English
新闻公告
More
化学进展 2022, Vol. 34 Issue (2): 285-300 DOI: 10.7536/PC210116 前一篇   后一篇

• 综述 •

木质素多孔碳材料在电化学储能中的应用

王才威1,2, 杨东杰1,2,*(), 邱学青3,4, 张文礼3,4   

  1. 1 华南理工大学化学与化工学院 广州 510640
    2 广东省绿色精细化学产品工程技术研究开发中心 广州 510640
    3 广东工业大学轻工与化工学院 广州 510006
    4 广东省植物资源生物炼制重点实验室 广州 510006
  • 收稿日期:2021-01-22 修回日期:2021-06-01 出版日期:2022-02-20 发布日期:2021-07-29
  • 通讯作者: 杨东杰
  • 基金资助:
    国家重点研发计划(2018YFB1501503); 国家自然科学基金项目(22038004); 国家自然科学基金项目(21878114); 广东省重点领域研发计划(2020B1111380002); 广东省自然科学基金项目(2017A030308012); 广东省自然科学基金项目(2018B030311052)

Applications of Lignin-Derived Porous Carbons for Electrochemical Energy Storage

Caiwei Wang1,2, Dongjie Yang1,2(), Xueqing Qiu3,4, Wenli Zhang3,4   

  1. 1 School of Chemistry and Chemical Engineering, South China University of Technology,Guangzhou 510640, China
    2 Guangdong Provincial Engineering Research Center for Green Fine Chemicals,Guangzhou 510640, China
    3 School of Chemical Engineering and Light Industry, Guangdong University of Technology,Guangzhou 510006, China
    4 Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology,Guangzhou 510006, China
  • Received:2021-01-22 Revised:2021-06-01 Online:2022-02-20 Published:2021-07-29
  • Contact: Dongjie Yang
  • Supported by:
    National Key Research and Development Program of China(2018YFB1501503); National Natural Science Foundation of China(22038004); National Natural Science Foundation of China(21878114); Research and Development Program in Key Fields of Guangdong Province(2020B1111380002); Natural Science Foundation of Guangdong Province(2017A030308012); Natural Science Foundation of Guangdong Province(2018B030311052)

木质素可再生资源成本低、含碳量高、芳香度高和易集中收集,被认为是具备潜力大规模工业化制备新型多孔碳材料的重要碳质原料之一,对缓解化石资源消耗及可持续发展具有重大的意义。多孔碳材料具有较高的电导率、较高的比表面积、丰富的孔道结构及良好的稳定性等特点,作为储能材料有广阔的应用前景。本文介绍了模板法、活化法及水热法制备木质素多孔碳材料的国内外最新研究进展,详细总结了不同热解工艺参数对木质素多孔碳材料微观结构的影响规律,重点阐述了其作为锂离子电池、钠离子电池和超级电容器电极材料的研究进展。针对功能化木质素多孔碳材料制备工艺复杂及储能性能差等瓶颈问题,提出离子/电子扩散动力学的优化、多种储能机制的协同作用和绿色、简便制备工艺的开发等研究策略,指出研发先进炭化技术构筑合理分级孔径结构,精准调控适宜层间距且高度有序排列碳层、功能化改性表面微环境及直接构建炭化工艺参数与电化学性能之间的因效关系是制备高储能性能木质素多孔碳材料的未来研究方向。

Lignin is a renewable resource with the advantages of low cost, high carbon content, high aromaticity and easy collection. Lignin is regarded as one of the most important raw carbonaceous materials for industry to prepare new porous carbon materials in a large scale. It is of great strategic significance to alleviate the consumption of fossil fuel resources and deepen the sustainable development. Porous carbon materials have an extraordinary application prospect in the fields of energy storage materials, because of their high conductivity, high specific surface area, abundant porosity, excellent stability, etc. In this review, the latest research advances and developments for the preparation of lignin-derived porous carbon materials (LPCM) by template, activation and hydrothermal methods are reviewed pivotally. Meanwhile, the influences of pyrolysis parameters on the micro-structure of LPCM are summarized in detail. Furthermore, the applications of LPCM as the electrode materials for lithium-ion batteries, sodium-ion batteries and supercapacitors are illustrated emphatically. However, there exist some bottlenecks that the preparation processes of LPCM are complicated and their energy storage performances are relatively poor. Thus, the optimization of ion/electron diffusion kinetics, the synergistic effect of multiple energy storage mechanisms and the development of the green and facile preparation processes are proposed to conquer these challenges. The development of advanced carbonization techniques to construct the reasonable hierarchical porous structure, precise regulating the suitable interlayer spacing and the highly ordered arrangement of carbon layers, functionally modifying surface microenvironment, and the direct establishment of the relationship between carbonization parameters and electrochemical performance are the research directions to prepare LPCM with the high energy storage performances in the future.

Contents

1 Introduction

2 Preparation of lignin-derived porous carbon materials (LPCM)

2.1 Activation methods

2.2 Template methods

2.3 Hydrothermal method

3 Applications of LPCM in energy storage materials

3.1 Lithium-ion batteries

3.2 Sodium-ion batteries

3.3 Supercapacitors

4 Conclusion and outlook

()
表1 直接炭化和物理活化所制备LPCM结构参数
Table 1 Structural properties of LPCM prepared by direct carbonization and physical activation
表2 化学活化所制备LPCM的结构参数
Table 2 Structural properties of LPCM prepared by chemical activation
图1 硬模板法制备LPCM示意图
Fig. 1 Schematic diagram of LPCM prepared by hard template
图2 片形MgO硬模板制备花状LPCM示意图[37]
Fig. 2 Schematic diagram of flower-like LPCM prepared by hard template using lamellar MgO[37]
图3 软模板法制备LPCM示意图[38]
Fig. 3 Schematic diagram of LPCM prepared by soft template[38]
图4 双模板法制备LPCM示意图[36]
Fig. 4 Schematic diagram of LPCM prepared by dual templates[36]
表3 锂离子电池木质素多孔碳材料负极性能
Table 3 Performances of LPCM anodes in lithium-ion batteries
图5 (a)ZnCO3制备LPCM示意图,(b,c)HLPC-ZnCO3-600透射图,(d)0.2 A/g下HLPC-ZnCO3-600循环性能,(e)HLPC-ZnCO3-600倍率性能[56]
Fig. 5 (a) Schematic diagram of LPCM prepared by ZnCO3, (b, c) TEM images of HLPC-ZnCO3-600, (d) Cycling performance of HLPC-ZnCO3-600 at 0.2 A/g, (e) Rate performance of HLPC-ZnCO3-600[56]
图6 (a)双模板法制备LPCM包覆SiO2示意图,(b,c)LHC/SiO2-21扫描电镜图,(d)LHC/SiO2-21透射电镜图,(e)0.1 A/g下LHC/SiO2-21循环性能,(f)LHC/SiO2-21倍率性能[58]
Fig. 6 (a) Schematic diagram of SiO2@LPCM prepared by dual templates, (b, c) SEM images of LHC/SiO2-21, (d) TEM image of LHC/SiO2-21, (e) Cycling performance of LHC/SiO2-21 at 0.1 A/g, (f) Rate performance of LHC/SiO2-21[58]
表4 钠离子电池木质素硬炭负极性能
Table 4 Performances of lignin-derived hard carbon anodes in sodium-ion batteries
图7 (a)碱木质素及木质素磺酸钠硬炭制备示意图,(b)碱木质素硬炭扫描电镜图,(c)木质素磺酸钠硬炭SEM图,(d)碱木质素硬炭透射电镜图,(e)首次库仑效率,(f)1/10 C下循环性能[68]
Fig. 7 (a) Schematic diagram of hard carbon prepared from alkali lignin and sodium lignosulphonate, (b) SEM image of alkali lignin derived hard carbon, (c) SEM image of sodium lignosulphonate derived hard carbon, (d) TEM image of alkali lignin derived hard carbon, (e) Initial coulombic efficiency, (f) Cycling performances at 1/10 C[68]
图8 (a,b)900 ℃和1300 ℃制得木质素硬炭扫描电镜图及透射电镜图,(c)0.05 A/g下循环性能,(d)倍率性能[69]
Fig.8 (a, b) SEM and TEM images of lignin-derived hard carbon prepared at 900 ℃ and 1300 ℃, (c) Cycling performances at 0.05 A/g, (d) Rate performances[69]
图9 不同热解温度制得硬炭储钠机理的演变[78]
Fig. 9 Evolution of sodium-ion storage mechanisms in hard carbon prepared at different temperature[78]
表5 超级电容器木质素多孔碳材料电极性能
Table 5 Performances of LPCM electrodes in supercapacitors
Raw materials Preparation conditions Specific surface area (m2/g) Total pore
volume (cm3/g)
Capacity (F/g) Scan rate (A/g) Electrolyte ref
Alkali lignin/KOH Carbonization at 600 ℃, 1 h; lignin char:KOH=1:3, activation at 800 ℃, 2 h 2223 1.06 276 1 6 M KOH 84
Alkali lignin/KOH Carbonization at 500 ℃, 1 h; lignin char:KOH=1:4, activation at 800 ℃, 1 h 3775 2.70 287 0.2 6 M KOH 85
Organosolv lignin/
KOH
Carbonization at 400 ℃, 1 h; Lignin:KOH=1:3, activation at 700 ℃, 1 h, 10 ℃/min 2265 - 336 1 6 M KOH 86
Enzymatic hydrolysis lignin/KOH Hydrothermal pretreatment at 200 ℃, 24 h; hydrothermally treated lignin:KOH=1:2, activation at 800 ℃, 1 h, 3 ℃/min 2218 - 312 1 6 M KOH 50
Enzymatic hydrolysis lignin/KOH Hydrothermal pretreatment at 180 ℃, 18 h, hydrothermally treated lignin:KOH=1:2, activation at 800 ℃, 1 h, 5 ℃/min 1660 0.78 420 0.1 6 M KOH 87
Sodium lignosulphonate Carbonization at 700 ℃, 1 h, 5 ℃/min 903 0.53 247 0.05 7 M KOH 85
Sodium lignosulphonate Pre-oxidation at 120 ℃, 2 h, 5 ℃/min, 200 ℃, 4 h, 0.5 ℃/min; carbonization at 700 ℃, 1 h, 5 ℃/min 1255 0.87 276 0.1 7 M KOH 89
Alkali lignin Carbonization at 400 ℃, 1 h, 2 ℃/min; 700 ℃, 1 h, 4 ℃/min 1269 0.60 245 0.2 6 M KOH 90
Alkali lignin/F127 Lignin:F127=45:72, Carbonization at 400 ℃, 1 ℃/min; 1000 ℃, 15 min, 2 ℃/min 185 0.28 77.1 - 6 M KOH 88
Alkali lignin/F127/CO2 Lignin:F127=45:72, Carbonization at 400 ℃, 1 ℃/min; 1000 ℃, 15 min, 2 ℃/min, activation at 875 ℃, 4 L/min 624 0.73 102.3 6 M KOH
Alkali lignin/F127/KOH Lignin:F127=45:72, carbonization at 400 ℃, 1 ℃/min; 1000 ℃, 15 min, 2 ℃/min, lignin/F127:KOH=1:2, activation at 1000 ℃, 10 ℃/min 1148 1.00 91.7 6 M KOH
Sodium lignosulphonate/ZnC2O4 Lignin:ZnC2O4=1:2, carbonization at 650 ℃, 2 h, 5 ℃/min 1069 406 320 1 6 M KOH 91
图10 (a)先水热预处理再KOH活化制备LPCM示意图,(b)扫描电镜图,(c)倍率性能,(d)组装成对称超级电容器性能[87]
Fig. 10 (a) Schematic diagram of LPCM prepared by hydrothermal treatment and KOH activation, (b) SEM image, (c) Rate performance, (d) Performance of assembled symmetric supercapacitor[87]
图11 (a)气相剥离和原位ZnO模板法制备LPCM示意图,(b)PLC-650-2扫描电镜图,(c,d)PLC-650-2透射电镜图,(e)倍率性能,(f)组装成对称超级电容器性能[91]
Fig. 11 (a) Schematic diagram of LPCM prepared by gas exfoliation and in-situ ZnO template method, (b) SEM image of PLC-650-2, (c, d ) TEM images of PLC-650-2, (e) Rate performance, (f) Performance of assembled symmetric supercapacitor[91]
[1]
Upton B M, Kasko A M. Chem. Rev., 2016, 116(4): 2275.

doi: 10.1021/acs.chemrev.5b00345     URL    
[2]
Yan J, Meng Q L, Shen X J, Chen B F, Sun Y, Xiang J F, Liu H Z, Han B X. Sci. Adv., 2020, 6(45): 1951.
[3]
Fan L L, Zhang Y N, Liu S Y, Zhou N, Chen P, Cheng Y L, Addy M, Lu Q, Omar M M, Liu Y H, Wang Y P, Dai L L, Anderson E, Peng P, Lei H W, Ruan R. Bioresour. Technol., 2017, 241: 1118.

doi: 10.1016/j.biortech.2017.05.129     URL    
[4]
Li Y X, Zhou M S, Pang Y X, Qiu X Q. ACS Sustainable Chem. Eng., 2017, 5(4): 3321.

doi: 10.1021/acssuschemeng.6b03180     URL    
[5]
Li Y Y, Yang D J, Qiu X Q. Chemical Journal of Chinese Universities, 2017, 38(5): 880.
( 李圆圆, 杨东杰, 邱学青. 高等学校化学学报, 2017, 38(5): 880.)
[6]
Li Y Y, Qiu X Q, Qian Y, Xiong W L, Yang D J. Chem. Eng. J., 2017, 327: 1176.

doi: 10.1016/j.cej.2017.07.022     URL    
[7]
Qian Y, Qiu X Q, Zhu S P. Green Chem., 2015, 17(1): 320.

doi: 10.1039/C4GC01333F     URL    
[8]
Yu J, Wang X H, Yu P M, Qiu X Q, Yang D J, Qian Y. Fine Chemicals, 2019(10): 2089.
( 余爵, 王显华, 余佩敏, 邱学青, 杨东杰, 钱勇. 精细化工, 2019(10): 2089. )
[9]
Rodriguez-Reinoso F, Molina-Sabio M, González M T. Carbon, 1995, 33(1): 15.

doi: 10.1016/0008-6223(94)00100-E     URL    
[10]
Shen W Z, Zheng J T, Qin Z F, Wang J G. J. Colloid Interface Sci., 2003, 264(2): 467.

doi: 10.1016/S0021-9797(03)00376-X     URL    
[11]
Plaza-Recobert M, Trautwein G, PÉrez-Cadenas M, Alcañiz-Monge J. Fuel Process. Technol., 2017, 159: 345.

doi: 10.1016/j.fuproc.2017.02.006     URL    
[12]
Kijima M, Hirukawa T, Hanawa F, Hata T. Bioresour. Technol., 2011, 102(10): 6279.

doi: 10.1016/j.biortech.2011.03.023     URL    
[13]
Rodríguez-Mirasol J, Cordero T, Rodriguez J J. Carbon, 1993, 31(1): 53.

doi: 10.1016/0008-6223(93)90155-4     URL    
[14]
Fu K F, Yue Q Y, Gao B Y, Sun Y Y, Zhu L J. Chem. Eng. J., 2013, 228: 1074.

doi: 10.1016/j.cej.2013.05.028     URL    
[15]
Xie X F, Goodell B, Zhang D J, Nagle D C, Qian Y H, Peterson M L, Jellison J. Bioresour. Technol., 2009, 100(5): 1797.

doi: 10.1016/j.biortech.2008.09.057     URL    
[16]
Gergova K, Petrov N, Eser S. Carbon, 1994, 32(4): 693.

doi: 10.1016/0008-6223(94)90091-4     URL    
[17]
Carrott P J M, Suhas Carrott M M L R, Guerrero C I, Delgado L A. J. Anal. Appl. Pyrolysis, 2008, 82(2): 264.

doi: 10.1016/j.jaap.2008.04.004     URL    
[18]
Baklanova O N, Plaksin G V, Drozdov V A, Duplyakin V K, Chesnokov N V, Kuznetsov B N. Carbon, 2003, 41(9): 1793.

doi: 10.1016/S0008-6223(03)00149-0     URL    
[19]
Rodriguez-Mirasol J, Cordero T, Rodriguez J J. Energy Fuels, 1993, 7(1): 133.

doi: 10.1021/ef00037a021     URL    
[20]
Li X F, Xu Q, Fu Y, Guo Q X. Environ. Prog. Sustainable Energy, 2014, 33(2): 519.

doi: 10.1002/ep.v33.2     URL    
[21]
Gao Y, Yue Q Y, Gao B Y, Sun Y Y, Wang W, Li Q, Wang Y. Chem. Eng. J., 2013, 217: 345.

doi: 10.1016/j.cej.2012.09.038     URL    
[22]
Hayashi J, Kazehaya A, Muroyama K, Watkinson A P. Carbon, 2000, 38(13): 1873.

doi: 10.1016/S0008-6223(00)00027-0     URL    
[23]
Khezami L, Chetouani A, Taouk B, Capart R. Powder Technol., 2005, 157(1/3): 48.

doi: 10.1016/j.powtec.2005.05.009     URL    
[24]
Gonzalez-Serrano E, Cordero T, Rodríguez-Mirasol J, Rodríguez J J. Ind. Eng. Chem. Res., 1997, 36(11): 4832.

doi: 10.1021/ie970261q     URL    
[25]
Otowa T, Tanibata R, Itoh M. Gas Sep. Purif., 1993, 7(4): 241.

doi: 10.1016/0950-4214(93)80024-Q     URL    
[26]
Lozano-CastellÓ D, Calo J M, Cazorla-AmorÓs D, Linares-Solano A. Carbon, 2007, 45(13): 2529.

doi: 10.1016/j.carbon.2007.08.021     URL    
[27]
Raymundo-Piñero E, Azaïs P, Cacciaguerra T, Cazorla-AmorÓs D, Linares-Solano A, BÉguin F. Carbon, 2005, 43(4): 786.

doi: 10.1016/j.carbon.2004.11.005     URL    
[28]
Marceddu M, Saba M, Quochi F, Lai A, Huang J, Talapin D V, Mura A, Bongiovanni G. Nanotechnology, 2012, 23(1): 015201.

doi: 10.1088/0957-4484/23/1/015201     URL    
[29]
Yan J, Wang Q, Wei T, Fan Z J. Adv. Energy Mater., 2014, 4(4): 201470017.
[30]
Wang J C, Kaskel S. J. Mater. Chem., 2012, 22(45): 23710.

doi: 10.1039/c2jm34066f     URL    
[31]
Hubicki Z, Jakowicz A, Łodyga A. Studies in Surface Science and Catalysis. Amsterdam: Elsevier, 1999: 497.
[32]
Yu Z L, Li G C, Fechler N, Yang N, Ma Z Y, Wang X, Antonietti M, Yu S H. Angew. Chem. Int. Ed., 2016, 55(47): 14874.

doi: 10.1002/anie.v55.47     URL    
[33]
Hou J H, Cao C B, Idrees F, Ma X L. ACS Nano, 2015, 9(3): 2556.

doi: 10.1021/nn506394r     URL    
[34]
Knox J H, Ross P. Adv. Chromatogr., 1997, 37: 121.

pmid: 8995773
[35]
Xie A, Dai J D, Chen Y, Liu N, Ge W N, Ma P, Zhang R L, Zhou Z P, Tian S J, Li C X, Yan Y S. Adv. Powder Technol., 2019, 30(1): 170.

doi: 10.1016/j.apt.2018.10.020     URL    
[36]
Song Y G, Liu J L, Sun K, Xu W. RSC Adv., 2017, 7(76): 48324.

doi: 10.1039/C7RA09464G     URL    
[37]
Zhang B P, Yang D J, Qiu X Q, Qian Y, Wang H, Yi C H, Zhang D Q. Carbon, 2020, 162: 256.

doi: 10.1016/j.carbon.2020.02.038     URL    
[38]
Peng L, Hung C T, Wang S W, Zhang X M, Zhu X H, Zhao Z W, Wang C Y, Tang Y, Li W, Zhao D Y. J. Am. Chem. Soc., 2019, 141(17): 7073.

doi: 10.1021/jacs.9b02091     URL    
[39]
Saha D, Li Y C, Bi Z H, Chen J H, Keum J K, Hensley D K, Grappe H A, Meyer H M III, Dai S, Paranthaman M P, Naskar A K. Langmuir, 2014, 30(3): 900.

doi: 10.1021/la404112m     URL    
[40]
Saha D, Warren K E, Naskar A K. Carbon, 2014, 71: 47.

doi: 10.1016/j.carbon.2014.01.005     URL    
[41]
Song J, Kahveci D, Chen M L, Guo Z, Xie E Q, Xu X B, Besenbacher F, Dong M D. Langmuir, 2012, 28(14): 6157.

doi: 10.1021/la300469s     pmid: 22397625
[42]
Qin H F, Jian R H, Bai J R, Tang J H, Zhou Y, Zhu B L, Zhao D J, Ni Z J, Wang L B, Liu W Q, Zhou Q F, Li X. ACS Omega, 2018, 3(1): 1350.

doi: 10.1021/acsomega.7b01870     URL    
[43]
Wang C W, Zhang S Y, Wu S Y, Cao Z Y, Zhang Y F, Li H, Jiang F H, Lyu J F. Bioresour. Technol., 2018, 263: 289.

doi: 10.1016/j.biortech.2018.05.008     URL    
[44]
Wang C W, Zhang S Y, Wu S Y, Cao Z Y, Zhang Y F, Li H, Jiang F H, Lyu J F. Bioresour. Technol., 2018, 254: 231.

doi: 10.1016/j.biortech.2018.01.088     URL    
[45]
Pereira Lopes R, Astruc D. Coord. Chem. Rev., 2021, 426: 213585.

doi: 10.1016/j.ccr.2020.213585     URL    
[46]
Guiotoku M, Hansel F A, Novotny E H, de Freitas Maia C M B. Pesq. Agropec. Bras., 2012, 47(5): 687.

doi: 10.1590/S0100-204X2012000500008     URL    
[47]
Wu S Y, Zhang S Y, Wang C W, Mu C, Huang X H. Fuel Process. Technol., 2018, 171: 293.

doi: 10.1016/j.fuproc.2017.11.025     URL    
[48]
Wang C W, Zhang S Y, Wu S Y, Sun M Y, Lyu J F. Fuel, 2020, 282: 118775.

doi: 10.1016/j.fuel.2020.118775     URL    
[49]
García A, Nieto A, Vila M, Vallet-Regí M. Carbon, 2013, 51: 410.

doi: 10.1016/j.carbon.2012.08.074     URL    
[50]
Zhang L M, You T T, Zhou T, Zhou X, Xu F. ACS Appl. Mater. Interfaces, 2016, 8(22): 13918.

doi: 10.1021/acsami.6b02774     URL    
[51]
Bi Y J, Tao J H, Wu Y Q, Li L Z, Xu Y B, Hu E Y, Wu B B, Hu J T, Wang C M, Zhang J G, Qi Y, Xiao J. Science, 2020, 370(6522): 1313.

doi: 10.1126/science.abc3167     URL    
[52]
Zhang W L, Yin J, Lin Z Q, Lin H B, Lu H Y, Wang Y, Huang W M. Electrochim. Acta, 2015, 176: 1136.

doi: 10.1016/j.electacta.2015.08.001     URL    
[53]
Xi Y B, Yang D J, Qiu X Q, Wang H, Huang J H, Li Q. Ind. Crops Prod., 2018, 124: 747.

doi: 10.1016/j.indcrop.2018.08.018     URL    
[54]
Chang Z Z, Yu B J, Wang C Y. Electrochim. Acta, 2015, 176: 1352.

doi: 10.1016/j.electacta.2015.07.076     URL    
[55]
Xi Y B, Wang Y Y, Yang D J, zhang Z K, Liu W F, Li Q, Qiu X Q. J. Alloys Compd., 2019, 785: 706.

doi: 10.1016/j.jallcom.2019.01.039     URL    
[56]
Xi Y B, Huang S, Yang D J, Qiu X Q, Su H J, Yi C H, Li Q. Green Chem., 2020, 22(13): 4321.

doi: 10.1039/D0GC00945H     URL    
[57]
Chen T, Hu J Z, Zhang L, Pan J, Liu Y Y, Cheng Y T. J. Power Sources, 2017, 362: 236.

doi: 10.1016/j.jpowsour.2017.07.049     URL    
[58]
Huang S, Yang D J, Zhang W L, Qiu X Q, Li Q, Li C Q. Microporous Mesoporous Mater., 2021, 317: 111004.

doi: 10.1016/j.micromeso.2021.111004     URL    
[59]
Dahn J R, Zheng T, Liu Y, Xue J S. Science, 1995, 270(5236): 590.

doi: 10.1126/science.270.5236.590     URL    
[60]
Adelhelm P, Hu Y S, Chuenchom L, Antonietti M, Smarsly B M, Maier J. Adv. Mater., 2007, 19(22): 4012.

doi: 10.1002/(ISSN)1521-4095     URL    
[61]
Li Y Y, Li Z S, Shen P K. Adv. Mater., 2013, 25(17): 2474.

doi: 10.1002/adma.v25.17     URL    
[62]
Chou C Y, Kuo J R, Yen S C. ACS Sustainable Chem. Eng., 2018, 6(4): 4759.

doi: 10.1021/acssuschemeng.7b03887     URL    
[63]
Li C Q, Yang D J, Xi Y B, Qin Y L, Qiu X Q. Chem. J. Chin. Univ., 2018, 39(12): 2725.

doi: 10.1002/cjoc.v39.10     URL    
( 李常青, 杨东杰, 席跃宾, 秦延林, 邱学青. 高等学校化学学报, 2018, 39(12): 2725.)
[64]
Palomares V, Serras P, Villaluenga I, Hueso K B, Carretero-González J, Rojo T. Energy Environ. Sci., 2012, 5(3): 5884.

doi: 10.1039/c2ee02781j     URL    
[65]
Li L, Zheng Y, Zhang S L, Yang J P, Shao Z P, Guo Z P. Energy Environ. Sci., 2018, 11(9): 2310.

doi: 10.1039/C8EE01023D     URL    
[66]
Navarro-Suárez A M, Saurel D, Sánchez-Fontecoba P, Castillo-Martínez E, Carretero-González J, Rojo T. J. Power Sources, 2018, 397: 296.

doi: 10.1016/j.jpowsour.2018.07.023     URL    
[67]
Jia H, Sun N, Dirican M, Li Y, Chen C, Zhu P, Yan C Y, Zang J, Guo J S, Tao J S, Wang J S, Tang F C, Zhang X W. ACS Appl. Mater. Interfaces, 2018, 10(51): 44368.

doi: 10.1021/acsami.8b13033     URL    
[68]
Ghimbeu C M, Zhang B, Yuso A M, Rety B, Tarascon J M. Carbon, 2019, 153: 634.

doi: 10.1016/j.carbon.2019.07.026     URL    
[69]
Yoon D, Hwang J, Chang W, Kim J. ACS Appl. Mater. Interfaces, 2018, 10(1): 569.

doi: 10.1021/acsami.7b14776     URL    
[70]
Du L L, Wu W, Luo C, Xu D W, Guo H Y, Wang R, Zhang T, Wang J, Deng Y H. J. Electrochem. Soc., 2019, 166(2): A423.

doi: 10.1149/2.1361902jes     URL    
[71]
Ren W N, Zhang H F, Guan C, Cheng C W. Adv. Funct. Mater., 2017, 27(32): 1702116.

doi: 10.1002/adfm.v27.32     URL    
[72]
Ding J, Wang H L, Li Z, Kohandehghan A, Cui K, Xu Z W, Zahiri B, Tan X H, Lotfabad E M, Olsen B C, Mitlin D. ACS Nano, 2013, 7(12): 11004.

doi: 10.1021/nn404640c     pmid: 24191681
[73]
Stevens D A, Dahn J R. J. Electrochem. Soc., 2000, 147(4): 1271.

doi: 10.1149/1.1393348     URL    
[74]
Stevens D A, Dahn J R. J. Electrochem. Soc., 2000, 147(12): 4428.

doi: 10.1149/1.1394081     URL    
[75]
Stevens D A, Dahn J R. J. Electrochem. Soc., 2001, 148(8): A803.

doi: 10.1149/1.1379565     URL    
[76]
Zhang B, Ghimbeu C M, Laberty C, Vix-Guterl C, Tarascon J M. Adv. Energy Mater., 2016, 6(1): 1501588.

doi: 10.1002/aenm.201501588     URL    
[77]
Cao Y L, Xiao L F, Sushko M L, Wang W, Schwenzer B, Xiao J, Nie Z M, Saraf L V, Yang Z G, Liu J. Nano Lett., 2012, 12(7): 3783.

doi: 10.1021/nl3016957     URL    
[78]
Sun N, Guan Z, Liu Y W, Cao Y L, Zhu Q Z, Liu H, Wang Z X, Zhang P, Xu B. Adv. Energy Mater., 2019, 9(32): 1970125.

doi: 10.1002/aenm.v9.32     URL    
[79]
Sagues W J, Jain A, Brown D, Aggarwal S, Suarez A, Kollman M, Park S, Argyropoulos D S. Green Chem., 2019, 21(16): 4253.

doi: 10.1039/C9GC01806A     URL    
[80]
Torres-Canas F, Bentaleb A, Föllmer M, Roman J, Neri W, Ly I, DerrÉ A, Poulin P. Carbon, 2020, 163: 120.

doi: 10.1016/j.carbon.2020.02.077     URL    
[81]
Miller J R, Simon P. Science, 2008, 321(5889): 651.

doi: 10.1126/science.1158736     pmid: 18669852
[82]
Zhu Q C, Zhao D Y, Cheng M Y, Zhou J Q, Owusu K A, Mai L Q, Yu Y. Adv. Energy Mater., 2019, 9(36): 1901081.

doi: 10.1002/aenm.v9.36     URL    
[83]
Yin J, Zhang W L, Alhebshi N A, Salah N, Alshareef H N. Small Methods, 2020, 4(3): 1900853.

doi: 10.1002/smtd.v4.3     URL    
[84]
Yu B J, Chang Z Z, Wang C Y. Mater. Chem. Phys., 2016, 181: 187.

doi: 10.1016/j.matchemphys.2016.06.048     URL    
[85]
Zhang W L, Zhao M Z, Liu R Y, Wang X F, Lin H B. Colloids Surf. A: Physicochem. Eng. Aspects, 2015, 484: 518.

doi: 10.1016/j.colsurfa.2015.08.030     URL    
[86]
Wang K L, Cao Y H, Wang X M, Castro M A, Luo B, Gu Z R, Liu J, Hoefelmeyer J D, Fan Q H. J. Power Sources, 2016, 307: 462.

doi: 10.1016/j.jpowsour.2016.01.008     URL    
[87]
Guo N N, Li M, Sun X K, Wang F, Yang R. Green Chem., 2017, 19(11): 2595.

doi: 10.1039/C7GC00506G     URL    
[88]
Pang J, Zhang W F, Zhang J L, Cao G P, Han M F, Yang Y S. Green Chem., 2017, 19(16): 3916.

doi: 10.1039/C7GC01434A     URL    
[89]
Pang J, Zhang W F, Zhang H, Zhang J L, Zhang H M, Cao G P, Han M F, Yang Y S. Carbon, 2018, 132: 280.

doi: 10.1016/j.carbon.2018.02.077     URL    
[90]
Liu F Y, Wang Z X, Zhang H T, Jin L, Chu X, Gu B N, Huang H C, Yang W Q. Carbon, 2019, 149: 105.

doi: 10.1016/j.carbon.2019.04.023     URL    
[91]
Fu F B, Yang D J, Zhang W L, Wang H, Qiu X Q. Chem. Eng. J., 2020, 392: 123721.

doi: 10.1016/j.cej.2019.123721     URL    
[92]
Si W J, Zhou J, Zhang S M, Li S J, Xing W, Zhuo S P. Electrochim. Acta, 2013, 107: 397.

doi: 10.1016/j.electacta.2013.06.065     URL    
[1] 鄢剑锋, 徐进栋, 张瑞影, 周品, 袁耀锋, 李远明. 纳米碳分子——合成化学的魅力[J]. 化学进展, 2023, 35(5): 699-708.
[2] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[3] 廖子萱, 王宇辉, 郑建萍. 碳点基水相室温磷光复合材料研究进展[J]. 化学进展, 2023, 35(2): 263-373.
[4] 朱国辉, 还红先, 于大伟, 郭学益, 田庆华. 废旧锂离子电池选择性提锂[J]. 化学进展, 2023, 35(2): 287-301.
[5] 李璇, 黄炯鹏, 张一帆, 石磊. 二维材料的一维纳米带[J]. 化学进展, 2023, 35(1): 88-104.
[6] 蒋峰景, 宋涵晨. 石墨基液流电池复合双极板[J]. 化学进展, 2022, 34(6): 1290-1297.
[7] 朱月香, 赵伟悦, 李朝忠, 廖世军. Pt基金属间化合物及其在质子交换膜燃料电池阴极氧还原反应中的应用[J]. 化学进展, 2022, 34(6): 1337-1347.
[8] 李芳远, 李俊豪, 吴钰洁, 石凯祥, 刘全兵, 彭翃杰. “蛋黄蛋壳”结构纳米电极材料设计及在锂/钠离子/锂硫电池中的应用[J]. 化学进展, 2022, 34(6): 1369-1383.
[9] 杨世迎, 范丹阳, 保晓娟, 傅培瑶. 碳材料修饰零价铝的作用机制[J]. 化学进展, 2022, 34(5): 1203-1217.
[10] 李婧婧, 李洪基, 黄强, 陈哲. 掺杂对钠离子电池正极材料性能影响机制的研究[J]. 化学进展, 2022, 34(4): 857-869.
[11] 孙浩, 王超鹏, 尹君, 朱剑. 用于电催化析氧反应电极的制备策略[J]. 化学进展, 2022, 34(3): 519-532.
[12] 陈向娟, 王欢, 安伟佳, 刘利, 崔文权. 有机碳材料在光电催化系统中的作用[J]. 化学进展, 2022, 34(11): 2361-2372.
[13] 曹祥康, 孙晓光, 蔡光义, 董泽华. 耐久型超疏水表面:理论模型、制备策略和评价方法[J]. 化学进展, 2021, 33(9): 1525-1537.
[14] 张震, 赵爽, 陈国兵, 李昆锋, 费志方, 杨自春. 碳化硅块状气凝胶的制备及应用[J]. 化学进展, 2021, 33(9): 1511-1524.
[15] 陈阳, 崔晓莉. 锂离子电池二氧化钛负极材料[J]. 化学进展, 2021, 33(8): 1249-1269.