 1998, 1: 111.
[44]
Malifarge S, Delobel B, Delacourt C.J. Electrochem. Soc., 2017, 164: E3329.https://iopscience.iop.org/article/10.1149/2.0331711jes

doi: 10.1149/2.0331711jes     URL    
[45]
查全性(Cha Q X). 电极过程动力学导论(Introduction to Electrode Process Dynamics), 北京: 科学出版社(Beijing:Science Press), 2002.
[46]
吴辉煌(Wu H H). 应用电化学基础(Fundamental Knowledge of Applied Electrochemistry), 厦门:厦门大学出版社(Xiamen:Xiamen University Press), 2006.
[47]
Newman J, Tiedemann W.AlChE J., 1975, 21: 25.http://doi.wiley.com/10.1002/%28ISSN%291547-5905

doi: 10.1002/(ISSN)1547-5905     URL    
[48]
Xue N, Du W, Greszler T A, Shyy W, Martins J R R AApplied Energy, 2014, 115: 591.d7b63dfa-7ae5-430c-b303-f37ada341e7dhttp://dx.doi.org/10.1016/j.apenergy.2013.10.044

doi: 10.1016/j.apenergy.2013.10.044     URL    
[49]
韩雪冰(Han X B). 清华大学博士论文(Doctoral Dissertation of Tsinghua University), 2014.
[50]
冯毅(Feng Y). 中国科学院大学上海微系统与信息技术研究所博士论文(Doctoral Dissertation of University of Chinese Academy of Sciences-Shanghai Institute of Microsystem and Information Technology), 2008.
[51]
Doyle M, Fuller T F, Newman J.J. Electrochem. Soc., 1993, 140: 1526.https://iopscience.iop.org/article/10.1149/1.2221597

doi: 10.1149/1.2221597     URL    
[52]
Pathak M, Murbach M D, Pathak C, Jang T J, Qi Y, Schwartz D T, Subramanian V R.J. Electrochem. Soc., 2018, 165: A1324.https://iopscience.iop.org/article/10.1149/2.0831805jes

doi: 10.1149/2.0831805jes     URL    
[53]
Murbach M D, Schwartz D T.J. Electrochem. Soc., 2018, 165: A297.
[54]
Meyers J P, Doyle M, Darling R M, Newman J.J. Electrochem. Soc., 2000, 147: 2930.
[55]
Huang R W J M, Chung F, Kelder E M. J. Electrochem. Soc., 2006, 153: A1459.https://iopscience.iop.org/article/10.1149/1.2203947

doi: 10.1149/1.2203947     URL    
[56]
Sikha G, White R E.J. Electrochem. Soc., 2007, 154: A43.
[57]
Sunde S, Lervik I A, Owe L E, Tsypkin M.J. Electrochem. Soc., 2009, 156: B927.
[58]
Nilson R H, Brumbach M T, Bunker B C.J. Electrochem. Soc., 2011, 158: A678.
[59]
Grahame D C.J. Electrochem. Soc., 1952, 99: 370C.
[60]
Newman J. Electrochemical Systems, 2nd ed. Englewood Cliffs: Prentice-Hall, Inc., 1973. 468.
[61]
Levi M D, Aurbach D. J. Phys. Chem. B, 2004, 108: 11693.
[62]
Levi M D, Aurbach D.J. Power Sources, 2005, 146: 727.
[63]
Levi M D, Aurbach D. J. Phys. Chem. B, 2005, 109: 2763.https://www.ncbi.nlm.nih.gov/pubmed/16851285

doi: 10.1021/jp045788c     URL     pmid: 16851285
[64]
Xu S D, Zhuang Q C, Tian L L, Qin Y P, Fang L, Sun S G. J. Phys. Chem. C, 2011, 115: 9210.
[65]
徐守冬(Xu S D), 庄全超(Zhuang Q C), 史月丽(Shi Y L), 朱亚波(Zhu Y B), 邱祥云(Qiu X Y), 孙智(Sun Z)物理化学学报(Acta Phys-Chim. Sin.), 2011, 27: 2353.1eeafc65-fcb6-4f3f-887a-2ef90e164fe4http://www.whxb.pku.edu.cn/CN/abstract/abstract27697.shtml

doi: 10.3866/PKU.WHXB20111004     URL    
[66]
R. de Levie Delahay P, Linford H B. Advances in Electrochemistry and Electrochemical Engineering, Delahay P, Ed. New York: Interscience Publishers, 1961. Vol. 6, 329.
[67]
de Levie R. Electrochim Acta, 1963, 8: 751.
[68]
Raistrick I D. Electrochim Acta, 1990, 35: 1579.
[69]
Keiser H, Beccu K D, Gutjahr M A.Electrochim Acta, 1976, 21: 539.
[70]
Bisquert J, Garcia-Belmonte G, Fabregat-Santiago F, Compte A. Electrochem. Commun., 1999, 1: 429.
[71]
Bisquert J Garcia-Belmonte G, Fabregat-Santiago F, Ferriols N S, Bogdanoff P, Pereira E C. J. Phys. Chem. B, 2000, 104: 2287.
[72]
Bisquert J. Phys. Chem. Chem. Phys., 2000, 2: 4185.
[73]
Lasia A. Electrochemical Impedance Spectroscopy and Its Applications,Boston: Springer US, 2014. 204.
[74]
Lasia A. in Modeling and Numerical Simulations,New York: Springer, 2009. 67.
[75]
Ogihara N, Kawauchi S, Okuda C, Itou Y, Takeuchi Y, Ukyo Y J. Electrochem. Soc., 2012, 159: A1034.
[76]
Ogihara N, Itou Y, Sasaki T, Takeuchi Y. J. Phys. Chem. C, 2015, 119: 4612.
[77]
刘佳奇(Liu J Q). 中国矿业大学硕士论文(Master’s Dissertation of China University of Mining and Technology), 2016.
[78]
Martinent A, Le Gorrec B, Montella C, Yazami R.J. Power Sources, 2001, 83: 97.
[79]
Chang Y C, Sohn H J. J. Electrochem. Soc., 2000, 147: 50.
[80]
Holzapfel M, Martinent A, Alloin F, Le Gorrec B, Yazami R, Montella C J. Electroanal. Chem., 2003, 546: 41.https://linkinghub.elsevier.com/retrieve/pii/S002207280300144X

doi: 10.1016/S0022-0728(03)00144-X     URL    
[81]
Zhuang Q C, Tian L L, Wei G, Dong Q F, Sun S G. Chin. Sci. Bull., 2009, 54: 2627.
[82]
Zhuang Q C, Chen Z, Dong Q F, Jiang Y X, Huang L, Sun S G. Chin. Sci. Bull., 2006, 51: 1055.
[83]
Simon B, Boeuve J P, Broussely M.J. Power Sources, 1993, 43: 65.https://linkinghub.elsevier.com/retrieve/pii/037877539380102U

doi: 10.1016/0378-7753(93)80102-U     URL    
[84]
庄全超(Zhuang Q C),陈作锋(Chen Z F),董全峰(Dong Q F),姜艳霞(Jiang Y X),周志有(Zhou Z Y),孙世刚(Sun S G)高等学校化学学报(Chem. J. Chin. Univ.), 2005, 26: 2073.eb268ed4-c64c-4c0a-8865-8a47f023b35chttp://www.cjcu.jlu.edu.cn/CN/abstract/abstract24127.shtml
[85]
任彤(Ren T),庄全超(Zhuang Q C),郝玉婉(Hao Y W),崔永丽(Cui Y L)化学学报(Acta Chim. Sinica), 2016, 74: 833.49b8d9b8-b873-4209-81e3-54c45d2f5e24http://sioc-journal.cn/Jwk_hxxb/CN/abstract/abstract345778.shtml

doi: 10.6023/A16080394     URL    
[86]
Zhao X, Zhuang Q C, Xu S D, Xu Y X, Shi Y L, Zhang X X. Int. J. Electrochem., 2015,10: 2515.
[87]
Zhuang Q C, Li J, Tian L L.J. Power Sources, 2013, 222: 177.https://linkinghub.elsevier.com/retrieve/pii/S0378775312013389

doi: 10.1016/j.jpowsour.2012.08.050     URL    
[88]
Xu S D, Zhuang Q C, Wang J, Xu Y Q, Zhu Y B. Int. J. Electrochem. Sci., 2013, 8: 8058.
[89]
Weydanz W J, Wohlfahrt-Mehrens M, Huggins R A.J. Power Sources, 1999, 237: 81.
[90]
Holzapfel M, Buqa H, Hardwick L J, Hahn M, Wursig A, Scheifele W, Novak P, Kotz R, Veit C, Petrat F M.Electrochim Acta, 2006, 52: 973.
[91]
杜莉莉(Du L L). 中国矿业大学硕士论文(Master’s Dissertation of China University of Mining and Technology), 2012.
[92]
Di Pietro B, Patriarca M, Scrosati B.J. Power Sources, 1982, 8: 289.
[93]
Thackeray M M, David W I F, Goodenough J B. Mater. Res. Bull., 1982, 17: 785.
[94]
Morzilli S, Scrosati B.Electrochim Acta, 1985, 30: 1271.
[95]
Abraham K M, Pasquariello D M, Willstaedt E B.J. Electrochem. Soc., 1990, 137: 743.
[96]
Li H, Wang Z, Chen L, Huang X. . Adv. Mater.., 2009, 21: 4593.
[97]
Hang B T, Okada S, Yamaki J.J. Power Sources, 2008, 178: 402.
[98]
Hang B T, Doi T, Okada S, Yamaki J. J. Power Sources, 2007, 174: 493.
[99]
吴超(Wu C), 庄全超(Zhuang Q C), 徐守冬(Xu S D), 崔永丽(Cui Y L), 强颖怀(Qiang Y H), 孙智(Sun Z)化学学报(Acta Chim. Sinica), 2012, 70: 51.
[100]
Wu C, Zhang H, Wu Y X, Zhuang Q C, Tian L L, Zhang X X.Electrochim Acta, 2014, 134: 18.https://linkinghub.elsevier.com/retrieve/pii/S0013468614005799

doi: 10.1016/j.electacta.2014.03.068     URL    
[101]
赵星(Zhao X),庄全超(Zhuang Q C),邱祥云(Qiu X Y),徐守冬(Xu S D),史月丽(Shi Y L)物理化学学报(Acta Phys-Chim. Sin.), 2011, 27: 1666.35e9d369-6509-4ec2-8377-5c0c4c4f5a74http://www.whxb.pku.edu.cn/CN/abstract/abstract27588.shtml

doi: 10.3866/PKU.WHXB20110715     URL    
[102]
Zhao X, Zhuang Q C Xu S D, Xu Y X, Shi Y L, Zhang X X. J. Electrochem. Soc., 2015, 162: A1156.
[103]
Bao W, Zhuang Q, Xu S, Cui Y, Shi Y, Qiang Y. Ionics, 2013, 19: 1005.
[104]
Li F, Zhuang Q C, Qiu X Y, Sun Z. Int. J. Electrochem. Sci., 2013, 8: 3551.
[105]
Yan C, Wu, C, Zhuang Q, Tian L, Cui Y, Zhao X, Ju Z, Sun X. ChemistrySelect, 2016, 1: 3979.
[106]
Julien C M. Materials Science and Engineering: R: Reports, 2003, 40: 47.
[107]
Marianetti C A, Kotliar G, Ceder G. Nat. Mater., 2004, 3: 627.https://www.ncbi.nlm.nih.gov/pubmed/15322532

doi: 10.1038/nmat1178     URL     pmid: 15322532
[108]
Van der Ven A, Thomas J C, Xu Q, Bhattacharya J. Math. Comput. Simulat., 2010, 80: 1393.
[109]
Antolini E. Solid State Ionics, 2004, 170: 159.
[110]
Ceder G, Van der Ven A. Electrochim Acta, 1999, 45: 131.
[111]
Van der Ven A, Aydinol M K, Ceder G, Kresse G, Hafner J. Phys. Rev. B, 1998, 58: 2975.
[112]
van Elp J, Wieland J L, Eskes, H, Kuiper P, Sawatzky G A, de Groot F M F, Turner T S. Phys. Rev. B, 1991, 44: 6090.
[113]
Thomas M G S R, Bruce P G, Goodenough J B J. Electrochem. Soc., 1985, 132: 1521.
[114]
Levi M D, Salitra G, Markovsky B, Teller H, Aurbach D, Heider U, Heider L.J. Electrochem. Soc., 1999, 146: 1279.
[115]
Aurbach D, Levi M D, Levi E, Teller H, Markovsky B, Salitra G, Heider U, Heider L.J. Electrochem. Soc., 1998, 145: 3024.
[116]
Levi M D, Gamolsky K, Aurbach D, Heider U, Oesten R.Electrochim Acta, 2000, 45: 1781.https://linkinghub.elsevier.com/retrieve/pii/S0013468699004028

doi: 10.1016/S0013-4686(99)00402-8     URL    
[117]
Nobili F, Dsoke S, Croce F, Marassi R.Electrochim Acta, 2005, 50: 2307.https://linkinghub.elsevier.com/retrieve/pii/S0013468604010473

doi: 10.1016/j.electacta.2004.10.044     URL    
[118]
Nobili F, Dsoke S, Minicucci M, Croce F, Marassi R. J. Phys. Chem. B, 2006, 110: 11310.https://www.ncbi.nlm.nih.gov/pubmed/16771401

doi: 10.1021/jp0606356     URL     pmid: 16771401
[119]
Nobili F, Tossici R, Croce F, Scrosati B, Marassi R.J. Power Sources, 2001, 94: 238.
[120]
Nobili F, Tossici R, Marassi R, Croce F, Scrosati B. J. Phys. Chem. B, 2002, 106: 3909.
[121]
Croce F, Nobili F, Deptula A, Lada W, Tossici R, D’Epifanio A, Scrosati B, Marassi R. Electrochem. Commun., 1999, 1: 605.
[122]
Nobili F, Croce F, Scrosati B, Marassi R. Chem. Mater., 2001, 13: 1642.
[123]
Qiu X Y, Zhuang Q C, Zhang Q Q, Cao R, Ying P Z, Qiang Y H, Sun S G. Phys. Chem. Chem. Phys., 2012, 14: 2617.https://www.ncbi.nlm.nih.gov/pubmed/22262135

doi: 10.1039/c2cp23626e     URL     pmid: 22262135
[124]
Qiu X Y, Zhuang Q C, Zhang Q Q, Cao R, Qiang Y H, Ying P Z, Sun S G.J. Electroanal. Chem., 2013, 688: 393.
[125]
Austin I G, Mott N F. Advances in Physics, 1969, 18: 41.
[126]
Nishizawa M, Ise T, Koshika H, Itoh T, Uchida I. Chem. Mater., 2000, 12: 1367.https://pubs.acs.org/doi/10.1021/cm990696z

doi: 10.1021/cm990696z     URL    
[127]
Pistoia G, Zane D, Zhang Y J. Electrochem. Soc., 1995, 142: 2551.
[128]
Marzec J, Swierczek K, Przewoznik J, Molenda J, Simon D R, Kelder E M, Schoonman J. Solid State Ionics, 2002, 146: 225.https://linkinghub.elsevier.com/retrieve/pii/S0167273801010220

doi: 10.1016/S0167-2738(01)01022-0     URL    
[129]
Zhuang Q C, Wei T, Du L L, Cui Y L, Fang L, Sun S G. J. Phys. Chem. C, 2010, 114: 8614.https://pubs.acs.org/doi/10.1021/jp9109157

doi: 10.1021/jp9109157     URL    
[130]
Wei T, Zhuang Q C, Wu, C, Cui Y L, Fang L, Sun S G. Acta Chimica Sinica, 2010, 68.
[131]
Aurbach D, Gamolsky K, Markovsky B, Salitra G, Gofer Y, Heider U, Oesten R, Schmidt M J. Electrochem. Soc., 2000, 147: 1322.https://iopscience.iop.org/article/10.1149/1.1393357

doi: 10.1149/1.1393357     URL    
[132]
Aurbach D, Levi M D, Gamulski K, Markovsky B, Salitra G, Levi E, Heider U, Heider L, Oesten R.J. Power Sources, 1999, 81: 472.
[133]
Chung S Y, Bloking J T, Chiang Y M. Nature Materials, 2002, 1: 123.https://www.ncbi.nlm.nih.gov/pubmed/12618828

URL     pmid: 12618828
[134]
Cech O, Thomas J E, Sedlarikova M, Fedorkova A, Vondrak J, Moreno M S, Visintin A. Solid State Sciences, 2013, 20: 110.https://linkinghub.elsevier.com/retrieve/pii/S1293255813001106

doi: 10.1016/j.solidstatesciences.2013.03.017     URL    
[135]
Koltypin M, Aurbach D, Nazar L, Ellis B.J. Power Sources, 2007, 174: 1241.https://linkinghub.elsevier.com/retrieve/pii/S0378775307012657

doi: 10.1016/j.jpowsour.2007.06.045     URL    
[136]
Lu F, Zhou Y, Liu J, Pan Y.Electrochim Acta, 2011, 56: 8833.https://linkinghub.elsevier.com/retrieve/pii/S001346861101125X

doi: 10.1016/j.electacta.2011.07.079     URL    
[137]
Bajars G, Kucinskis G, Smits J, Kleperis J, Lusis A. IOP Conf.Ser.: Mater. Sci. Eng., 2012, 38: 012019.
[138]
Wang C, Hong J.Electrochem Solid-State Lett., 2007, 10: A65.https://iopscience.iop.org/article/10.1149/1.2409768

doi: 10.1149/1.2409768     URL    
[139]
Jamnik J, Gaberscek M. MRS Bull., 2009, 34: 942.https://www.cambridge.org/core/product/identifier/S0883769400004012/type/journal_article

doi: 10.1557/mrs2009.217     URL    
[140]
Gaberscek M, Moskon J, Erjavec B, Dominko R, Jamnik J. Electrochem. Solid-State Lett., 2008, 11: A170.https://iopscience.iop.org/article/10.1149/1.2964220

doi: 10.1149/1.2964220     URL    
[141]
Zhang T, Yang Z, Wang L, Zhao X, Zhuang Q C. Int. J. Electrochem. Sci., 2018, 13: 8322.
[142]
Ohzuku T, Ueda A, Yamamoto N.J. Electrochem. Soc., 1995, 142: 1431.https://iopscience.iop.org/article/10.1149/1.2048592

doi: 10.1149/1.2048592     URL    
[143]
Nakahara K, Nakajima R, Matsushima T, Majima H J. Power Sources, 2003, 117: 131.https://linkinghub.elsevier.com/retrieve/pii/S0378775303001691

doi: 10.1016/S0378-7753(03)00169-1     URL    
[144]
Belharouak I, Sun Y K, Lu W, Amine K.J. Electrochem. Soc., 2007, 154: A1083.https://iopscience.iop.org/article/10.1149/1.2783770

doi: 10.1149/1.2783770     URL    
[145]
Takami N, Inagaki H, Kishi T, Harada Y, Fujita Y, Hoshina K.J. Electrochem. Soc., 2009, 156: A128.https://iopscience.iop.org/article/10.1149/1.3043441

doi: 10.1149/1.3043441     URL    
[146]
Wu K, Yang J, Qiu X Y, Xu J M, Zhang Q Q, Jin J, Zhuang Q C.Electrochim Acta, 2013, 108: 841.https://linkinghub.elsevier.com/retrieve/pii/S0013468613013170

doi: 10.1016/j.electacta.2013.07.048     URL    
[147]
Yamakawa N, Jiang M, Grey C P. Chem. Mater., 2009, 21: 3162.
[148]
Shi Y L, Shen M F, Xu S D, Zhuang Q C, Jiang L, Qiang Y H. Solid State Ionics, 2012, 23: 222.
[149]
Shi YL, Wu N, Shen M F, Cui Y L, Jiang L, Qiang Y H Zhuang Q C. ChemElectroChem., 2014, 1: 645.75cc5cd3-8b75-4f6d-a534-515429d30b1bhttp://dx.doi.org/10.1002/celc.201300069

doi: 10.1002/celc.201300069     URL    
[150]
沈明芳(Shen M F). 中国矿业大学硕士论文(Master’s Dissertation of China University of Mining and Technology), 2013.
[151]
杜莉莉(Du L L), 庄全超(Zhuang Q C), 魏涛(Wei T), 史月丽(Shi Y L), 强颖怀(Qiang Y H), 孙世刚(Sun S G). 化学学报(Acta Chim. Sinica), 2011, 69: 2641.cb4cbedb-c476-4339-91f1-61b338b6888bhttp://sioc-journal.cn/Jwk_hxxb/CN/abstract/abstract340826.shtml
[152]
Fasmin F, Srinivasan R.J. Electrochem. Soc., 2017, 164: H443.https://iopscience.iop.org/article/10.1149/2.0391707jes

doi: 10.1149/2.0391707jes     URL    
[153]
Murbach M D, Hu V W, Schwartz D T.J. Electrochem. Soc., 2018, 165: A2758.https://iopscience.iop.org/article/10.1149/2.0711811jes

doi: 10.1149/2.0711811jes     URL    
[154]
Günter F J, Habedank J B, Schreiner D, Neuwirth T, Gilles R, Reinhart G.J. Electrochem. Soc., 2018, 165: A3249.https://iopscience.iop.org/article/10.1149/2.0081814jes

doi: 10.1149/2.0081814jes     URL    
[1] 朱国辉, 还红先, 于大伟, 郭学益, 田庆华. 废旧锂离子电池选择性提锂[J]. 化学进展, 2023, 35(2): 287-301.
[2] 李芳远, 李俊豪, 吴钰洁, 石凯祥, 刘全兵, 彭翃杰. “蛋黄蛋壳”结构纳米电极材料设计及在锂/钠离子/锂硫电池中的应用[J]. 化学进展, 2022, 34(6): 1369-1383.
[3] 王才威, 杨东杰, 邱学青, 张文礼. 木质素多孔碳材料在电化学储能中的应用[J]. 化学进展, 2022, 34(2): 285-300.
[4] 陈阳, 崔晓莉. 锂离子电池二氧化钛负极材料[J]. 化学进展, 2021, 33(8): 1249-1269.
[5] 陆嘉晟, 陈嘉苗, 何天贤, 赵经纬, 刘军, 霍延平. 锂电池用无机固态电解质[J]. 化学进展, 2021, 33(8): 1344-1361.
[6] 高金伙, 阮佳锋, 庞越鹏, 孙皓, 杨俊和, 郑时有. 高电压锂离子正极材料LiNi0.5Mn1.5O4高温特性[J]. 化学进展, 2021, 33(8): 1390-1403.
[7] 黄国勇, 董曦, 杜建委, 孙晓华, 李勃天, 叶海木. 锂离子电池高压电解液[J]. 化学进展, 2021, 33(5): 855-867.
[8] 张长欢, 李念武, 张秀芹. 柔性锂离子电池的电极[J]. 化学进展, 2021, 33(4): 633-648.
[9] 穆德颖, 刘铸, 金珊, 刘元龙, 田爽, 戴长松. 废旧锂离子电池正极材料及电解液的全过程回收及再利用[J]. 化学进展, 2020, 32(7): 950-965.
[10] 吴战, 李笑涵, 钱奥炜, 杨家喻, 张文魁, 张俊. 基于无机电致变色材料的变色储能器件[J]. 化学进展, 2020, 32(6): 792-802.
[11] 倪陈, 姜迪, 徐幼林, 唐文来. 黏弹性流体在微粒被动操控技术中的应用[J]. 化学进展, 2020, 32(5): 519-535.
[12] 汪靖伦, 冉琴, 韩冲宇, 唐子龙, 陈启多, 秦雪英. 锂离子电池有机硅功能电解液[J]. 化学进展, 2020, 32(4): 467-480.
[13] 张伟, 齐小鹏, 方升, 张健华, 史碧梦, 杨娟玉. 碳在锂离子电池硅碳复合材料中的作用[J]. 化学进展, 2020, 32(4): 454-466.
[14] 陈豪登, 徐建兴, 籍少敏, 姬文晋, 崔立峰, 霍延平. MOFs衍生金属氧化物及其复合材料在锂离子电池负极材料中的应用[J]. 化学进展, 2020, 32(2/3): 298-308.
[15] 王官格, 张华宁, 吴彤, 刘博睿, 黄擎, 苏岳锋. 废旧锂离子电池正极材料资源化回收与再生[J]. 化学进展, 2020, 32(12): 2064-2074.