English
新闻公告
More
化学进展 2020, Vol. 32 Issue (4): 467-480 DOI: 10.7536/PC190721 前一篇   后一篇

所属专题: 锂离子电池

• •

锂离子电池有机硅功能电解液

汪靖伦1,**(), 冉琴1, 韩冲宇1, 唐子龙1, 陈启多2, 秦雪英2,**()   

  1. 1. 湖南科技大学理论有机化学与功能分子教育部重点实验室 化学化工学院 湘潭 411201
    2. 惠州市豪鹏科技有限公司 惠州 516000
  • 收稿日期:2019-07-18 修回日期:2019-12-31 出版日期:2020-04-05 发布日期:2020-03-30
  • 通讯作者: 汪靖伦, 秦雪英
  • 作者简介:
    ** 通信作者 Corresponding author e-mail: (Jinglun Wang); (Xueying Qin)
  • 基金资助:
    国家自然科学基金项目(21202165); 湖南科技大学博士科研启动项目(E518B1)

Organosilicon Functionalized Electrolytes for Lithium-Ion Batteries

Jinglun Wang1,**(), Qin Ran1, Chongyu Han1, Zilong Tang1, Qiduo Chen2, Xueying Qin2,**()   

  1. 1. Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
    2. Highpower International Inc., Huizhou 516000, China
  • Received:2019-07-18 Revised:2019-12-31 Online:2020-04-05 Published:2020-03-30
  • Contact: Jinglun Wang, Xueying Qin
  • Supported by:
    the National Natural Science Foundation of China(21202165); the Doctoral Foundation of Hunan University of Science and Technology(E518B1)

高安全高电压电解液的开发是锂离子电池电解液发展的重要方向。有机硅化合物由于具有独特的理化性能,使其成为锂离子电池电解液领域的研究热点之一。本文综述了有机硅电解液的研究进展,重点从功能分子设计的角度介绍含碳酸酯基、氨基甲酸酯基、腈基、离子液体、含氟类的有机硅功能电解液溶剂制备及电池性能表现;详细阐述具有结构多样性的有机硅化合物用作高电压添加剂、高安全添加剂、高/低温添加剂、储存/耐自放电添加剂、吸酸吸水添加剂及其在不同电池材料体系中的应用。最后,对有机硅电解液的研究趋势和应用前景进行了展望。

The development of electrolyte with high-safety and high-voltage is of significant importance for high performance lithium-ion batteries. Recently, organosilicon electrolytes with unique physicochemical properties have become one of the choices. In this review, the advances of organosilicon compounds both as electrolyte solvents and additives are reviewed from the viewpoint of molecular engineering. The design and performance of organosilicon compounds with carbonate group, carbamate group, nitrile group, ionic liquids group and fluoro substitute as high-voltage and high-safety solvent are described in detail. The versatile organosilicon compounds evaluated as high voltage additive, high safety additive, high/low temperature additive, suppression self discharge additive and acid/water scavenger additive are introduced based on their functional group and reaction mechanism. Research trend and prospects of organosilicon electrolyte are presented finally.

Contents

1 Introduction

2 Progress of organosilicon electrolyte solvent

2.1 Organosilicon functionalized carbonate/carbamate

2.2 Organosilicon functionalized nitrile

2.3 Organosilicon functionalized ionic liquid

2.4 Fluorosilane electrolytes

3 Progress of organosilicon electrolyte additive

3.1 Organosilicon based high-voltage additive

3.2 Organosilicon based high-safety additive

3.3 Organosilicon based high/low temperature additive

3.4 Organosilicon based self-discharge suppression additive

3.5 Organosilicon based acid/water scavenger

4 Conclusion and outlook

()
图1 有机硅功能化碳酸酯和有机硅功能化氨基甲酸酯结构示意
Fig. 1 Chemical structures of orgaosilicon functionalized carbonate/carbamate
图2 4.4 V LCO/石墨全电池在0.4 M LiODFB+0.6 M LiPF6/TMGC(Si-C12)电解液中的循环性能[20]
Fig. 2 Cycling performance of 4.4 V graphite/LiCoO2 cell with 0.4 M LiODFB+0.6 M LiPF6 in TMGC[20]
图3 有机硅腈结构示意图
Fig. 3 Chemical structures of nitrile functionalized organosilicon electrolyte
图4 4.4 V LCO/石墨全电池在(0.4 M LiODFB+0.6 M LiPF6)/SN1电解液中的循环性能[26]
Fig. 4 Cycling performance of 4.4 V LiCoO2/(0.4 M LiODFB+0.6 M LiPF6) in SN1/graphite full cell[26]
图5 有机硅离子液体结构示意图
Fig. 5 Chemical structures of organosilicon functionalized ionic liquids
图6 LFP/锂电池在0.6 M LiTFSI/Si-IL4中的性能表现[34]
Fig. 6 The electrochemical performance of LiFePO4/Li in the electrolyte of 0.6 M LiTFSI/Si-IL4[34]
图7 有机氟硅结构示意图
Fig. 7 Chemical structures of fluorosilane electrolytes
图8 4.4 V LCO/石墨电池在1 M LiPF6的EC/DFSM2 /EMC电解液中的性能表现[36]
Fig. 8 The performance of 4.4 V graphite/LiCoO2 in the electrolyte of 1 M LiPF6 EC/DFSM2 /EMC[36]
图9 有机硅高电压添加剂分子结构示意图
Fig. 9 Chemical structures of organosilicon based additive for high-voltage application
表1 TMSB、TMSP和TMSPi用作电解液高压添加剂
Table 1 TMSB、TMSP and TMSPi as high voltage electrolyte additive for lithium ion batteries
图10 有机硅安全添加剂分子结构示意图
Fig. 10 Chemical structure of organosilicon compounds for high-safety additive
图11 两种不同添加剂成膜机理示意图[67]
Fig. 11 Two fundamentally different mechanisms for SEI-forming additives[67]
图12 有机硅抗凝固添加剂分子结构示意图
Fig. 12 Chemical structure of organosilicon compounds for low temperature additive
图13 有机硅吸酸吸水添加剂分子结构示意图
Fig. 13 Chemical structure of organosilicon compounds for acid and water scavenger additive
图14 含1000 ppm水和含不同DODSi添加量的电解液对NCM622/锂半电池循环性能影响[77]
Fig. 14 Cycling performance of the cells that cycled with 1000 ppm water controlled electrolyte[77]
图15 乙氧基功能化聚硅氧烷包覆NCM622示意图[79]
Fig. 15 Schematic illustration of the fabrication of ethoxy-functional polysiloxane wrapped LiNi0.6Co0.2Mn0.2O2 (E-NCM) microsphere[79]
图16 1-TMSI添加剂抑制MCMB电极表面不规则且离子绝缘SEI膜生成[80]
Fig. 16 Scheme showing the formation of irregular and ionically insulating SEI on the MCMB electrode induced by trace water in bare electrolyte and effective suppression of these phenomena by 1-TMSI additive[80]
[1]
(a) Lu Y, Zhang Q, Chen J . Sci. China Chem., 2019,62(5):533. https://doi.org/10.1007/s11426-018-9410-0

doi: 10.1007/s11426-018-9410-0     URL    
(b) 吴宇平(Wu Y P), 袁翔云(Yuan X Y), 董超(Dong C), 段冀渊(Duan J Y). 锂离子电池——应用与实践(第二版)(Lithium-ion Batteries Application and Practice (Second Edition)). 北京:化学工业出版社(Beijing: Chemical Industry Press), 2012.
[2]
Xu K .Chem. Rev., 2014,114(23):11503.
[3]
Rodrigues M T F, Babu G, Gullapalli H, Kalaga K, Sayed F N, Kato K, Joyner J, Ajayan P M . Nat Energy, 2017,2:17108.
[4]
(a) Tan S, Ji Y J, Zhang Z R, Yang Y . ChemPhysChem, 2014,15:1956.
(b) 夏兰(Xia L), 余林颇(Yu L P), 胡笛(Hu D), 陈政(Chen Z). 化学学报(Acta Chimica Sinica), 2017,75(12):1183. http://sioc-journal.cn/Jwk_hxxb/CN/Y2017/V75/I12/1183

doi: 10.6023/A17060284     URL    
[5]
Nakajima T . Fluorinated Materials for Energy Conversion Amsterdam: Elsevier, 2005.
[6]
Flamme B, Garcia G. R, Weil M, Haddad M, Phansavath P, Ratovelomanana-Vidal V, Chagnes A Green Chem., 2017,19:1828.
[7]
Zhi H Z, Xing L. D, Zheng X. W, Xu K, Li W. S.. Phys. Chem. Lett., 2017,8(24):6048.
[8]
Watanabe M, Thomas M L, Zhang S, Ueno K, Yasuda T, Dokko K . Chem. Rev., 2017,117(10):7190.
[9]
秦雪英(Qin X Y), 汪靖伦(Wang J L), 张灵志(Zhang L Z). 化学进展(Progress in Chemistry), 2012,24(5):155. http://manu56.magtech.com.cn/Jwk3_hxjz/CN/Y2012/V24/I05/810
[10]
常增花(Chang T H), 王建涛(Wang J T), 武兆辉(Wu Z H), 赵金玲(Zhao J L), 卢世刚(Lu S G) 化学进展(Progress in Chemistry), 2018,30(12):1960. http://manu56.magtech.com.cn/Jwk3_hxjz/CN/10.7536/PC180344

doi: 10.7536/PC180344     URL    
[11]
(a) Zhang Z C, Hu L, Wu H, Weng W, Koh M, Redfern P C, Curtiss L A, Amine K . Energy Environ. Sci., 2013,6:1806.
(b) Ryou M H, Han G B, Lee Y M, Lee J N, Lee D J, Yoon Y O, Park J K . Electrochim. Acta, 2010,55:2073.
(c) Achiha T, Nakajima T, Ohzawa Y, Koh M, Yamauchi A, Kagawa M, Aoyama H . [J]. Electrochem. Soc., 2010,157:A707.
(d) Zhu Y, Casselman M D, Li Y, Wei A, Abraham D P . J. Power Sources, 2014,246:184.
[12]
(a) Ouatani L E, Dedryvere R, Siret C, Biensan P, Reynaud S, Iratcabal P, Gonbeau D . [J]. Electrochem. Soc., 2009,156:A103.
(b) Martin F, Morales J, Sanchez L . ChemPhysChem, 2008,9:2610.
(c) Shim E G, Nam T H, Kim J G, Kim H S, Moon S I . Electrochim. Acta, 2007,53:650.
(d) Chen G, Zhuang G V, Richardson T J, Liu G, Ross P N . Electrochem. Solid-State Lett., 2005,8:A344.
[13]
Tsuda T, Kondo K, Tomioka T, Takahashi Y, Matsumoto H, Kuwabata S , Hussey C L. Angew. Chem. Int. Ed., 2011,50:1310.
[14]
Koh J H, Ha Y J, Park J H, Lee C H, Lim Y M, Ahn J A, Pogozhev D . WO035928, 2008.
[15]
Zhao H, Park S J, Shi F F, Fu Y B, Battaglia V , Ross Jr P N, Liu G.J. Electrochem. Soc., 2014,161:A194. https://iopscience.iop.org/article/10.1149/2.095401jes

doi: 10.1149/2.095401jes     URL    
[16]
Nakanishi T, Kashida M, Miyawaki S, Ichinobe S, Aramata M . US0083992A, 2006.
[17]
Wang X J, Lee H. S, Li H, Yang X Q, Huang X Electrochem. Commun., 2010,12:386.
[18]
Takeuchi T, Noguchi S, Morimoto H, Tobishima S . J. Power Sources, 2010,195:580.
[19]
Takei Y, Takeno K, Morimoto H, Tobishima S . J. Power Sources, 2013,228:32.
[20]
Wang J L, Yong T Q, Yang J W, Ouyang C Y, Zhang L Z . RSC Adv., 2015,5:17660.
[21]
(a) Philipp M, Bernhard R, Gasteiger H A, Rieger B J . Electrochem. Soc., 2015,162(7):A1319.
(b) Philipp M, Bhandary R, Groche F J, Schönhoff M, Rieger B . Electrochim. Acta, 2015,173:687.
[22]
Jeschke S, Gentschev A C , Wiemhöfer H D. Chem. Commun., 2013,49: 1190.
[23]
Jeschke S, Wiemhöfer H D , Muck-Lichtenfeld C. Phys. Chem. Chem., 2014,16:14236.
[24]
Jeschke S, Mutke M, Jiang Z X , Alt B, Wiemhöfer H D. ChemPhysChem, 2014,15:1761.
[25]
Duncan H, Salem N, Abu-Lebdeh Y J . Electrochem. Soc., 2013,160:A838. https://iopscience.iop.org/article/10.1149/2.088306jes

doi: 10.1149/2.088306jes     URL    
[26]
Yong T Q, Wang J L, Mai Y J, Zhao X Y, Luo H, Zhang L Z J . Power Sources, 2014,254:29.
[27]
Pohl B, Wiemhöfer H J D . Electrochem. Soc., 2015,162(3):A460.
[28]
Pohl B, Grünebaum M, Drews M, Passerini S, Winter M, Wiemhöfer H D . Electrochim. Acta, 2015,180:795.
[29]
Pohl B, Hiller M M, Seidel S M, Grünebaum M, Wiemhöfer H D J . Power Sources, 2015,274:629.
[30]
Moreno M, Simonetti E, Appetecchi G B, Carewska M, Montanino M, Kim G T, Loeffler N, Passerini S J . Electrochem. Soc., 2017,164(1):A6026.
[31]
Weng W, Zhang Z C, Lu J. Amine K. Chem. Commun , 2011,47:11969. http://xlink.rsc.org/?DOI=c1cc15331e

doi: 10.1039/c1cc15331e     URL    
[32]
Mai Y J, Luo H, Zhao X Y, Wang J L, Davis J, Leslie L J, Zhang L Z . Ionics, 2014,20:1207.
[33]
Yong T Q, Zhang L Z, Wang J L, Mai Y J, Yan X D, Zhao X Y J . Power Sources, 2016,328:397.
[34]
Chen N, Guan Y B, Shen J R, Guo C, Qu W J, Li Y J, Wu F, Chen R . J. ACS Appl. Mater. Interfaces, 2019,11:12154.
[35]
马国强(Ma G Q), 王莉(Wang L), 张建君(Zhang J J), 陈慧闯(Chen H C), 何向明(He X M), 丁元胜(Ding Y S) 化学进展(Progress in Chemsitry), 2016,28(9):1299. http://manu56.magtech.com.cn/Jwk3_hxjz/CN/10.7536/PC151212

doi: 10.7536/PC151212     URL    
[36]
Wang J L, Mai Y J, Luo H, Yan X D, Zhang L Z . J Power Sources, 2016,334:58.
[37]
Guillot S L, Pena-Hueso A, Usrey M L, Hamers R J . J. Electrochem. Soc., 2017,164(9):A1907.
[38]
(a) Haregewoin A M, Wotango A S, Hwang B J . Energy Environ. Sci., 2016,9:1955.
(b) 张晓妍(Zhang X Y), 任宇飞(Ren Y F), 高洁(Gao J), 张兰(Zhang L), 张海涛(Zhang H T). 储能科学与技术(Energy Storage Science and Technology), 2018,7(3):404.
[39]
(a) Hu M, Pang X L, Zhou Z . J Power Sources, 2013,237:229.
(b) 邓邦为(Deng BW), 孙大明(Sun DM), 万琦(WanQ), 王昊(WangH), 陈滔(ChenT), 李璇(LiX), 瞿美臻(Qu MZ), 彭工厂(Peng GC). 化学学报(Acta Chimica Sinica), 2018,76:259. http://sioc-journal.cn/Jwk_hxxb/CN/10.6023/A17110517
[40]
Wang K, Xing L D, Zhu Y M, Zheng X W, Cai D D, Li W S . J Power Sources, 2017,342:677.
[41]
Han Y K, Yoo J, Yim T . J. Mater. Chem. A, 2015,3:10900.
[42]
Zuo X X, Fan C J, Liu J S, Xiao X, Wu J H, Nan J M . J Power Sources, 2013,229:308.
[43]
Rong H B, Xu M Q, Xie B Y, Liao X L, Huang W Z, Xing L D, Li W S . Electrochim. Acta, 2014,147:31. https://linkinghub.elsevier.com/retrieve/pii/S0013468614019367

doi: 10.1016/j.electacta.2014.09.105     URL    
[44]
Li J H, Xing L D, Zhang R Q, Chen M, Wang Z S, Xu M Q, Li W S . J. Power Sources, 2015,285:360.
[45]
Yan C F, Xu Y, Xia J R, Gong C R, Chen K R . J Energy Chem., 2016,25:659. https://linkinghub.elsevier.com/retrieve/pii/S2095495616300468

doi: 10.1016/j.jechem.2016.04.010     URL    
[46]
Wang Y, Ming H, Qiu J Y, Yu Z B, Li M, Zhang S T, Yang Y S . J. Electroanal. Chem., 2017,802:8.
[47]
Zhang J, Wang J L, Yang J , NuLi Y N. Electrochim. Acta, 2014,117:99. https://linkinghub.elsevier.com/retrieve/pii/S0013468613022330

doi: 10.1016/j.electacta.2013.11.024     URL    
[48]
Rong H B, Xu M Q, Xing L D, Li W S . J. Power Sources, 2014,261:148.
[49]
Yan G C, Li X H, Wang Z X, Guo H J, Wang C . J. Power Sources, 2014,248:1306.
[50]
Mai S W, Xu M Q, Liao X L, Hu J N, Lin H B, Liao Y H, Li X P, Li W S . Electrochim. Acta, 2014,17:565.
[51]
Song Y M, Han J G, Park S, Lee K, Choi N S . J. Mater. Chem A, 2014,2:9506. http://xlink.rsc.org/?DOI=C4TA01129E

doi: 10.1039/C4TA01129E     URL    
[52]
Qi X, Tao L, Hahn H, Schultz C, Gallus D R, Cao X, Nowak S, Röser S, Li J, Cekic-Laskovic I, Rad B R, Winter M. . RSC Adv, 2016,6:38342.
[53]
Peebles C, Sahore R, Gilbert J A, Garcia J C, Tornheim A, Bareño J, Iddir H, Liao C, Abraham D P . J Electrochem. Soc., 2017,164(7):A1579.
[54]
Imholt L, Röser S, Börner M, Streipert B, Rezaei R B, Winter M, Cekic-Laskovic I . Electrochim. Acta, 2017,235:332.
[55]
Wagner R, Streipert B, Kraft V, Jiménez A R, Röser S, Kasnatscheew J, Gallus D R, Börner M, Mayer C, Arlinghaus H F, Korth M, Amereller M, Cekic-Laskovic I, Winter M. Adv. Mater. Interfaces, 2016,3(15):1600096.
[56]
Chen J H, Zhang H, Wang M L, Liu J H, Li C H, Zhang P X . J. Power Sources, 2016,303:41.
[57]
Zheng Q F, Xing L D, Yang X R, Li X F, Ye C C, Wang K, Huang Q M . ACS App. Mater. Interface, 2018,10:16843.
[58]
Wang H, Sun D M, Li X, Ge W J, Deng B W, Qu M Z, Peng G C . Electrochim. Acta, 2017,254:112.
[59]
Zhuang Y, Du F H, Zhu L L, Cao H S, Dai H, Adkins J, Zhou Q, Zheng J W . Electrochim. Acta, 2018,290:220.
[60]
Lyua H L, Li Y C, Jafta C J, Bridges C A , Meyer III H M, Borisevich A, Paranthaman M P, Dai S, Sun X G. J Power Sources, 2019,412:527.
[61]
汪靖伦(Wang J L), 闫晓丹(Yan X D), 雍天乔(Yong T Q), 张灵志(Zhang L Z). 物理化学学报(Acta Physico-Chimica Sinica), 2016,32(9):2293.
[62]
Chen L, Xu M Q, Li B, Xing L D, Wang Y, Li W S . J. Power Sources, 2013,244:499.
[63]
Chen R J, Zhao Y Y, Li Y J, Ye Y S, Li Y J, Wu F, Chen S . J. Mater. Chem. A, 2017,5:5142. http://xlink.rsc.org/?DOI=C6TA10210G

doi: 10.1039/C6TA10210G     URL    
[64]
Huang J H, Shkrob L, Wang P Q, Cheng L, Pan B F, He M N, Liao C, Zhang Z C, Curtiss L, Zhang L . J. Mater. Chem. A, 2015,3:7332.
[65]
Cai Z J, Liu Y B, Zhao J H, Li L, Zhang Y M, Zhang J . J. Power Sources, 2012,202:341.
[66]
Liu Y B, Tan L, Li L . J. Power Sources, 2013,221:90.
[67]
Yim T , Han Y K. ACS App. Mater. Interface, 2017,9:32851. https://pubs.acs.org/doi/10.1021/acsami.7b11309

doi: 10.1021/acsami.7b11309     URL    
[68]
Ren Y J, Wang M Z, Wang J L , Cui Y L. Inter. J. Electrochem. Sci., 2018,3:664.
[69]
Yamagiwa K, Morita D, Yabuuchi N, Tanaka T, Fukunishi M, Taki T, Watanabe H, Otsuka T, Yano T, Son J Y, Cui Y T, Oji H, Komaba S . Electrochim. Acta, 2015,160:347. https://linkinghub.elsevier.com/retrieve/pii/S0013468615002790

doi: 10.1016/j.electacta.2015.02.004     URL    
[70]
Kim K M, Ly N V, Won J H, Lee Y G, Cho W, Ko J M, Kaner R . Electrochim. Acta, 2014,136:182.
[71]
Won J H, Lee H S, Hamenu L, Latifatu M, Lee Y M, Kim K M, Oh J, Cho W, Ko J M . J. Power Sources, 2016,37:325.
[72]
Liao X L, Sun P Y, Xu M Q, Xing L D, Liao Y H, Zhang L P, Yu L, Fan W Z, Li W S . App. Energy, 2016,175:505.
[73]
Liao X L, Huang Q M, Mai S W, Wang X S, Xu M Q, Xing L D, Liao Y H, Li W S . J. Power Sources, 2014,272:501.
[74]
Wu X W, Li X H, Wang Z X, Guo H J, Yue P , Zhang Y H. ACS App. Surface Sci., 2013,268:349.
[75]
Seo H, Na S, Lee B, Yim T, Oh S H . J Ind. Eng. Chem., 2018,64:311.
[76]
Lim S H, Cho W, Kim Y J, Yim T . J. Power Sources, 2016,336:465.
[77]
Jang S H, Yim T . ChemPhysChem, 2017,18(23):3402.
[78]
Deng B W, Wang H, Ge W J, Li X, Yan X X, Chen T, Qu M Z, Peng G C . Electrochim. Acta, 2017,236:61.
[79]
Wang H, Ge W J, Li W. ACS App . ACS App. Mater. Interfaces, 2016,8:18439.
[80]
Wotango A S, Su W N, Leggesse E G, Haregewoin A M, Lin M H, Zegeye T A, Cheng J H , Hwang B J. ACS App. Mater. Interfaces, 2017,9:2410.
[81]
Wang J P, Zhang L, Zhang H T . Ionics, 2018,24:3691.
[82]
Tong B, Wang J W, Liu Z J, Ma L P, Wang P, Feng W F, Peng Z Q, Zhou Z B . J. Power Sources, 2018,400:225.
[83]
Park S J, Hwang J Y, Sun Y K . J. Mater. Chem. A., 2019,7:13441.
[1] 陈阳, 崔晓莉. 锂离子电池二氧化钛负极材料[J]. 化学进展, 2021, 33(8): 1249-1269.
[2] 陆嘉晟, 陈嘉苗, 何天贤, 赵经纬, 刘军, 霍延平. 锂电池用无机固态电解质[J]. 化学进展, 2021, 33(8): 1344-1361.
[3] 高金伙, 阮佳锋, 庞越鹏, 孙皓, 杨俊和, 郑时有. 高电压锂离子正极材料LiNi0.5Mn1.5O4高温特性[J]. 化学进展, 2021, 33(8): 1390-1403.
[4] 黄国勇, 董曦, 杜建委, 孙晓华, 李勃天, 叶海木. 锂离子电池高压电解液[J]. 化学进展, 2021, 33(5): 855-867.
[5] 张长欢, 李念武, 张秀芹. 柔性锂离子电池的电极[J]. 化学进展, 2021, 33(4): 633-648.
[6] 穆德颖, 刘铸, 金珊, 刘元龙, 田爽, 戴长松. 废旧锂离子电池正极材料及电解液的全过程回收及再利用[J]. 化学进展, 2020, 32(7): 950-965.
[7] 庄全超, 杨梓, 张蕾, 崔艳华. 锂离子电池的电化学阻抗谱分析研究进展[J]. 化学进展, 2020, 32(6): 761-791.
[8] 吴战, 李笑涵, 钱奥炜, 杨家喻, 张文魁, 张俊. 基于无机电致变色材料的变色储能器件[J]. 化学进展, 2020, 32(6): 792-802.
[9] 徐昌藩, 房鑫, 湛菁, 陈佳希, 梁风. 金属-二氧化碳电池的发展:机理及关键材料[J]. 化学进展, 2020, 32(6): 836-850.
[10] 张伟, 齐小鹏, 方升, 张健华, 史碧梦, 杨娟玉. 碳在锂离子电池硅碳复合材料中的作用[J]. 化学进展, 2020, 32(4): 454-466.
[11] 陈豪登, 徐建兴, 籍少敏, 姬文晋, 崔立峰, 霍延平. MOFs衍生金属氧化物及其复合材料在锂离子电池负极材料中的应用[J]. 化学进展, 2020, 32(2/3): 298-308.
[12] 王官格, 张华宁, 吴彤, 刘博睿, 黄擎, 苏岳锋. 废旧锂离子电池正极材料资源化回收与再生[J]. 化学进展, 2020, 32(12): 2064-2074.
[13] 张勇杰, 樊明帅, 李晓佩, 李化毅, 王书唯, 祝文亲. 含硅功能化聚烯烃:合成及应用[J]. 化学进展, 2020, 32(1): 84-92.
[14] 刘燕晨, 黄斌, 邵奕嘉, 沈牧原, 杜丽, 廖世军. 钾离子电池及其最新研究进展[J]. 化学进展, 2019, 31(9): 1329-1340.
[15] 蒋志敏, 王莉, 沈旻, 陈慧闯, 马国强, 何向明. 锂离子电池正极界面修饰用电解液添加剂[J]. 化学进展, 2019, 31(5): 699-713.
阅读次数
全文


摘要