English
新闻公告
More
化学进展 2014, Vol. 26 Issue (12): 1924-1929 DOI: 10.7536/PC140809 前一篇   后一篇

• 综述与评论 •

骨架状聚氨酯海绵模板导向制备多级孔碳材料

徐婷婷, 薛春峰*, 张忠林, 郝晓刚   

  1. 太原理工大学化学化工学院化学工程系 太原 030024
  • 收稿日期:2014-08-01 修回日期:2014-09-01 出版日期:2014-12-15 发布日期:2014-12-19
  • 通讯作者: 薛春峰 E-mail:cfxue@fudan.edu.cn
  • 基金资助:

    国家自然科学基金项目(No. 21276173)、山西省自然科学基金项目(No. 2012011020-5, 2012011006-1, 2014011012-5)、山西省国际科技合作计划项目(No. 2011081028)和太原理工大学创新研究项目(TYUT-RC201113A)资助

Hierarchically Porous Carbon Materials Templated from Skeletonal Polyurethane Foam

Xu Tingting, Xue Chunfeng*, Zhang Zhonglin, Hao Xiaogang   

  1. Department of Chemical Engineering, College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
  • Received:2014-08-01 Revised:2014-09-01 Online:2014-12-15 Published:2014-12-19
  • Supported by:

    The work was supported by the National Natural Science Foundation of China (No. 21276173), the Natural Science Foundation of Shanxi Province, China (No. 2012011020-5, 2012011006-1, 2014011012-5), the International Science & Technology Cooperation Projects of Shanxi Province (No. 2011081028) and the Creative Research Projects of Taiyuan University of Technology (TYUT-RC201113A)

多级孔结构碳材料具有结构多样、比表面积高、孔体积大和化学稳定性好等性质,不同尺度的孔道能协同发挥各自的传质优势,在吸附和分离、化学化工、靶向给药和能源储存等方面有独特表现并得到了广泛应用.近年来,国内外将聚氨酯海绵与其他尺度的模板剂相结合制备了许多不同结构的多级孔状碳质材料并应用到不同的领域.本文从多级孔碳材料的制备、结构和应用等角度综述了相关研究工作,并指出合成石墨化、各级孔道合理分配、孔壁薄和机械强度好的多级孔结构的碳材料仍面临诸多问题.

Carbon materials with multi-modal pore structures can integrate advantages of mciro-, meso- and/or macropores in mass transfer, besides their large specific surface area, large pore volume, excellent chemical stability and good electron conductivity. They are highly promising in applications such as electrochemical capacity, drug delivery, catalysis, adsorption, and separation due to these outstanding properties. Solid materials with different macrostructures including stacked silica and organic microspheres are often used as hard templates for synthesizing hierarchically porous carbon with various pore shapes and pore sizes. Besides these templates, commercial polyurethane foam with a tri-dimensionally interconnected cellular network, controllable porosity, and easy removal make it a competitive candidate as a skeleton template. It have been used as a sacrificial matrix for fabricating hierarchically porous materials including silica, ceramic, biological scaffold, nanocrystalline metal oxide, metal foam and nanocomposite. In this review, we present recent development in the fabrication and application of hierarchically porous carbons templated from polyurethane foam. The obtained carbons with monomodal or bimodal pore structure, which were prepared by introducing microporous or mesostructured template additionally, are cautiously classified for discussion in details. Their unique performances in applications of energy storage, catalysis reaction and large molecule separation are also briefly mentioned. Challenges in adjusting the ratio of pores in three scales, graphitizing, and enhancing the mechanical strengthen of carbons are still remained for further development. Some strategies aiming to the problems are also proposed.

Contents
1 Introduction
2 Preparation of hierarchically porous carbon materials using polyurethane foam as a template
2.1 Macroporous carbon
2.2 Macro-mesoporous carbon
2.3 Micro-mesoporous carbon
2.4 Macro-microporous carbon
3 Conclusion

中图分类号: 

()

[1] Wan Y, Shi Y F, Zhao D Y. Chem. Mater., 2008, 20: 932.
[2] 邢宝林(Xing B L), 张传祥(Zhang C X), 沈卫卫(Shen W W), 韩怀远(Han H Y). 化学与生物工程(Chemistry & Bioengineering), 2007, 24(9): 27.
[3] Gibson L J(美), Ashby M F(英)著, 刘培生(Liu P S)(译). 多孔固体结构与性能(第二版)(Cellular Solids: Structure and Properties).2ed. 北京: 清华大学出版社(Beijing: Tsinghua University Press), 2003.
[4] Huang Y, Cai H Q, Feng D, Gu D, Deng Y H, Tu B, Wang H T, Webley P A, Zhao D Y. Chem. Commun., 2008, 2641.
[5] Kim Y S, Guo X F, Kim G J. Catal. Today, 2010, 150: 91.
[6] Deng Y H, Liu C, Liu J, Zhang F, Yu T, Zhang F Q, Gu D, Zhao D. J. Mater. Chem., 2008, 18: 408.
[7] 李沛勇(Li P Y), 戴圣龙(Dai S L), 柴世昌(Chai S C), 李裕仁(Li Y R). 材料工程(Journal of Materials Engineering), 2000, (1): 38.
[8] Xue C, Wang J, Tu B, Zhao D. Chem. Mater., 2010, 22: 494.
[9] Yue M B, Sun M N, Xie F, Ren D D. Micropor. Mesopor. Mat., 2014, 183: 177.
[10] Luyten J, Thijs I, Vandermeulen W, Mullens S, Wallaeys B, Mortelmans R. Adv. Appl. Ceram., 2005, 104: 4.
[11] Colombo P. Philos. T. R. Soc. A, 2006, 364: 109.
[12] 蒲锡鹏(Pu X P), 张大风(Zhang D F), 贾丽萍(Jia L P). 材料导报(Materials Review), 2007, 21(z1): 241.
[13] 王艳香(Wang Y X), 孙健(Sun J), 陈文兵(Chen W B), 余熙(Yu X). 硅酸盐学报(Journal of the Chinese Ceramic Society), 2008, 36(S1): 108.
[14] Quintero M W, Escobar J A, Rey A, Sarmiento A, Rambo C R, Oliveira A P N, Hotza D. J. Mater. Process. Technol., 2009, 209: 5313.
[15] 徐飞(Xu F), 吉晓莉(Ji X L). 材料导报(Materials Review), 2009, 23: 473.
[16] 黎阳(Li Y), 陈璐(Chen L), 刘卫(Liu W). 中国陶瓷(China Ceramics), 2011, 47(10): 25.
[17] Reinhardt B, Herwig J, Rannabauer S, Scheffler M, Enke D. J. Eur. Ceram. Soc., 2014, 34: 1465.
[18] 王阳(Wang Y), 金磊(Jin L), 史小蕾(Shi X L), 孟祥康(Meng X K). 医学研究生学报(Journal of Medical Postgraduates), 2012, 25(6): 635.
[19] 李敏(Li M), 张厚安(Zhang H A), 谭香玲(Tan X L), 聂小武(Nie X W). 矿冶工程(Mining and Metallurgical Engineering), 2012, 32(4): 106.
[20] Nikom J, Charoonpatrapong-Panyayong K, Kedjarune-Leggat U, Stevens R, Kosachan N, Jaroenworaluck A. J. Biomed. Mater. Res. A, 2013, 101: 2295.
[21] Tram N X T, Maruta M, Tsuru K, Matsuya S, Ishikawa K. Advances in Bioceramics and Porous Ceramics VI.Eds Narayan R, Colombo P, Kirihara S, Widjaja S. Hoboken: John Wiley & Sons, 2013.
[22] Thanh T N X, Maruta M, Tsuru K, Matsuya S, Ishikawa K. Advanced Materials Research. Eds. Clark G, Wang C H. Melbourne: Trans Tech Publications, 2014. 1559.
[23] 刘冶球(Liu Y Q), 周杨(Zhou Y), 陈曙光(Chen S G), 银锐明(Yin R M). 中南大学学报(自然科学版)(Journal of Central South University: Science and Technology), 2009, 40(5): 1259.
[24] 周杨(Zhou Y). 长沙理工大学硕士论文(Master Dissertation of Changsha University of Science & Technology), 2010.
[25] 龚陶然(Gong T R), 刘其城(Liu Q C), 李海斌(Li H B). 长沙理工大学学报(自然科学版)(Journal of Changsha University of Science and Technology:Natural Science), 2010, 7(4): 82.
[26] Quadbeck P, Stephani G, Kummel K, Adler J, Standke G. Mater. Sci. Forum, 2007, 534/536: 1005.
[27] 吴成(Wu C), 乔冠军(Qiao G J), 王红洁(Wang H J), 金志浩(Jin Z H). 稀有金属材料与工程(Rare Metal Materials and Engineering), 2009, 38(4): 722.
[28] Orefice R L, Ayres E, Pereira M M, Mansur H S. Macromolecules, 2005, 38: 4058.
[29] Das B, Chattopadhyay P, Mishra D, Maiti T K, Maji S, Narayan R, Karak N. J. Mater. Chem. B, 2013, 1: 4115.
[30] Ling Z, Wan P, Yu C, Xiao N, Yang J, Long Y, Qiu J. Chem. Eng. J., 2015, 259: 894.
[31] Liang J, Zhao Z, Hu H, Qiu J. Applied Mechanics and Materials.Eds. Zheng L, Skuroda S, Liu H, Du B, Wei J, Zhao Y. Dalian: Trans Tech Publications, 2013. 130.
[32] 胡守亮(Hu S L).哈尔滨工业大学硕士论文(Master Dissertation of Harbin Institute of Technology), 2010.
[33] Xiao N, Zhou Y, Ling Z, Qiu J. Carbon, 2013, 59: 530.
[34] 肖正浩(Xiao Z H). 大连理工大学硕士论文(Master Dissertation of Dalian University of Technology), 2008.
[35] Xiao N, Zhou Y, Ling Z, Zhao Z, Qiu J. Carbon, 2013, 60: 514.
[36] Inagaki M, Morishita T, Kuno A, Kito T, Hirano M, Suwa T, Kusakawa K. Carbon, 2004, 42: 497.
[37] 胡拥军(Hu Y J), 陈亚(Chen Y). 中南大学学报(自然科学版)(Journal of Central South University:Science and Technology), 2012, 43(7): 2495.
[38] Chen Y, Chen B Z, Shi X C, Xu H, Hu Y J, Yuan Y, Shen N B. Carbon, 2007, 45: 2132.
[39] Nam G, Choi S, Byun H, Rhym Y M, Shim S E. Macromolecules, 2013, 21: 958.
[40] Lu Q, Gao F, Komarneni S, Mallouk T E. J. Am. Chem. Soc., 2004, 126: 8650.
[41] 纪立军(Ji L J), 叶超(Ye C), 梁吉(Liang J). 无机化学学报(Chinese Journal of Inorganic Chemistry), 2007, 23(12): 2007.
[42] 肖南(Xiao N), 凌铮(Ling Z), 王六平(Wang L P), 周颖(Zhou Y), 邱介山(Qiu J S). 第22 届炭-石墨材料学术会议论文集(Proceedings of 22nd Carbon-Graphite Materials Conference), 2010, 159.
[43] 王志超(Wang Z C).大连理工大学硕士论文(Master Dissertation of Dalian University of Technology), 2010.
[44] Wang J, Xue C, Lv Y, Zhang F, Tu B, Zhao D. Carbon, 2011, 49: 4580.
[45] Xue C, Tu B, Zhao D. Nano Res., 2009, 2: 242.
[46] Xue C, Fan J, Hao X. Adv. Porous Mater., 2013, 1: 294.
[47] Xue C, Tu B, Zhao D. Adv. Funct. Mater., 2008, 18: 3914.
[48] 白光晋(Bai G J). 中国特种设备安全(China Special Equipment Safety), 2007, 23(11): 62.
[49] 郭巧梅(Guo Q M). 太原理工大学硕士论文(Master Dissertation of Taiyuan University of Technology), 2009.
[50] Saini V K, Pinto M L, Pires J. Mater. Chem. Phys., 2013, 138: 877.
[51] 肖南(Xiao N).大连理工大学博士论文(Doctoral Dissertation of Dalian University of Technology), 2011.
[52] Wang J, Xue C, Wu Z, Li W, Lv Y, Asiri A M, Tu B, Zhao D. Carbon, 2012, 50: 2546.
[53] 王焕磊(Wang H L), 高秋明(Gao Q M). 高等学校化学学报(Chemical Journal of Chinese Universities), 2011, 32(3): 462.

[1] 鄢剑锋, 徐进栋, 张瑞影, 周品, 袁耀锋, 李远明. 纳米碳分子——合成化学的魅力[J]. 化学进展, 2023, 35(5): 699-708.
[2] 蒋峰景, 宋涵晨. 石墨基液流电池复合双极板[J]. 化学进展, 2022, 34(6): 1290-1297.
[3] 杨世迎, 范丹阳, 保晓娟, 傅培瑶. 碳材料修饰零价铝的作用机制[J]. 化学进展, 2022, 34(5): 1203-1217.
[4] 王才威, 杨东杰, 邱学青, 张文礼. 木质素多孔碳材料在电化学储能中的应用[J]. 化学进展, 2022, 34(2): 285-300.
[5] 陈向娟, 王欢, 安伟佳, 刘利, 崔文权. 有机碳材料在光电催化系统中的作用[J]. 化学进展, 2022, 34(11): 2361-2372.
[6] 张天永, 吴畏, 朱剑, 李彬, 姜爽. 基于纳米碳填料可拉伸导电聚合物复合材料的制备[J]. 化学进展, 2021, 33(3): 417-425.
[7] 吴金柯, 王建军, 戴礼兴, 孙东豪, 陈嘉嘉. 金属配位聚氨酯[J]. 化学进展, 2021, 33(12): 2188-2202.
[8] 马晓振, 罗清, 秦冬冬, 陈景, 朱锦, 颜宁. 木质素基生物质聚氨酯[J]. 化学进展, 2020, 32(5): 617-626.
[9] 章强, 黄文峻, 王延斌, 李兴建, 张宜恒. 基于铜催化叠氮-炔环加成反应的聚氨酯功能化[J]. 化学进展, 2020, 32(2/3): 147-161.
[10] 朱红林, 李文英, 黎挺挺, Michael Baitinger, Juri Grin, 郑岳青. CO2电还原用氮掺杂碳基过渡金属单原子催化剂[J]. 化学进展, 2019, 31(7): 939-953.
[11] 石颖, 闻雷, 吴敏杰, 李峰. 碳材料在钛酸锂负极材料中的应用[J]. 化学进展, 2017, 29(1): 149-161.
[12] 张慧, 周雅静, 宋肖锴. 基于金属-有机骨架前驱体的先进功能材料[J]. 化学进展, 2015, 27(2/3): 174-191.
[13] 刘蕾, 袁忠勇. 软模板合成有序介孔碳材料[J]. 化学进展, 2014, 26(05): 756-771.
[14] 苗力孝, 王维坤, 王梦佳, 段博超, 杨裕生, 王安邦. 含单质硫正极复合材料[J]. 化学进展, 2013, 25(11): 1867-1875.
[15] 来庆学, 张校刚, 梁彦瑜. 离子液体为新型前驱体制备含氮碳纳米材料及其应用[J]. 化学进展, 2013, 25(10): 1703-1712.