English
新闻公告
More
化学进展 2021, Vol. 33 Issue (8): 1249-1269 DOI: 10.7536/PC200744   后一篇

所属专题: 锂离子电池

• 综述 •

锂离子电池二氧化钛负极材料

陈阳, 崔晓莉*()   

  1. 复旦大学材料科学系 上海 200433
  • 收稿日期:2020-07-20 修回日期:2020-10-26 出版日期:2021-08-20 发布日期:2020-12-28
  • 通讯作者: 崔晓莉
  • 基金资助:
    国家自然科学基金项目(52002076); 上海市自然科学基金项目(20ZR1403300); 上海航天科技创新基金(YF07050117F4051); 中国博士后科学基金(2021M690644)

Titanium Dioxide Anode Materials for Lithium-Ion Batteries

Yang Chen, Xiaoli Cui()   

  1. Department of Materials Science, Fudan University, Shanghai 200433, China
  • Received:2020-07-20 Revised:2020-10-26 Online:2021-08-20 Published:2020-12-28
  • Contact: Xiaoli Cui
  • Supported by:
    National Natural Science Foundation of China(52002076); Natural Science Foundation of Shanghai(20ZR1403300); Aerospace Science and Technology Innovation Fund(YF07050117F4051); China Postdoctoral Science Foundation(2021M690644)

锂离子电池是一种能量密度高、安全稳定和使用寿命长的储能器件,已广泛应用于移动电子设备和电动汽车等领域。二氧化钛(TiO2)具有无毒害、价格低廉、储量大和化学结构稳定等优点,是一种具有应用前景的负极材料。然而,TiO2的实际应用受限于自身较低电子电导率和锂离子(Li+)扩散系数。本文总结了TiO2三种常见晶型的储锂机制(锐钛矿TiO2两相固溶储锂机制、TiO2(B)本征赝电容储锂机制和金红石TiO2电位控制相变过程);针对其电子传导和Li+扩散能力的不足,详细综述了纳米结构维度设计、本征/非本征电子结构调控(元素掺杂、Ti3+自掺杂和高导电材料修饰)和异相结优化改性三方面的研究进展。最后展望了TiO2材料在锂离子电池及其他二次电池领域的发展趋势和应用前景。

Lithium-ion batteries(LIBs) have been widely used in portable electronic devices and electric vehicles owing to their characteristics of high energy density, safety, and long lifetime. Titanium dioxide(TiO2) is a promising anode material for LIBs due to the advantages of non-toxicity, low cost, abundant sources, and stable chemical structure. However, intrinsic low electronic conductivity and poor lithium-ion(Li+) diffusion have restricted its development for practical applications. In this review, we firstly systematically summarize the lithium storage mechanisms of three common TiO2 polymorphs, that is, a two-phase solid solution of anatase TiO2, intrinsic pseudo-capacitance of TiO2(B), and potential-dependent phase transition of rutile TiO2. Furthermore, to enhance the electron conduction and Li+ diffusion, the research progress of nanostructure dimensional tailoring, intrinsic/extrinsic electronic structure manipulation(elemental doping, Ti3+ self-doping, and modification of highly conductive materials), and hetero-phase junction optimization are discussed in detail. Finally, the development trend and application prospect of TiO2 anode materials for LIBs and beyond-LIBs are proposed.

Contents

1 Introduction

2 Structure and lithium storage mechanism of various TiO2 polymorphs

2.1 Crystal structure of TiO2 polymorphs

2.2 Anatase: two-phase solid solution

2.3 TiO2(B): pseudo-capacitance

2.4 Rutile: potential-dependent phase transition

3 Modification strategies of TiO2 anode materials

3.1 Nanostructure dimensional tailoring

3.2 Intrinsic/extrinsic electronic structure manipulation

3.3 Phase engineering optimization

4 Lithium-ion full batteries performance

5 Conclusions and outlook

()
表1 TiO2晶体结构及储锂活性
Table 1 Crystal structure and lithium storage of TiO2 polymorphs
图1 锐钛矿TiO2的锂化过程电位曲线(a)和循环伏安曲线(b)[41]
Fig.1 (a) The lithiation voltage profile of anatase TiO2. (b) The cyclic voltammograms of anatase TiO2. Reprinted with permission[41]. Copyright(2006) The Electrochemical Society
图2 TiO2(B)在0.1~1.2 mV·s-1扫速下的CV曲线,插图为归一化峰值电流-扫速关系图[46]
Fig.2 CV curves of TiO2(B) at scan rates of 0.1~1.2 mV·s-1. Inset displays the normalized peak current-scan rate plot. Reprinted with permission[46]. Copyright(2005) American Chemical Society
图3 金红石TiO2在初始态(a)、半锂化态(b)和全锂化态(c)的TEM图,(d)三个状态对应的晶体结构示意图[50] (e, f)金红石TiO2在1.2~3.0 V和1.0~3.0 V(vs Li/Li+)电位区间内的CV曲线[54]
Fig.3 TEM images of rutile TiO2 at initial state(a), intermediate state(b), and full lithiation(c). (d) Schematic of the crystal structure at corresponding three states. Adapted with permission[50]. Copyright(2014) The Royal Society of Chemistry. CV curves of rutile TiO2 at a potential window of(e) 1.2~3.0 V and(f) 1.0~3.0 V(vs Li/Li+). Reprinted with permission[54]. Copyright(2009) Elsevier.
图4 TiO2纳米结构的维度设计
Fig.4 The dimensional tailoring of TiO2 nanostructure
图5 碳酸氢铵辅助溶剂热无模板方法制备TiO2空心球[66]
Fig.5 Template-free synthesis of TiO2 hollow spheres by the NH4HCO3-assisted solvothermal process. Reprinted with permission[66]. Copyright(2017) Springer-Verlag GmbH Germany.
表2 TiO2空心球的制备方法及其储锂性能
Table 2 The synthesis and lithium storage performance of TiO2 hollow spheres.
图6 (a)TiO2纳米管阵列和(b)TiO2纳米管/纳米颗粒复合阵列的TEM图,(c)电子传递和Li+扩散通道示意图[113]
Fig.6 TEM images of(a) TiO2 nanotube arrays and(b) aligned TiO2 nanotube/nanoparticle heterostructures. (c) Schematic illustration of electron transport and Li+ diffusion. Adapted with permission[113]. Copyright(2014) IOP Publishing Ltd
图7 表面(a)和内部(b)填隙掺杂TiO2示意图
Fig.7 Schematic of surface(a) and interior(b) interstitial doped TiO2
图8 (a)火焰辅助热解法示意图[195],(b, c)含碳TiO2的TEM图
Fig.8 (a) Schematic illustration of the flame-assisted pyrolysis method. Adapted with permission[195]. Copyright(2015) Elsevier. (b, c) TEM images of the carbon incorporated TiO2
表3 锂离子电池用TiO2/碳复合负极材料的循环性能和倍率性能
Table 3 Cycling and rate performance of TiO2/carbon composites as anode materials in lithium-ion batteries.
图9 锐钛矿TiO2/TiO2(B)异相结电子传递和Li+扩散示意图
Fig.9 Schematic illustration of electron transport and Li+ diffusion at anatase TiO2 and TiO2(B) hetero-phase junction
表4 TiO2负极材料匹配不同正极材料的全电池性能
Table 4 Full-cell performance of TiO2 anode materials with different cathodes
[1]
Xie J, Lu Y C. Nat. Commun., 2020, 11(1): 1.

doi: 10.1038/s41467-019-13993-7     URL    
[2]
Zhao Y, Kang Y Q, Jin Y H, Wang L, Tian G Y, He X M. Prog. Chem., 2019, 31: 613.

doi: 10.7536/PC180916    
(赵云, 亢玉琼, 金玉红, 王莉, 田光宇, 何向明. 化学进展, 2019, 31: 613.).

doi: 10.7536/PC180916    
[3]
Ren W F, Zhou Y, Li J T, Huang L, Sun S G. Curr. Opin. Electrochem., 2019, 18: 46.
[4]
Fang S, Bresser D, Passerini S. Adv. Energy Mater., 2020, 10(1): 1902485.
[5]
Zhu M Y, Chen Q, Tong W J, Kan J R, Sheng W C. Prog. Chem., 2017, 29: 1366.
(朱脉勇, 陈齐, 童文杰, 阚加瑞, 盛维琛. 化学进展, 2017, 29: 1366.).

doi: 10.7536/PC170559    
[6]
Liu X, Zhao H L, Xie J Y, Wang K, Lv P P, Gao C H. Prog. Chem., 2014, 26: 1586.

doi: 10.7536/PC140456    
(刘欣, 赵海雷, 解晶莹, 王可, 吕鹏鹏, 高春辉. 化学进展, 2014, 26: 1586.).

doi: 10.7536/PC140456    
[7]
Yao F, Pham D T, Lee Y H. Chem. Sus. Chem., 2015, 8: 2284.

doi: 10.1002/cssc.v8.14     URL    
[8]
Huang C S, Li Y L. Acta Phys. Chimica. Sin., 2016, 32: 1314.
(黄长水, (李玉良. 物理化学学报, 2016, 32: 1314.).
[9]
Li Q D, Li Y, Chen Y, Wu L L, Yang C F, Cui X L. Carbon, 2018, 136: 248.

doi: 10.1016/j.carbon.2018.04.081     URL    
[10]
LEE Jordan, LI Yong, TANG Jianing, CUI Xiaoli. Acta Phys. Chimica Sin., 2018, 34(9): 1080.
(李乔丹, 李永, 唐佳宁, 崔晓莉. 物理化学学报, 2018, 34(9): 1080.)
[11]
Chen Y H, Li J F, Liu H B. Acta Phys. Chimica Sin., 2018, 34(9): 1074.
(陈彦焕, 李教富, 刘辉彪. 物理化学学报, 2018, 34(9): 1074.)
[12]
Yang C F, Li Y, Chen Y, Li Q D, Wu L L, Cui X L. Small, 2019, 15(8): 1804710.
[13]
Yang C F, Qiao C, Chen Y, Zhao X Q, Wu L L, Li Y, Jia Y, Wang S Y, Cui X L. Small, 2020, 16(10): 1907365.
[14]
Zhu G N, Wang Y G, Xia Y Y. Energy Environ. Sci., 2012, 5(5): 6652.

doi: 10.1039/c2ee03410g     URL    
[15]
Yuan T, Tan Z P, Ma C R, Yang J H, Ma Z F, Zheng S Y. Adv. Energy Mater., 2017, 7(12): 1601625.
[16]
Zhang Y X, Luo Y, Chen Y, Lu T L, Yan L Q, Cui X L, Xie J Y. ACS Appl. Mater. Interfaces, 2017, 9(20): 17145.
[17]
Cheng Z L, Hu Y, Wu K S, Xing Y S, Pan P, Jiang L Y, Mao J T, Ni C K, Wang Z X, Zhang M M, Zhang Y R, Gu X F, Zhang X W. Electrochimica Acta, 2020, 337: 135789.
[18]
Zhou N, Wu Y F, Li Y R, Yang J K, Zhou Q, Guo Y W, Xia M, Zhou Z. Appl. Surf. Sci., 2020, 500: 144026.
[19]
Li B Q, Zhao W, Yang Z, Zhang C, Dang F, Liu Y L, Jin F, Chen X. J. Power Sources, 2020, 466: 228339.
[20]
Fang R, Miao C, Mou H Y, Xiao W. J. Alloys Compd., 2020, 818: 152884.
[21]
Kim H, Kim M C, Choi S, Moon S H, Kim Y S, Park K W. Nanoscale, 2019, 11(37): 17415.
[22]
Liu S T, Li Y H, Zhang C, Chen X, Wang Z, Cui F M, Yang X J, Yue W B. Electrochimica Acta, 2020, 332: 135458.
[23]
Chen P, Wang Z X, Zhang B Y, Liu H, Liu W Q, Zhao J X, Ma Z H, Dong W Y, Su Z M. RSC Adv., 2020, 10(8): 4538.

doi: 10.1039/C9RA10185C     URL    
[24]
Dong W J, Wang D, Li X Y, Yao Y, Zhao X, Wang Z, Wang H E, Li Y, Chen L H, Qian D, Su B L. J. Energy Chem., 2020, 48: 259.

doi: 10.1016/j.jechem.2020.01.022     URL    
[25]
Opra D P, Gnedenkov S V, Sinebryukhov S L. J. Power Sources, 2019, 442: 227225.
[26]
Zhang Y Y, Tang Y X, Li W L, Chen X D. ChemNanoMat, 2016, 2(8): 764.

doi: 10.1002/cnma.v2.8     URL    
[27]
Liu Y, Yang Y. J. Nanomater., 2016, 2016: 1.
[28]
Aravindan V, Lee Y S, Yazami R, Madhavi S. Mater. Today, 2015, 18(6): 345.

doi: 10.1016/j.mattod.2015.02.015     URL    
[29]
Zhang Y X, Zhang X L, Zheng H H. Battery, 2009, 39: 106.
(张玉玺, 张晓丽, 郑洪河. 电池, 2009, 39: 106.).
[30]
Vazquez-Santos M B, Tartaj P, Morales E, Amarilla J M. Chem. Rec., 2018, 18(7/8): 1178.

doi: 10.1002/tcr.v18.7-8     URL    
[31]
Yan X D, Wang Z H, He M, Hou Z H, Xia T, Liu G, Chen X B. Energy Technol., 2015, 3(8): 801.

doi: 10.1002/ente.201500039     URL    
[32]
Aravindan V, Lee Y S, Madhavi S. Adv. Energy Mater., 2015, 5(13): 1402225.
[33]
Liu Y B, Liu M Y, Lan T B, Dou J, Wei M D. J. Mater. Chem. A, 2015, 3(37): 18882.
[34]
Zhang W F, Shen D L, Liu Z W, Wu N L, Wei M D. Chem. Commun., 2018, 54(81): 11491.
[35]
Mukai K, Yamada I. J. Electrochem. Soc., 2017, 164(14): A3590.

doi: 10.1149/2.0481714jes     URL    
[36]
Noailles L D, Johnson C S, Vaughey J T, Thackeray M M. J. Power Sources, 1999, 81/82: 259.

doi: 10.1016/S0378-7753(98)00244-4     URL    
[37]
Drozhzhin O A, Grigoriev V V, Alekseeva A M, Ryazantsev S V, Tyablikov O A, Chernyshov D, Abakumov A M, Antipov E V. Eur. J. Inorg. Chem., 2020, 2020(9): 743.

doi: 10.1002/ejic.201901153     URL    
[38]
Kanazawa R, Haruta M, Doi T, Inaba M. Electrochemistry, 2015, 83(10): 867.

doi: 10.5796/electrochemistry.83.867     URL    
[39]
Pérez-Flores J C, Hoelzel M, García-Alvarado F, Kuhn A. ChemPhysChem, 2016, 17(7): 1062.

doi: 10.1002/cphc.201501056     pmid: 26805439
[40]
Shin J Y, Samuelis D, Maier J. Adv. Funct. Mater., 2011, 21(18): 3464.

doi: 10.1002/adfm.201002527     URL    
[41]
Bing Z, Yuan Y, Wang Y, Fu Z W. Electrochem. Solid-State Lett., 2006, 9(3): A101.

doi: 10.1149/1.2159297     URL    
[42]
Lou S F, Zhao Y, Wang J J, Yin G P, Du C Y, Sun X L. Small, 2019, 15(52): 1904740.
[43]
Augustyn V, Simon P, Dunn B. Energy Environ. Sci., 2014, 7(5): 1597.

doi: 10.1039/c3ee44164d     URL    
[44]
Fehse M, Ventosa E. ChemPlusChem, 2015, 80(5): 785.

doi: 10.1002/cplu.v80.5     URL    
[45]
Aricò A S, Bruce P, Scrosati B, Tarascon J M, van Schalkwijk W. Nat. Mater., 2005, 4(5): 366.

doi: 10.1038/nmat1368     URL    
[46]
Zukalová M, Kalbáč M, Kavan L, Exnar I, Graetzel M. Chem. Mater., 2005, 17(5): 1248.
[47]
Zhang Q, Kaghazchi P. J. Phys. Chem. C, 2016, 120(39): 22163.
[48]
Lützenkirchen-Hecht D, Wagemaker M, Keil P, van Well A A, Frahm R. Surf. Sci., 2003, 538(1/2): 10.

doi: 10.1016/S0039-6028(03)00722-2     URL    
[49]
Hu Y S, Kienle L, Guo Y G, Maier J. Adv. Mater., 2006, 18(11): 1421.

doi: 10.1002/(ISSN)1521-4095     URL    
[50]
Kim S J, Noh S Y, Kargar A, Wang D L, Graham G W, Pan X Q. Chem. Commun., 2014, 50(69): 9932.

doi: 10.1039/C4CC04161E     URL    
[51]
Pan X Q, Kim S J, Zhang K, Jokisaari J R, Kargar A, Wang D, Graham G W. Microsc. Microanal., 2015, 21(S3): 1367.

doi: 10.1017/S143192761500762X     URL    
[52]
Baudrin E, Cassaignon S, Koelsch M, Jolivet J P, Dupont L, Tarascon J M. Electrochem. Commun., 2007, 9(2): 337.

doi: 10.1016/j.elecom.2006.09.022     URL    
[53]
Christensen C K, Mamakhel M A H, Balakrishna A R, Iversen B B, Chiang Y M, Ravnsbæk D B. Nanoscale, 2019, 11(25): 12347.
[54]
Kubiak P, Pfanzelt M, Geserick J, Hörmann U, Hüsing N, Kaiser U, Wohlfahrt-Mehrens M. J. Power Sources, 2009, 194(2): 1099.

doi: 10.1016/j.jpowsour.2009.06.021     URL    
[55]
Mo R W, Lei Z Y, Sun K N, Rooney D. Adv. Mater., 2014, 26(13): 2084.

doi: 10.1002/adma.201304338     URL    
[56]
Tang Y K, Liu L, Wang X C, Jia D Z, Xia W, Zhao Z B, Qiu J S. J. Power Sources, 2016, 319: 227.

doi: 10.1016/j.jpowsour.2016.04.033     URL    
[57]
Di Lupo F, Tuel A, Mendez V, Francia C, Meligrana G, Bodoardo S, Gerbaldi C. Acta Mater., 2014, 69: 60.

doi: 10.1016/j.actamat.2014.01.057     URL    
[58]
Li X J, Li M Y, Liang J C, Wang X F, Yu K F. J. Alloys Compd., 2016, 681: 471.

doi: 10.1016/j.jallcom.2016.04.086     URL    
[59]
Lan T B, Tu J X, Zou Q M, Zeng X R, Zou J Z, Huang H T, Wei M D. Electrochimica Acta, 2019, 319: 101.

doi: 10.1016/j.electacta.2019.06.152     URL    
[60]
Ren Y, Liu Z, Pourpoint F, Armstrong A R, Grey C P, Bruce P G. Angew. Chem. Int. Ed., 2012, 51(9): 2164.

doi: 10.1002/anie.201108300     URL    
[61]
Kashale A A, Dwivedi P K, Sathe B R, Shelke M V, Chang J Y, Ghule A V. ACS Omega, 2018, 3: 13676.
[62]
Li C, Zhao M, Sun C N, Jin B, Yang C C, Jiang Q. J. Power Sources, 2018, 397: 162.

doi: 10.1016/j.jpowsour.2018.07.019     URL    
[63]
El Ouardi K, Dahbi M, Hakim C, Güler M O, Akbulut H, El Bouari A, Saadoune I. J. Appl. Electrochem., 2020, 50(5): 583.

doi: 10.1007/s10800-020-01419-y     URL    
[64]
Zhang P G, Zhang C Y, Xie A J, Li C, Song J M, Shen Y H. J. Mater. Sci., 2016, 51(7): 3448.

doi: 10.1007/s10853-015-9662-0     URL    
[65]
Liu H, Li W, Shen D K, Zhao D Y, Wang G X. J. Am. Chem. Soc., 2015, 137(40): 13161.
[66]
Shi S, Chen Y, Lee J, Jiang Z Y, Cui X L. J. Solid State Electrochem., 2018, 22(3): 705.

doi: 10.1007/s10008-017-3796-8     URL    
[67]
Dylla A G, Lee J A, Stevenson K J. Langmuir, 2012, 28(5): 2897.

doi: 10.1021/la2037229     URL    
[68]
Wang S, Yu X H, Liu J X, Dong P, Zhang Y J, Zhu C Y, Zhan Z L, Zhang Y N. J. Alloys Compd., 2020, 814: 152342.
[69]
Hou J, Zhang H M, Lin J J, Qiu X Y, Zhao W S, Sun X G, Xiang Y, Zhang H, Xing G C, Zheng D H, Li G D, Tang Z Y. J. Mater. Chem. A, 2019, 7(41): 23733.
[70]
Ren H, Yu R B, Qi J, Zhang L J, Jin Q, Wang D. Adv. Mater., 2019, 31(10): 1805754.
[71]
Ren H, Yu R B, Wang J Y, Jin Q, Yang M, Mao D, Kisailus D, Zhao H J, Wang D. Nano Lett., 2014, 14(11): 6679.

doi: 10.1021/nl503378a     URL    
[72]
Zhang G Q, Wu H B, Song T, Paik U, Lou X W D. Angew. Chem., 2014, 126(46): 12798.
[73]
Zhang Y F, Zhang N, Chen J, Zhang T Z, Ge W Q, Zhang W M, Xie G, Zhang L P, He Y H. J. Alloys Compd., 2020, 815: 152511.
[74]
Salman M S, Park A R, Cha M J, Choi Y, Jang S K, Tan L H, Yoo P J, Choe W S. ACS Appl. Nano Mater., 2018, 1(2): 698.

doi: 10.1021/acsanm.7b00164     URL    
[75]
Liu R P, Shen C, Zhang C, Iocozzia J, Wang Q, Zhao S Q, Yuan K J, Lin Z Q. J. Mater. Sci., 2018, 53(11): 8499.

doi: 10.1007/s10853-018-2195-6     URL    
[76]
Long L Y, Zhang H, Ye M, Fang Z. RSC Adv., 2015, 5(16): 12224.
[77]
Wang X B, Meng Q X, Wang Y Y, Liang H J, Bai Z Y, Wang K, Lou X D, Cai B B, Yang L. Appl. Energy, 2016, 175: 488.

doi: 10.1016/j.apenergy.2016.04.066     URL    
[78]
Han C P, Yang D, Yang Y K, Jiang B B, He Y J, Wang M Y, Song A Y, He Y B, Li B H, Lin Z Q. J. Mater. Chem. A, 2015, 3(25): 13340.
[79]
Wang X B, Wang Y Y, Yang L, Wang K, Lou X D, Cai B B. J. Power Sources, 2014, 262: 72.

doi: 10.1016/j.jpowsour.2014.03.081     URL    
[80]
Yu K F, Ling M Q, Liang J C, Liang C. Chem. Phys., 2019, 517: 222.

doi: 10.1016/j.chemphys.2018.10.022     URL    
[81]
Li L, Zhang J, Zou Y L, Jiang W J, Lei W X, Ma Z S. J. Electroanal. Chem., 2019, 833: 573.

doi: 10.1016/j.jelechem.2018.10.055     URL    
[82]
Zhang W F, Zhang Y, Yu L, Wu N L, Huang H T, Wei M D. J. Mater. Chem. A, 2019, 7(8): 3842.

doi: 10.1039/C8TA10709B     URL    
[83]
Wang Y, Zhang J. Ionics, 2020, 26(3): 1159.

doi: 10.1007/s11581-019-03291-z    
[84]
Li Y H, Tang X, Zhou X J, Li L, Jiang S. Appl. Surf. Sci., 2020, 505: 144649.
[85]
Bao S J, Bao Q L, Li C M, Dong Z L. Electrochem. Commun., 2007, 9(5): 1233.

doi: 10.1016/j.elecom.2007.01.028     URL    
[86]
Giannuzzi R, Manca M de Marco L, Belviso M R, Cannavale A, Sibillano T, Giannini C, Cozzoli P D, Gigli G. ACS Appl. Mater. Interfaces, 2014, 6(3): 1933.

doi: 10.1021/am4049833     URL    
[87]
Wen W, Wu J M, Jiang Y Z, Yu S L, Bai J Q, Cao M H, Cui J. Sci. Rep., 2015, 5(1): 1.
[88]
He B L, Dong B, Li H L. Electrochem. Commun., 2007, 9(3): 425.

doi: 10.1016/j.elecom.2006.10.008     URL    
[89]
Brutti S, Gentili V, Menard H, Scrosati B, Bruce P G. Adv. Energy Mater., 2012, 2(3): 322.

doi: 10.1002/aenm.201100492     URL    
[90]
Qu J, Cloud J E, Yang Y, Ding J N, Yuan N Y. ACS Appl. Mater. Interfaces, 2014, 6(24): 22199.
[91]
Tang Y X, Zhang Y Y, Deng J Y, Wei J Q, Tam H L, Chandran B K, Dong Z L, Chen Z, Chen X D. Adv. Mater., 2014, 26(35): 6111.

doi: 10.1002/adma.201402000     URL    
[92]
Huo J H, Xue Y J, Liu Y, Guo S W. J. Electroanal. Chem., 2020, 863: 114088.
[93]
Smith K A, Savva A I, Mao K S, Wang Y Q, Tenne D A, Chen D, Liu Y Z, Barnes P, Deng C J, Butt D P, Wharry J P, Xiong H. J. Mater. Sci., 2019, 54(20): 13221.
[94]
Dong S M, Wang H B, Gu L, Zhou X H, Liu Z H, Han P X, Wang Y, Chen X, Cui G L, Chen L Q. Thin Solid Films, 2011, 519(18): 5978.

doi: 10.1016/j.tsf.2011.03.048     URL    
[95]
Wang Q W, Du X F, Chen X Z, Xu Y L. Acta Phys. Chimica. Sin., 2015, 31: 1437.
(汪倩雯, 杜显锋, 陈夕子, 徐友龙. 物理化学学报, 2015, 31: 1437.).
[96]
Chen J S, Lou X W. Electrochem. Commun., 2009, 11(12): 2332.

doi: 10.1016/j.elecom.2009.10.024     URL    
[97]
Liu S H, Jia H P, Han L, Wang J L, Gao P F, Xu D D, Yang J, Che S N. Adv. Mater., 2012, 24(24): 3201.

doi: 10.1002/adma.v24.24     URL    
[98]
Zhang W, Zhou W D, Wright J H, Kim Y N, Liu D W, Xiao X C. ACS Appl. Mater. Interfaces, 2014, 6(10): 7292.

doi: 10.1021/am500604p     URL    
[99]
Liang Y R, Xiong X, Xu Z J, Xia Q B, Wan L Y, Liu R T, Chen G X, Chou S L. Small, 2020, 16(26): 2000030.
[100]
Kim G, Jo C, Kim W, Chun J, Yoon S, Lee J, Choi W. Energy Environ. Sci., 2013, 6(10): 2932.

doi: 10.1039/c3ee41880d     URL    
[101]
Huang X K, Cui S M, Wieboldt R C, Hallac P B, Fell C R, Metz B, Jiang J W, Chen J H. Adv. Electron. Mater., 2015, 1(12): 1500256.
[102]
Zhu L P, Huang C, Liu J W, Bing N C, Jin H Y, Wang L J. Mater. Lett., 2013, 106: 348.

doi: 10.1016/j.matlet.2013.05.093     URL    
[103]
Yu X Y, Wu H B, Yu L, Ma F X, Lou X W D. Angew. Chem. Int. Ed., 2015, 54(13): 4001.

doi: 10.1002/anie.201411353     URL    
[104]
Choi T, Kim S D, Yeo S, Cheon T, Kim S H, Ahn J H, Kim H. Electrochimica Acta, 2020, 334: 135596.
[105]
Auer A, Kunze-Liebhäuser J. Small Methods, 2019, 3(8): 1800385.
[106]
Liu Y, Yan X D, Xu B Q, Lan J L, Yu Y H, Yang X P, Lin Y H, Nan C W. ACS Appl. Mater. Interfaces, 2018, 10(22): 19047.
[107]
Hu H, Yu L, Gao X H, Lin Z, Lou X W D. Energy Environ. Sci., 2015, 8(5): 1480.

doi: 10.1039/C5EE00101C     URL    
[108]
Wu N T, Qiao X G, Shen J K, Liu G L, Sun T, Wu H, Hou H S, Liu X M, Zhang Y, Ji X B. Electrochimica Acta, 2019, 299: 540.

doi: 10.1016/j.electacta.2019.01.040     URL    
[109]
Choi S I, Jung E J, Park M, Shin H S, Huh S, Won Y S. Appl. Surf. Sci., 2020, 508: 145237.
[110]
Ren H, Yu R B. Chin. Sci. Bull., 2019, 64: 3546.
(任浩, 于然波. 科学通报, 2019, 64: 3546.).
[111]
McNulty D, Carroll E, O'Dwyer C. Adv. Energy Mater., 2017, 7(12): 1602291.
[112]
Dong C, Li A, Zhang L G, Dong W J, Gao H Y, Jia X L, Chen X, Mi H T, Wang G, Chen X B. J. Power Sources, 2020, 448: 227458.
[113]
Xie K Y, Guo M, Lu W, Huang H T. Nanotechnology, 2014, 25(45): 455401.
[114]
Liu X, Sun Q, Ng A M C, Djurišić A B, Xie M H, Liao C Z, Shih K, Vranješ M, Nedeljković J M, Deng Z F. Nanotechnology, 2015, 26(42): 425403.
[115]
Li X, Wu G, Liu X, Li W, Li M. Nano Energy, 2017, 31: 1.

doi: 10.1016/j.nanoen.2016.11.002     URL    
[116]
Yin J P, Wen Z S, Yu J Y, Shi X R, Wang G Q, Yang Y E, Man J Z, Sun J C, Cui L Y. J. Alloys Compd., 2019, 808: 151728.
[117]
Zhao Y, Jin Y H, Wang L, Tian G Y, He X M. Prog. Chem., 2018, 30: 1761.

doi: 10.7536/PC171129    
(赵云, 金玉红, 王莉, 田光宇, 何向明. 化学进展, 2018, 30: 1761.).

doi: 10.7536/PC171129    
[118]
Gao R M, Jiao Z, Wang Y, Xu L Q, Xia S S, Zhang H J. Chem. Eng. J., 2016, 304: 156.

doi: 10.1016/j.cej.2016.06.051     URL    
[119]
Chen J S, Liang Y N, Li Y M, Yan Q Y, Hu X. ACS Appl. Mater. Interfaces, 2013, 5(20): 9998.

doi: 10.1021/am4022494     URL    
[120]
Qiao H, Luo Q H, Wei Q F, Cai Y B, Huang F L. Ionics, 2012, 18(7): 667.

doi: 10.1007/s11581-012-0672-5     URL    
[121]
Bai Y, Liu Z M, Zhang N Q, Sun K N. RSC Adv., 2015, 5(27): 21285.
[122]
Wang D D, Shan Z Q, Na R, Huang W L, Tian J H. J. Power Sources, 2017, 337: 11.

doi: 10.1016/j.jpowsour.2016.10.115     URL    
[123]
Jiang C H, Honma I, Kudo T, Zhou H S. Electrochem. Solid-State Lett., 2007, 10(5): A127.

doi: 10.1149/1.2712041     URL    
[124]
Dylla A G, Henkelman G, Stevenson K J. Acc. Chem. Res., 2013, 46(5): 1104.

doi: 10.1021/ar300176y     URL    
[125]
Nara H, Morita K, Mukoyama D, Yokoshima T, Momma T, Osaka T. Electrochimica Acta, 2017, 241: 323.

doi: 10.1016/j.electacta.2017.04.153     URL    
[126]
Qin G H, Ma Q Q, Wang C Y. Solid State Ion., 2014, 257: 60.

doi: 10.1016/j.ssi.2013.11.023     URL    
[127]
Wang J Y, Liao L, Li Y Z, Zhao J, Shi F F, Yan K, Pei A, Chen G X, Li G D, Lu Z Y, Cui Y. Nano Lett., 2018, 18(11): 7060.

doi: 10.1021/acs.nanolett.8b03065     URL    
[128]
Xu X Q, Wan Y X, Zuo C, Yan H P, Du M T, Xue G, Zhou D S. Mater. Today Energy, 2018, 7: 80.
[129]
Takami N, Harada Y, Iwasaki T, Hoshina K, Yoshida Y. J. Power Sources, 2015, 273: 923.

doi: 10.1016/j.jpowsour.2014.09.170     URL    
[130]
Jo C, Groombridge A S, de la Verpilliere J, Lee J T, Son Y, Liang H L, Boies A M, de Volder M. ACS Nano, 2020, 14(1): 698.

doi: 10.1021/acsnano.9b07473     URL    
[131]
Lee P K, Tan T, Wang S, Kang W P, Lee C S, Yu D Y W. ACS Appl. Mater. Interfaces, 2018, 10(40): 34132.
[132]
Xun S D, Xiang B, Minor A, Battaglia V, Liu G. J. Electrochem. Soc., 2013, 160(9): A1380.

doi: 10.1149/2.034309jes     URL    
[133]
Kashale A A, Rasal A S, Kamble G P, Ingole V H, Dwivedi P K, Rajoba S J, Jadhav L D, Ling Y C, Chang J Y, Ghule A V. Compos. B: Eng., 2019, 167: 44.

doi: 10.1016/j.compositesb.2018.12.001     URL    
[134]
Ata-Ur-rehman , Ali G, Abbas S M, Iftikhar M, Zahid M, Yaseen S, Saleem S, Haider S, Arshad M, Badshah A. Chem. Eng. J., 2019, 375: 122021.
[135]
Ali Z, Cha S N, Sohn J I, Shakir I, Yan C Z, Kim J M, Kang D J. J. Mater. Chem., 2012, 22(34): 17625.
[136]
Zhang C, Qi Y C, Liu S T, Men Y, Cui F M. Mater. Chem. Phys., 2019, 237: 121822.
[137]
Xu H, Zeng M, Li J, Li F Y. Nano, 2016, 11(1): 1650006.
[138]
Bi Z H, Paranthaman M P, Guo B K, Unocic R R, Meyer H M, Bridges C A, Sun X G, Dai S. J. Mater. Chem. A, 2014, 2(6): 1818.

doi: 10.1039/C3TA14535B     URL    
[139]
Grosjean R, Fehse M, Pigeot-Remy S, Stievano L, Monconduit L, Cassaignon S. J. Power Sources, 2015, 278: 1.

doi: 10.1016/j.jpowsour.2014.12.032     URL    
[140]
Fang J, Liu W W, Yu F, Qin F R, Wang M R, Zhang K, Lai Y Q. RSC Adv., 2016, 6(74): 70133.
[141]
Abhilash K P, Christopher Selvin P, Nalini B, Jose R, Vijayaraghavan R, Chowdari B V R, Adams S, Reddy M V. J. Alloys Compd., 2017, 710: 205.

doi: 10.1016/j.jallcom.2017.03.094     URL    
[142]
Wang Y L, Xu M, Peng Z, Zheng G F. J. Mater. Chem. A, 2013, 1(42): 13222.
[143]
Lübke M, Johnson I, Makwana N M, Brett D, Shearing P, Liu Z L, Darr J A. J. Power Sources, 2015, 294: 94.

doi: 10.1016/j.jpowsour.2015.06.039     URL    
[144]
Jiao S L, Lian G, Jing L Y, Xu Z H, Wang Q L, Cui D L, Wong C P. ACS Omega, 2018, 3(1): 1329.

doi: 10.1021/acsomega.7b01340     URL    
[145]
Reddy M V, Sharma N, Adams S, Rao R P, Peterson V K, Chowdari B V R. RSC Adv., 2015, 5(37): 29535.
[146]
Opra D P, Gnedenkov S V, Sinebryukhov S A, Ustinov A Y, Podgorbunsky A B, Sokolov A A. Russ. J. Inorg. Chem., 2019, 64(5): 680.

doi: 10.1134/S0036023619050140     URL    
[147]
Yang H, Lan C K, Duh J G. J. Power Sources, 2015, 288: 401.

doi: 10.1016/j.jpowsour.2015.04.074     URL    
[148]
Zhao F, Wang B F, Tang Y F, Ge H H, Huang Z G, Liu H K. J. Mater. Chem. A, 2015, 3(45): 22969.
[149]
Usui H, Domi Y, Yoshioka S, Kojima K, Sakaguchi H. ACS Sustainable Chem. Eng., 2016, 4(12): 6695.

doi: 10.1021/acssuschemeng.6b01595     URL    
[150]
Lan T B, Zhang W F, Wu N L, Wei M D. Chem. Eur. J., 2017, 23(21): 5059.

doi: 10.1002/chem.201605115     URL    
[151]
Xia Y, Rong C, Yang X, Lu F, Kuang X. Front. Mater., 2019, 6: 1.

doi: 10.3389/fmats.2019.00001     URL    
[152]
Cao M L, Tao L M, Lv X, Bu Y, Li M, Yin H, Zhu M Q, Zhong Z C, Shen Y, Wang M K. J. Power Sources, 2018, 396: 327.

doi: 10.1016/j.jpowsour.2018.06.012     URL    
[153]
Tian H J, Xin F X, Tan X J, Han W Q. J. Mater. Chem. A, 2014, 2(27): 10599.
[154]
Jung H G, Yoon C S, Prakash J, Sun Y K. J. Phys. Chem. C, 2009, 113(50): 21258.
[155]
Zhang Y Q, Du F, Yan X, Jin Y M, Zhu K, Wang X, Li H M, Chen G, Wang C Z, Wei Y J. ACS Appl. Mater. Interfaces, 2014, 6(6): 4458.

doi: 10.1021/am5002053     URL    
[156]
Zhang Y Q, Fu Q, Xu Q L, Yan X, Zhang R Y, Guo Z D, Du F, Wei Y J, Zhang D, Chen G. Nanoscale, 2015, 7(28): 12215.
[157]
Choi W H, Lee C H, Kim H E, Lee S U, Bang J H. Nano Energy, 2020, 74: 104829.
[158]
Gao Y P, Wang C, Hu P F, He F Y, Wu M H, Zhang H J. J. Alloys Compd., 2019, 787: 944.

doi: 10.1016/j.jallcom.2019.02.169     URL    
[159]
Gao D L, Wang Y L, Kong J, Huo F, Wang S F, He H Y, Zhang S J. Phys. Chem. Chem. Phys., 2019, 21(32): 17985.
[160]
Lai C, Yuan X C, Cao X L, Qiao Q Q, Wang Y L, Ye S H. Electrochem. Solid-State Lett., 2012, 15(5): A65.

doi: 10.1149/2.023205esl     URL    
[161]
Sun S M, Wu J, Watanabe M, Akbay T, Ishihara T. J. Phys. Chem. Lett., 2019, 10(11): 2998.

doi: 10.1021/acs.jpclett.9b01032     URL    
[162]
Chen S C, Wang H, Kang Z X, Jin S, Zhang X D, Zheng X S, Qi Z M, Zhu J F, Pan B C, Xie Y. Nat. Commun., 2019, 10(1): 1.

doi: 10.1038/s41467-018-07882-8     URL    
[163]
Wu Z J, Guo K, Cao S, Yao W Q, Piao L Y. Nano Res., 2020, 13(2): 551.

doi: 10.1007/s12274-020-2650-y     URL    
[164]
Feng H F, Xu Z F, Ren L, Liu C, Zhuang J C, Hu Z P, Xu X, Chen J, Wang J O, Hao W C, Du Y, Dou S X. ACS Catal., 2018, 8(5): 4288.

doi: 10.1021/acscatal.8b00719     URL    
[165]
Li H Y, Ren F Z, Liu J F, Wang Q L, Li Q Y, Yang J J, Wang Y X. Appl. Catal. B: Environ., 2015, 172/173: 37.

doi: 10.1016/j.apcatb.2015.02.008     URL    
[166]
Li Y H, Wu X P, Liu C, Wang M, Song B T, Yu G Y, Yang G, Hou W H, Gong X Q, Peng L M. Acta Phys. Chimica Sin., 2020, 36(4): 92.
(李玉红, 吴新平, 刘聪, 王萌, 宋本腾, 郁桂云, 杨刚, 侯文华, 龚学庆, 彭路明. 物理化学学报, 2020, 36(4): 92.)
[167]
Wang X T, Li Y M, Liu X, Gao S M, Huang B B, Dai Y. Chin. J. Catal., 2015, 36(3): 389.

doi: 10.1016/S1872-2067(14)60234-5     URL    
[168]
Pinna N, Hochepied J F, Niederberger M, Gregg M. Phys. Chem. Chem. Phys., 2009, 11: 3607.

doi: 10.1039/b905768d     pmid: 19421468
[169]
Zheng J, Ji G B, Zhang P, Cao X Z, Wang B Y, Yu L H, Xu Z C. Chem. Eur. J., 2015, 21(50): 18309.
[170]
Chen J, Song W X, Hou H S, Zhang Y, Jing M J, Jia X N, Ji X B. Adv. Funct. Mater., 2015, 25(43): 6793.

doi: 10.1002/adfm.201502978     URL    
[171]
Kang S H, Jo Y N, Prasanna K, Santhoshkumar P, Joe Y C, Vediappan K, Gnanamuthu R, Lee C W. J. Ind. Eng. Chem., 2019, 71: 177.

doi: 10.1016/j.jiec.2018.11.020     URL    
[172]
Lee J, Cui X L. Mater. Lett., 2016, 175: 114.

doi: 10.1016/j.matlet.2016.04.001     URL    
[173]
Eom J Y, Lim S J, Lee S M, Ryu W H, Kwon H S. J. Mater. Chem. A, 2015, 3(21): 11183.
[174]
Zhang Z H, Zhou Z F, Nie S, Wang H H, Peng H R, Li G C, Chen K Z. J. Power Sources, 2014, 267: 388.

doi: 10.1016/j.jpowsour.2014.05.121     URL    
[175]
Byeon A, Boota M, Beidaghi M, Aken K V, Lee J W, Gogotsi Y. Electrochem. Commun., 2015, 60: 199.

doi: 10.1016/j.elecom.2015.09.004     URL    
[176]
Zheng J, Liu L, Ji G B, Yang Q F, Zheng L R, Zhang J. ACS Appl. Mater. Interfaces, 2016, 8(31): 20074.
[177]
Yang Y C, Shi W, Liao S J, Zhang R H, Leng S L. J. Alloys Compd., 2018, 746: 619.

doi: 10.1016/j.jallcom.2018.02.309     URL    
[178]
Zhang M M, Wang C R, Li H, Wang J L, Li M, Chen X S. Electrochimica Acta, 2019, 326: 134972.
[179]
Sun L J, Liu W, Wu R T, Cui Y P, Zhang Y, Du Y X, Liu S, Liu S, Wang H L. Nanoscale, 2020, 12(2): 746.

doi: 10.1039/C9NR09042H     URL    
[180]
Qiu J X, Li S, Gray E, Liu H W, Gu Q F, Sun C H, Lai C, Zhao H J, Zhang S Q. J. Phys. Chem. C, 2014, 118(17): 8824.

doi: 10.1021/jp501819p     URL    
[181]
Zheng J, Liu Y S, Ji G B, Zhang P, Cao X Z, Wang B Y, Zhang C H, Zhou X G, Zhu Y, Shi D N. ACS Appl. Mater. Interfaces, 2015, 7(42): 23431.
[182]
Lee T Y, Lee C Y, Chiu H T. ACS Omega, 2019, 4(14): 16217.
[183]
Hao Z K, Chen Q, Dai W R, Ren Y J, Zhou Y, Yang J L, Xie S J, Shen Y B, Wu J H, Chen W, Xu G Q. Adv. Energy Mater., 2020, 10(10): 1903107.
[184]
Lee J, Li Z, Zhu L Z, Xie S H, Cui X L. Appl. Catal. B: Environ., 2018, 224: 715.

doi: 10.1016/j.apcatb.2017.10.057     URL    
[185]
Liu Y, Liu C J, Li J L. J. Mater. Chem. A, 2014, 2(38): 15746.
[186]
Zhang W F, Xu T, Liu Z W, Wu N L, Wei M D. Chem. Commun., 2018, 54(12): 1413.

doi: 10.1039/C7CC09406J     URL    
[187]
Chen X, Zhao D X, Liu K W, Wang C R, Liu L, Li B H, Zhang Z Z, Shen D Z. ACS Appl. Mater. Interfaces, 2015, 7(29): 16070.
[188]
Fan C Y, Chen C, Wang J, Fu X X, Ren Z M, Qian G D, Wang Z Y. Sci. Rep., 2015, 5(1): 1.
[189]
Zhang J W, Zhang L L, Zhang J W, Zhang Z J, Wu Z S. J. Alloys Compd., 2015, 642: 28.

doi: 10.1016/j.jallcom.2015.04.096     URL    
[190]
Wang Y, Li N, Hou C X, He B, Li J J, Dang F, Wang J, Fan Y Q. Ceram. Int., 2020, 46(7): 9119.

doi: 10.1016/j.ceramint.2019.12.161     URL    
[191]
Liu Q, Hou J G, Xu C X, Chen Z Z, Qin R, Liu H. Chem. Eng. J., 2020, 381: 122649.
[192]
Li Y X, Zhu S L, Inoue A, Liang Y Q, Chang C T, Luo S Y, Cui Z D. Ionics, 2020, 26(9): 4363.

doi: 10.1007/s11581-020-03588-4     URL    
[193]
Xu H, Wang W J, Yu G X, Qin L G, Jiang Y Q, Ren L H, Chen J. ACS Appl. Energy Mater., 2020, 3(5): 4738.

doi: 10.1021/acsaem.0c00370     URL    
[194]
Yuan Y F, Chen F, Cai G C, Yin S M, Zhu M, Wang L N, Yang J L, Guo S Y. Electrochimica Acta, 2019, 296: 669.

doi: 10.1016/j.electacta.2018.11.098     URL    
[195]
Chen Y, Ma X Q, Cui X L, Jiang Z Y. J. Power Sources, 2016, 302: 233.

doi: 10.1016/j.jpowsour.2015.10.057     URL    
[196]
Shen X Y, Chen M, Hong X H, Wang W D, Qiao Z K, Chen J, Fan S J, Yu J X, Tang C J. Chem. Phys., 2020, 530: 110639.
[197]
Tian Y X, Xu Y H, Wang Y, Zhang J H, Yang H Z, Sun T. J. Phys. Chem. Solids, 2020, 143: 109524.
[198]
Chen Y, Song C Y, Li Z F, Cui X L, Jiang Z Y. Mater. Lett., 2017, 187: 114.

doi: 10.1016/j.matlet.2016.10.086     URL    
[199]
Guan Z, Wang X X, Li T T, Zhu Q Z, Jia M Q, Xu B. J. Mater. Sci. Technol., 2019, 35(9): 1977.
[200]
Chen Y, Li Z F, Shi S, Song C Y, Jiang Z Y, Cui X L. J. Mater. Sci.: Mater. Electron., 2017, 28(13): 9206.
[201]
Luo H, Chen Y X, Huang J, Chen Z L, Xia X H, Li J, Liu H B. Nanoscale, 2020, 12(13): 7366.

doi: 10.1039/C9NR10750A     URL    
[202]
Xie S M, Yao T H, Wang J K, Alsulami H, Kutbi M A, Wang H K. ChemistrySelect, 2020, 5(11): 3225.

doi: 10.1002/slct.v5.11     URL    
[203]
Liu X H, Zhao L J, Wang S T, Chao M, Li Y T, Leng J, Zhang J Y, Tang Z L. Sci. Bull., 2019, 64(16): 1148.

doi: 10.1016/j.scib.2019.06.022     URL    
[204]
Gu G F, Cheng J L, Li X D, Ni W, Guan Q, Qu G X, Wang B. J. Mater. Chem. A, 2015, 3(12): 6642.

doi: 10.1039/C5TA00523J     URL    
[205]
Zhao X N, Liu H, Ding M, Feng Y Q. Ceram. Int., 2019, 45(9): 12476.
[206]
Cheng L L, Qiao D D, Zhao P D, He Y C, Sun W F, Yu H C, Jiao Z. Electrochimica Acta, 2019, 300: 417.

doi: 10.1016/j.electacta.2019.01.133     URL    
[207]
Su B L, Van Tendeloo G, Peng D L, Xu B X, Hasan T, Mai L Q, Gao H X, Wang H E, Li Y, Yan M, Yi M, Jin J, Hu Z Y, Yu W B. Natl. Sci. Rev., 2020, 7: 1046.

doi: 10.1093/nsr/nwaa028     URL    
[208]
Gong L, Yang R, Liu R, Chen L P, Yan Y L, Feng Z F, Prog. Chem., 2019, 31: 1020.

doi: 10.7536/PC181210    
(龚乐, 杨蓉, 刘瑞, 陈利萍, 燕映霖, 冯祖飞. 化学进展, 2019, 31: 1020.).

doi: 10.7536/PC181210    
[209]
Jia L, Li Y L, Su L J, Liu D Q, Fu Y J, Li J S, Yan X B, He D Y. ChemistrySelect, 2020, 5(10): 3124.

doi: 10.1002/slct.v5.10     URL    
[210]
Li L, Jiang G X, An C H, Xie Z J, Wang Y J, Jiao L F, Yuan H T. Nanoscale, 2020, 12(18): 10369.
[211]
Jiang M, Zhang F Z, Zhu G J, Ma Y Y, Luo W, Zhou T F, Yang J P. ACS Appl. Mater. Interfaces, 2020, 12(22): 24796.
[212]
Lai C, Li G R, Dou Y Y, Gao X P. Electrochimica Acta, 2010, 55(15): 4567.

doi: 10.1016/j.electacta.2010.03.010     URL    
[213]
Chang P Y, Huang C H, Doong R A. Carbon, 2012, 50(11): 4259.

doi: 10.1016/j.carbon.2012.05.009     URL    
[214]
Wang L, Nie Z Y, Cao C B, Khalid S, Wu Y, Xu X Y. J. Power Sources, 2016, 302: 259.

doi: 10.1016/j.jpowsour.2015.10.072     URL    
[215]
Wang L P, Schnepp Z, Titirici M M. J. Mater. Chem. A, 2013, 1(17): 5269.

doi: 10.1039/c3ta10650k     URL    
[216]
Chen F, Yang J, Bai T, Long B, Zhou X Y. J. Electroanal. Chem., 2016, 768: 18.

doi: 10.1016/j.jelechem.2016.02.035     URL    
[217]
Lotfabad E M, Ding J, Cui K, Kohandehghan A, Kalisvaart W P, Hazelton M, Mitlin D. ACS Nano, 2014, 8(7): 7115.

doi: 10.1021/nn502045y     URL    
[218]
Zheng P, Liu T, Zhang J Z, Zhang L F, Liu Y, Huang J F, Guo S W. RSC Adv., 2015, 5(51): 40737.
[219]
Sun X L, Wang X H, Feng N, Qiao L, Li X W, He D Y. J. Anal. Appl. Pyrolysis, 2013, 100: 181.

doi: 10.1016/j.jaap.2012.12.016     URL    
[220]
Saravanan K, Kalaiselvi N. Carbon, 2015, 81: 43.

doi: 10.1016/j.carbon.2014.09.021     URL    
[221]
Zhao B T, Cai R, Jiang S M, Sha Y J, Shao Z P. Electrochimica Acta, 2012, 85: 636.

doi: 10.1016/j.electacta.2012.08.126     URL    
[222]
Li Y T, Chen M S, Cheng J F, Fu W W, Hu Y J, Liu B H, Zhang M, Shen Z R. Langmuir, 2020, 36(9): 2255.

doi: 10.1021/acs.langmuir.9b03889     URL    
[223]
Ma X Q, Chen Y, Li H, Cui X L, Lin Y H. Mater. Res. Bull., 2015, 66: 51.

doi: 10.1016/j.materresbull.2015.02.005     URL    
[224]
Li J, Chen X, Sun M X, Cui X L. Mater. Lett., 2013, 110: 245.

doi: 10.1016/j.matlet.2013.08.043     URL    
[225]
Gholami M, Zarei-Jelyani M, Babaiee M, Baktashian S, Eqra R. Ionics, 2020, 26(9): 4391.

doi: 10.1007/s11581-020-03579-5     URL    
[226]
Han M S, Mu Y B, Yuan F, Bai X D, Yu J. J. Power Sources, 2020, 465: 228206.
[227]
Fu W W, Li Y T, Chen M S, Hu Y J, Liu B H, Zhang K, Zhan C Y, Zhang M, Shen Z R. J. Power Sources, 2020, 468: 228363.
[228]
Zheng Y Q, Yuan Y F, Tong Z W, Yin H, Yin S M, Guo S Y. Nanotechnology, 2020, 31(21): 215407.
[229]
Subaşı Y, Somer M, Yağcı M B, Slabon A, Afyon S. J. Solid State Electrochem., 2020, 24(5): 1085.

doi: 10.1007/s10008-020-04566-6     URL    
[230]
Madhusanka S A D R. Int. J. Electrochem. Sci., 2020: 2792.
[231]
Fu Z G, Li R X, Kan Z. J. Solid State Electrochem., 2019, 23(6): 1779.

doi: 10.1007/s10008-019-04287-5     URL    
[232]
Liu G L, Wu H H, Meng Q Q, Zhang T, Sun D, Jin X Y, Guo D L, Wu N T, Liu X M, Kim J K. Nanoscale Horiz., 2020, 5(1): 150.

doi: 10.1039/C9NH00402E     URL    
[233]
Li X L, Liu Y, Zhang X L, Yao C, Wang R H, Xu C H, Lei J. Electrochimica Acta, 2019, 298: 14.

doi: 10.1016/j.electacta.2018.12.027     URL    
[234]
Wu Q L, Xu J G, Yang X F, Lu F Q, He S M, Yang J L, Fan H J, Wu M M. Adv. Energy Mater., 2015, 5(7): 1401756.
[235]
Li K K, Li B H, Wu J X, Kang F Y, Kim J K, Zhang T Y. ACS Appl. Mater. Interfaces, 2017, 9(41): 35917.
[236]
Ni L, Wang R W, Fu Y F, Wang H B, Liu W B, Zhu L K, Qiu S L, Zhang Z T. J. Alloys Compd., 2019, 790: 683.

doi: 10.1016/j.jallcom.2019.03.237     URL    
[237]
Zhuang W, Lu L H, Li W, An R, Feng X, Wu X B, Zhu Y D, Lu X H. Chin. J. Chem. Eng., 2015, 23(3): 583.

doi: 10.1016/j.cjche.2014.11.020     URL    
[238]
Gao M, Bao Y B, Qian Y X, Deng Y F, Li Y W, Chen G H. Inorg. Chem., 2018, 57(19): 12245.
[239]
Wei H, Rodriguez E F, Hollenkamp A F, Bhatt A I, Chen D H, Caruso R A. Adv. Funct. Mater., 2017, 27(46): 1703270.
[240]
Song W X, Chen J, Ji X B, Zhang X M, Xie F, Riley D J. J. Mater. Chem. A, 2016, 4(22): 8762.

doi: 10.1039/C6TA02548J     URL    
[241]
Wang H, Yang H X, Lu L. RSC Adv., 2014, 4(82): 43346.
[242]
Wei J, Liu J X, Wu Z Y, Zhan Z L, Shi J, Xu K. J. Nanosci. Nanotechnol., 2015, 15(7): 5013.

doi: 10.1166/jnn.2015.9847     URL    
[243]
Tang Y K, Liu L, Zhao H Y, Jia D Z, Xie X L, Zhang Y, Li X H. CrystEngComm, 2016, 18(24): 4489.

doi: 10.1039/C6CE00328A     URL    
[244]
Liu Y B, Ding T L, Shen D L, Dou J, Wei M D. J. Electroanal. Chem., 2017, 804: 87.

doi: 10.1016/j.jelechem.2017.09.051     URL    
[245]
Jia C C, Zhang X, Yang P. Int. J. Hydrog. Energy, 2018, 43(4): 2237.

doi: 10.1016/j.ijhydene.2017.11.153     URL    
[246]
Tao W, Wang M K, Zhu B, Huo W R, Yang R Q, Xiong H J, Tang H, Wei Z H, Wang Y. Electrochimica Acta, 2020, 334: 135569.
[247]
Ma D W, Li K M, Pan J H. ACS Appl. Energy Mater., 2020, 3(5): 4186.

doi: 10.1021/acsaem.0c00816     URL    
[248]
Lin X J, Wang Y M, Chai W, Liu T, Mou J R, Liu J, Huang J L, Liu M L. Electrochimica Acta, 2019, 308: 253.

doi: 10.1016/j.electacta.2019.04.052     URL    
[249]
Zhang X, Aravindan V, Kumar P S, Liu H, Sundaramurthy J, Ramakrishna S, Madhavi S. Nanoscale, 2013, 5(13): 5973.

doi: 10.1039/c3nr01128c     pmid: 23712615
[250]
Guo Z Y, Dong X L, Zhou D D, Du Y J, Wang Y G, Xia Y Y. RSC Adv., 2013, 3(10): 3352.

doi: 10.1039/c2ra23336c     URL    
[251]
Gangaja B, Jayasree S S, Nair S, Santhanagopalan D. ChemistrySelect, 2018, 3(43): 12258.
[252]
Kim D S, Chung D J, Bae J, Jeong G, Kim H. Electrochimica Acta, 2017, 258: 336.

doi: 10.1016/j.electacta.2017.11.056     URL    
[253]
Zhu K L, Li Q, Xue Z M, Yu Q, Liu X C, Shan Z Q, Liu K. ACS Appl. Nano Mater., 2020, 3(2): 1019.

doi: 10.1021/acsanm.9b02594     URL    
[254]
Aravindan V, Shubha N, Cheah Y L, Prasanth R, Chuiling W, Prabhakar R R, Madhavi S. J. Mater. Chem. A, 2013, 1(2): 308.

doi: 10.1039/C2TA00078D     URL    
[255]
Ulissi U, Zimmermann J, Brutti S, Hassoun J. Electrochimica Acta, 2016, 201: 158.

doi: 10.1016/j.electacta.2016.03.174     URL    
[256]
Brutti S, Gentili V, Reale P, Carbone L, Panero S. J. Power Sources, 2011, 196(22): 9792.

doi: 10.1016/j.jpowsour.2011.08.022     URL    
[257]
Armstrong G, Armstrong A R, Bruce P G, Reale P, Scrosati B. Adv. Mater., 2006, 18(19): 2597.

doi: 10.1002/(ISSN)1521-4095     URL    
[258]
Chen Y, Shi Y, Liang Y L, Dong H, Hao F, Wang A, Zhu Y X, Cui X L, Yao Y. ACS Appl. Energy Mater., 2019, 2(3): 1608.

doi: 10.1021/acsaem.8b02188     URL    
[259]
Shi Y, Chen Y, Liang Y L, Andrews J, Dong H, Yuan M Y, Ding W Y, Banerjee S, Ardebili H, Robertson M L, Cui X L, Yao Y. J. Mater. Chem. A, 2019, 7(34): 19691.
[260]
Hao F, Han F D, Liang Y L, Wang C S, Yao Y. MRS Bull., 2018, 43(10): 775.

doi: 10.1557/mrs.2018.211     URL    
[261]
Wang N N, Chu C X, Xu X, Du Y, Yang J, Bai Z C, Dou S X. Adv. Energy Mater., 2018, 8(27): 1801888.
[262]
Li Y P, Yang C H, Zheng F H, Pan Q C, Liu Y Z, Wang G, Liu T Z, Hu J H, Liu M L. Nano Energy, 2019, 59: 582.

doi: 10.1016/j.nanoen.2019.03.002     URL    
[263]
Cai J S, Cai R, Sun Z T, Wang X G, Wei N, Xu F, Shao Y L, Gao P, Dou S X, Sun J Y. Nano Micro Lett., 2020, 12(1): 1.
[264]
Zhang M H, MacRae A C, Liu H D, Meng Y S. J. Electrochem. Soc., 2016, 163(10): A2368.

doi: 10.1149/2.1091610jes     URL    
[265]
Wang Y R, Xue X L, Liu P Y, Wang C X, Yi X, Hu Y, Ma L B, Zhu G Y, Chen R P, Chen T, Ma J, Liu J, Jin Z. ACS Nano, 2018, 12(12): 12492.
[266]
Le T S, Hoa T H, Truong D Q. J. Electroanal. Chem., 2019, 848: 113293.
[267]
Kazazi M, Abdollahi P, Mirzaei-Moghadam M. Solid State Ion., 2017, 300: 32.

doi: 10.1016/j.ssi.2016.11.028     URL    
[268]
Das S K, Palaniselvam T, Adelhelm P. Solid State Ion., 2019, 340: 115017.
[269]
Wang S T, Kravchyk K V, Pigeot-Rémy S, Tang W Q, Krumeich F, Wörle M, Bodnarchuk M I, Cassaignon S, Durupthy O, Zhao S L, Sanchez C, Kovalenko M V. ACS Appl. Nano Mater., 2019, 2(10): 6428.

doi: 10.1021/acsanm.9b01391     URL    
[270]
Liu S N, Luo Z G, Tian G Y, Zhu M N, Cai Z Y, Pan A Q, Liang S Q. J. Power Sources, 2017, 363: 284.

doi: 10.1016/j.jpowsour.2017.07.098     URL    
[271]
Ni Q, Dong R Q, Bai Y, Wang Z H, Ren H X, Sean S, Wu F, Xu H J, Wu C. Energy Storage Mater., 2020, 25: 903.
[272]
Wang C, Zhang J S, Wang X F, Lin C F, Zhao X S. Adv. Funct. Mater., 2020, 30(45): 2002629.
[273]
Huo J H, Xue Y J, Cheng C, Guo S W. Ionics, 2020, 26(2): 971.

doi: 10.1007/s11581-019-03275-z     URL    
[274]
Jeong H, Noh Y, Lee D. Ceram. Int., 2019, 45(1): 985.

doi: 10.1016/j.ceramint.2018.09.276     URL    
[275]
Raghu A V, Karuppanan K K, Nampoothiri J, Pullithadathil B. ACS Appl. Nano Mater., 2019, 2(3): 1152.

doi: 10.1021/acsanm.8b01975     URL    
[1] 徐怡雪, 李诗诗, 马晓双, 刘小金, 丁建军, 王育乔. 表界面调制增强铋基催化剂的光生载流子分离和传输[J]. 化学进展, 2023, 35(4): 509-518.
[2] 杨越, 续可, 马雪璐. 金属氧化物中氧空位缺陷的催化作用机制[J]. 化学进展, 2023, 35(4): 543-559.
[3] 朱国辉, 还红先, 于大伟, 郭学益, 田庆华. 废旧锂离子电池选择性提锂[J]. 化学进展, 2023, 35(2): 287-301.
[4] 李芳远, 李俊豪, 吴钰洁, 石凯祥, 刘全兵, 彭翃杰. “蛋黄蛋壳”结构纳米电极材料设计及在锂/钠离子/锂硫电池中的应用[J]. 化学进展, 2022, 34(6): 1369-1383.
[5] 王才威, 杨东杰, 邱学青, 张文礼. 木质素多孔碳材料在电化学储能中的应用[J]. 化学进展, 2022, 34(2): 285-300.
[6] 陆嘉晟, 陈嘉苗, 何天贤, 赵经纬, 刘军, 霍延平. 锂电池用无机固态电解质[J]. 化学进展, 2021, 33(8): 1344-1361.
[7] 高金伙, 阮佳锋, 庞越鹏, 孙皓, 杨俊和, 郑时有. 高电压锂离子正极材料LiNi0.5Mn1.5O4高温特性[J]. 化学进展, 2021, 33(8): 1390-1403.
[8] 蔡克迪, 严爽, 徐天野, 郎笑石, 王振华. 锂离子电容电池关键电极材料[J]. 化学进展, 2021, 33(8): 1404-1413.
[9] 许金凯, 蔡倩倩, 于占江, 廉中旭, 田纪文, 于化东. 金属基仿生超滑表面制造及其应用[J]. 化学进展, 2021, 33(6): 958-974.
[10] 黄国勇, 董曦, 杜建委, 孙晓华, 李勃天, 叶海木. 锂离子电池高压电解液[J]. 化学进展, 2021, 33(5): 855-867.
[11] 张长欢, 李念武, 张秀芹. 柔性锂离子电池的电极[J]. 化学进展, 2021, 33(4): 633-648.
[12] 魏雪梅, 马占伟, 慕新元, 鲁金芝, 胡斌. 乙炔羰基化反应催化剂:由均相到多相[J]. 化学进展, 2021, 33(2): 243-253.
[13] 闫楚璇, 李青璘, 巩正奇, 陈颖芝, 王鲁宁. 纳米有机半导体光催化剂[J]. 化学进展, 2021, 33(11): 1917-1934.
[14] 刘晓旸. 高压条件下的凝聚态化学[J]. 化学进展, 2020, 32(8): 1184-1202.
[15] 穆德颖, 刘铸, 金珊, 刘元龙, 田爽, 戴长松. 废旧锂离子电池正极材料及电解液的全过程回收及再利用[J]. 化学进展, 2020, 32(7): 950-965.
阅读次数
全文


摘要

锂离子电池二氧化钛负极材料