English
新闻公告
More
化学进展 2021, Vol. 33 Issue (8): 1331-1343 DOI: 10.7536/PC201236 前一篇   后一篇

• 综述 •

钼酸铋光催化剂的结构缺陷调控

赵依凡1, 毛琦云1, 翟晓雅1, 张国英1,2,3,*()   

  1. 1 天津师范大学化学学院 天津市功能分子结构与性能重点实验室 天津 300387
    2 山东师范大学 分子与纳米探针教育部重点实验室 济南 250014
    3 南开大学先进能源材料化学教育部重点实验室 天津 300071
  • 收稿日期:2020-12-21 修回日期:2021-02-08 出版日期:2021-08-20 发布日期:2021-03-04
  • 通讯作者: 张国英
  • 基金资助:
    山东师范大学分子与纳米探针教育部重点实验室开放基金(2018KLMNP05); 南开大学先进能源材料化学教育部重点实验室开放基金; 天津市研究生科研创新项目(2020YJSS049)

Structural Defects Regulation of Bismuth Molybdate Photocatalyst

Yifan Zhao1, Qiyun Mao1, Xiaoya Zhai1, Guoying Zhang1,2,3()   

  1. 1 Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University,Tianjin 300387, China
    2 Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University,Jinan 250014, China
    3 Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, China
  • Received:2020-12-21 Revised:2021-02-08 Online:2021-08-20 Published:2021-03-04
  • Contact: Guoying Zhang
  • Supported by:
    Open Foundation of Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University(2018KLMNP05); Open Foundation of Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education); College of Chemistry, Nankai University and the Postgraduate and Doctoral Innovation Project of Tianjin(2020YJSS049)

钼酸铋(Bi2MoO6)作为一种新型层状光催化材料,具有成本低廉、清洁高效、带隙较窄和可见光响应等优点,在降解水体污染物、净化空气、抑菌、光解水、二氧化碳还原及固氮等领域具有广泛的应用前景,是一种极具发展潜力的Bi(Ⅲ)基半导体光催化剂。然而该材料在实际应用中还存在太阳光吸收效率较低、光生载流子复合速率较快等亟待解决的瓶颈问题。针对上述科学问题,对Bi2MoO6光催化剂进行结构缺陷调控已证明是行之有效的解决策略,本文系统阐述了近年来Bi2MoO6晶体结构缺陷工程的研究进展,主要包括各类元素掺杂、氧空位引入以及二者的伴生协同作用等,分别从制备方法和催化性能改善等角度对Bi2MoO6的缺陷研究和发展动态进行了归纳,并对其在相关应用领域的构-效关系及作用机制进行了深入探讨和总结。最后,分析了缺陷型Bi2MoO6光催化剂目前所存在的不足,并对未来的发展方向和前景进行了展望。

As a novel type of Bi(Ⅲ)-based semiconductor photocatalyst, bismuth molybdate(Bi2MoO6) possesses the advantages of layered structure, low cost, cleanness and efficiency, narrow band gap and visible light response, etc. Resultantly, it exhibits widely potential applications in various photocatalytic areas such as degradation of water pollutants, air purification, antibacterial, water splitting, carbon dioxide reduction and nitrogen fixation. However, there are still two main bottleneck problems which would restrict the practical applications of Bi2MoO6 and needs to be addressed urgently. One is the low absorption efficiency for solar energy and the other is the fast recombination rate of photogenerated electron-hole pairs. Introduction and regulation of structure defects in Bi2MoO6 have been proved to be effective strategies to resolve the above problems. In the paper, the research progress of Bi2MoO6 defect engineering in recent years is comprehensively reviewed, including elemental doping, oxygen vacancy, synergistic effects, etc. The different methods to construct defects in Bi2MoO6 and the corresponding photocatalytic properties are extensively summarized. Also, the structure-activity relationship and action mechanism of the structural defects in different research fields are in-depth discussed and concluded. Finally, the present shortcomings of defective Bi2MoO6 photocatalyst are analyzed and the development direction and prospects in future are prospected.

Contents

1 Introduction

2 Elemental doping defect of bismuth molybdate

2.1 Rare earth ion doping

2.2 Transition metal ion doping

2.3 Non-metal ion doping

2.4 Ion co-doping strategy

3 Oxygen vacancy defect of bismuth molybdate

3.1 Ion doping associated oxygen vacancy

3.2 Individual oxygen vacancy

3.3 Oxygen vacancy synergy

4 Conclusion and outlook

()
图1 (a)BMO的Aurivillius型结构[24];(b)BMO的完整及局部DOS图[26]
Fig. 1 (a) Aurivillius structure of BMO[24];(b) Complete and partial DOS diagram of BMO[26]. Copyright 2020, Elsevier; Copyright 2012, Elsevier
图2 (a)La-BMO可见光催化降解RhB的效率,(b)其从棒状向薄片结构的转变[46];(c)Sm-BMO的电子结构随掺杂量的变化[51]
Fig. 2 (a) The visible light photocatalytic efficiency of La-BMO for RhB degradation,(b) transition from rod-like to lamellar structure[46];(c) changes in the electronic structure of Sm-BMO with doping content[51]. Copyright 2018, Springer Nature; Copyright 2016, American Chemical Society.
表1 BMO的过渡金属离子掺杂研究汇总
Table 1 Summary of transition metal ions doped BMO
图3 BMO及0.5% Fe-BMO的(a)产NH3能力对比,(b)能带结构变化及(c,d)相对功函数图[60]
Fig. 3 (a) Comparison of NH3 production capacity,(b) energy band structure change and(c,d) relative work function diagrams of BMO and 0.5% Fe-BMO, respectively[60]. Copyright 2019, Elsevier
图4 BOC及Br-BOC的(a)态密度图和(b)阻抗图[19];C-BMO体系中(c)·O2-和(d)·OH的电子自旋共振(ESR)信号峰[69]
Fig. 4 (a) Density of states and(b) EIS Nyquist curves of BOC and Br-BOC[19]; ESR peaks of(c) ·O2-and(d) ·OH in C-BMO[69]. Copyright 2019, Elsevier; Copyright 2017, Wiley
图5 (a)Tb/Eu、Dy/Sm及Er/Nd的 4f电子补偿性分配示意图[83];(b)Gd/Er/Lu三掺杂BMO的光催化降解机理[84]
Fig. 5 (a) Schematic diagram of compensated distribution of 4f electrons of Tb/Eu, Dy/Sm and Er/Nd[83];(b) photocatalytic degradation mechanism over Gd/Er/Lu triple-doped BMO[84]. Copyright 2017, Elsevier; Copyright 2019, Elsevier
图6 (a)Ce掺杂 BMO体系中缺陷的形成过程示意图,(b)Ce-Vo-BMO样品的ESR光谱,(c)可见光催化降解甲基对氧磷的活性,(d)金黄色葡萄球菌的抑菌效率[99]
Fig. 6 (a) Illustration of the possible formation process of crystal defects in Ce-doped BMO structure,(b) the ESR signal of Ce-Vo-defects in Ce-doped BMO structure,(c) visible light photocatalytic degradation of methyl paraoxon, and(d) photocatalytic disinfection efficiency of staphylococcus aureus[99]. Copyright 2016, American Chemical Society
表2 单一Vo-BMO体系的构筑方法及应用领域汇总
Table 2 Summary of the construction and application of individual Vo-BMO system
图7 (a)水热法制备Vo-BMO分级超结构,(b)富Vo的BMO在吸附苯甲醇前后的原位FTIR光谱[101],(c)Vo-BMO超薄纳米片和BMO块体的EPR谱,(d)原子分辨率STEMI-ADF图像[111]
Fig. 7 (a) Diagram of hierarchical Vo-BMO architectures,(b) in situ FTIR spectra of Vo-rich BMO before and after benzyl alcohol adsorption[101],(c) EPR spectra of Vo-BMO ultrathin nanosheets and bulk BMO,(d) atomic resolution STEMI-ADF images[111]. Copyright 2019, Elsevier; Copyright 2019, Elsevier
图8 BMO基系列样品的(a)紫外-可见漫反射光谱,(b)瞬态光电流响应[104];Fe(Ⅲ)-Vo-BMO体系的(c)HRTEM图像,(d)光催化降解有机污染物的机理示意图[105]
Fig. 8 (a) UV-vis diffuse reflectance spectra, and(b) transient photocurrent response of BMO-based samples[104];(c) HRTEM image and(d) schematic diagram of photocatalytic degradation mechanism for organic pollutants of Fe(Ⅲ)-Vo-BMO[105]. Copyright 2018, Elsevier; Copyright 2019, Elsevier
[1]
Ahmad H, Kamarudin S K, Minggu L J, Kassim M. Renew. Sustain. Energy Rev., 2015, 43: 599.

doi: 10.1016/j.rser.2014.10.101     URL    
[2]
Wang X C, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson J M, Domen K, Antonietti M. Nat. Mater., 2009, 8(1): 76.

doi: 10.1038/nmat2317     URL    
[3]
Song J. ACS Energy Lett., 2019, 4(6): 1443.

doi: 10.1021/acsenergylett.9b01134    
[4]
Mamaghani A H, Haghighat F, Lee C S. Appl. Catal. B: Environ., 2017, 203: 247.

doi: 10.1016/j.apcatb.2016.10.037     URL    
[5]
Wang B Y, Zhang G Y, Cui G W, Xu Y Y, Liu Y, Xing C Y. Inorg. Chem. Front., 2019, 6(1): 209.

doi: 10.1039/C8QI01025K     URL    
[6]
Zhao N, Kong L G, Dong Y M, Wang G L, Wu X M, Jiang P P. ACS Appl. Mater. Interfaces, 2018, 10(11): 9522.

doi: 10.1021/acsami.8b01590     URL    
[7]
Zhang H Z, Dong Y M, Zhao S, Wang G L, Jiang P P, Zhong J, Zhu Y F. Appl. Catal. B: Environ., 2020, 261: 118233.
[8]
Wang C C, Wang X, Liu W. Chem. Eng. J., 2020, 391: 123601.
[9]
Dash D, Panda N R, Sahu D. Appl. Surf. Sci., 2019, 494: 666.

doi: 10.1016/j.apsusc.2019.07.089     URL    
[10]
Wang J P, Song Y N, Hu J, Li Y, Wang Z Y, Yang P, Wang G, Ma Q, Che Q D, Dai Y, Huang B B. Appl. Catal. B: Environ., 2019, 251: 94.

doi: 10.1016/j.apcatb.2019.03.049     URL    
[11]
Feng Y, Wu Q S, Zhang G Y, Sun Y Q. Prog. Chem., 2012, 24(11): 2124.
(冯妍, 吴青松, 张国英, 孙亚秋. 化学进展, 2012, 24(11): 2124.)
[12]
Wu Q S, Cui Y, Yang L M, Zhang G Y, Gao D Z. Sep. Purif. Technol., 2015, 142: 168.

doi: 10.1016/j.seppur.2014.12.039     URL    
[13]
Cui Y, Yang L M, Zhang G Y, Feng Y. Catal. Commun., 2015, 59: 83.

doi: 10.1016/j.catcom.2014.10.001     URL    
[14]
Zhang Z, Zhou C T, Yang S J. Prog. Chem., 2020, 32(9): 1427.

doi: 10.7536/PC200526    
(张志, 邹晨涛, 杨水金. 化学进展, 2020, 32(9): 1427.)

doi: 10.7536/PC200526    
[15]
Yu H B, Jiang L B, Wang H, Huang B B, Yuan X Z, Huang J H, Zhang J, Zeng G M. Small, 2019: 1901008.
[16]
Han D, Du M H, Dai C M, Sun D Y, Chen S Y. J. Mater. Chem. A, 2017, 5(13): 6200.

doi: 10.1039/C6TA10377D     URL    
[17]
Shi M, Li G N, Li J M, Jin X, Tao X P, Zeng B, Pidko E A, Li R G, Li C. Angew. Chem. Int. Ed., 2020, 59(16): 6590.

doi: 10.1002/anie.v59.16     URL    
[18]
Jin X L, Ye L Q, Xie H Q, Chen G. Coord. Chem. Rev., 2017, 349: 84.

doi: 10.1016/j.ccr.2017.08.010     URL    
[19]
Zhang G Y, Wang J J, Shen X Q, Wang J J, Wang B Y, Gao D Z. Appl. Surf. Sci., 2019, 470: 63.

doi: 10.1016/j.apsusc.2018.11.103     URL    
[20]
Fujito H, Kunioku H, Kato D, Suzuki H, Higashi M, Kageyama H, Abe R. J. Am. Chem. Soc., 2016, 138(7): 2082.

doi: 10.1021/jacs.5b11191     URL    
[21]
Toma F M, Cooper J K, Kunzelmann V, McDowell M T, Yu J, Larson D M, Borys N J, Abelyan C, Beeman J W, Yu K M, Yang J H, Chen L, Shaner M R, Spurgeon J, Houle F A, Persson K A, Sharp I D. Nat. Commun., 2016, 7(1): 1.
[22]
Liu Y Y, Lv P, Zhou W, Hong J W. J. Phys. Chem. C, 2020, 124(18): 9696.

doi: 10.1021/acs.jpcc.0c00321     URL    
[23]
Wu X L, Hart J N, Wen X M, Wang L, Du Y, Dou S X, Ng Y H, Amal R, Scott J. ACS Appl. Mater. Interfaces, 2018, 10(11): 9342.

doi: 10.1021/acsami.7b17856     URL    
[24]
Núñez-González R, Rangel R, Antúnez-García J, Galván D H. Solid State Commun., 2020, 318: 113978.
[25]
Shimodaira Y, Kato H, Kobayashi H, Kudo A. J. Phys. Chem. B, 2006, 110(36): 17790.
[26]
Lai K R, Wei W, Zhu Y T, Guo M, Dai Y, Huang B B. J. Solid State Chem., 2012, 187: 103.

doi: 10.1016/j.jssc.2012.01.004     URL    
[27]
Yang Z X, Shen M, Dai K, Zhang X H, Chen H. Appl. Surf. Sci., 2018, 430: 505.

doi: 10.1016/j.apsusc.2017.08.072     URL    
[28]
Bai J W, Li Y, Liu J D, Liu L. Microporous Mesoporous Mater., 2017, 240: 91.

doi: 10.1016/j.micromeso.2016.11.008     URL    
[29]
Li S G, Bai L Q, Ji N, Yu S X, Lin S, Tian N, Huang H W. J. Mater. Chem. A, 2020, 8(18): 9268.

doi: 10.1039/D0TA02102D     URL    
[30]
Tian J, Hao P, Wei N, Cui H Z, Liu H. ACS Catal., 2015, 5(8): 4530.

doi: 10.1021/acscatal.5b00560     URL    
[31]
Meng X C, Zhang Z S. J. Catal., 2016, 344: 616.

doi: 10.1016/j.jcat.2016.10.006     URL    
[32]
Zhang L W, Xu T G, Zhao X, Zhu Y F. Appl. Catal. B: Environ., 2010, 98(3/4): 138.

doi: 10.1016/j.apcatb.2010.05.022     URL    
[33]
Jia Y L, Ma Y, Tang J Z, Shi W B. Dalton Trans., 2018, 47(16): 5542.

doi: 10.1039/C8DT00061A     URL    
[34]
Ke J, Duan X G, Luo S, Zhang H Y, Sun H Q, Liu J, Tade M, Wang S B. Chem. Eng. J., 2017, 313: 1447.

doi: 10.1016/j.cej.2016.11.048     URL    
[35]
Peng Y H, Zhang Y, Tian F H, Zhang J Q, Yu J Q. Crit. Rev. Solid State Mater. Sci., 2017, 42(5): 347.

doi: 10.1080/10408436.2016.1200009     URL    
[36]
Lin X, Hou J, Jiang S S, Lin Z, Wang M, Che G B. RSC Adv., 2015, 5(127): 104815.
[37]
Zhao Z W, Zhang W D, Sun Y J, Yu J Y, Zhang Y X, Wang H, Dong F, Wu Z B. J. Phys. Chem. C, 2016, 120(22): 11889.
[38]
Tao R, Shao C L, Li X H, Li X W, Liu S, Yang S, Zhao C C, Liu Y C. J. Colloid Interface Sci., 2018, 529: 404.

doi: 10.1016/j.jcis.2018.06.035     URL    
[39]
Zhang J L, Liu Z D, Ma Z. ACS Omega, 2019, 4(2): 3871.

doi: 10.1021/acsomega.8b03699     URL    
[40]
Zhang Y, Zhu Y K, Yu J Q, Yang D J, Ng T W, Wong P K, Yu J C. Nanoscale, 2013, 5(14): 6307.

doi: 10.1039/c3nr01338c     pmid: 23748925
[41]
Gao X, Ji X D, Nguyen T T, Gong X C, Chai R S, Guo M H. Vacuum, 2019, 164: 256.

doi: 10.1016/j.vacuum.2019.03.032     URL    
[42]
Bai S, Zhang N, Gao C, Xiong Y J. Nano Energy, 2018, 53: 296.

doi: 10.1016/j.nanoen.2018.08.058     URL    
[43]
Luo J Y, Bai X X, Li Q, Yu X, Li C Y, Wang Z N, Wu W W, Liang Y P, Zhao Z H, Liu H. Nano Energy, 2019, 66: 104187.
[44]
Hanselman C L, Tafen D N, Alfonso D R, Lekse J W, Matranga C, Miller D C, Gounaris C E. Comput. Chem. Eng., 2019, 126: 168.

doi: 10.1016/j.compchemeng.2019.03.033     URL    
[45]
Carey J J, Legesse M, Nolan M. J. Phys. Chem. C, 2016, 120(34): 19160.
[46]
Zhang P, Yi Y N, Yu C X, Li W, Liao P S, Tian R W, Zhou M, Zhou Y F, Li B, Fan M G, Dong L H. J. Mater. Sci.: Mater. Electron., 2018, 29(10): 8617.
[47]
Waqar M, Imran M, Adil S F, Noreen S, Latif S, Khan M, Siddiqui M R H. Materials, 2019, 13(1): 35.

doi: 10.3390/ma13010035     URL    
[48]
Yu C L, Wu Z, Liu R Y, He H B, Fan W H. J. Phys. Chem. Solids, 2016, 93: 7.

doi: 10.1016/j.jpcs.2016.02.008     URL    
[49]
Li H D, Li W J, Wang F Z, Liu X T, Ren C J, Miao X. Appl. Surf. Sci., 2018, 427: 1046.
[50]
Alemi A A, Kashfi R, Shabani B. J. Mol. Catal. A: Chem., 2014, 392: 290.

doi: 10.1016/j.molcata.2014.05.029     URL    
[51]
Kashfi-Sadabad R, Yazdani S, Alemi A, Huan T D, Ramprasad R, Pettes M T. Langmuir, 2016, 32(42): 10967.
[52]
Zhang X H, Zhang H R, Jiang H T, Yu F, Shang Z R. Catal. Lett., 2020, 150(1): 159.

doi: 10.1007/s10562-019-02924-2     URL    
[53]
Yang G, Liang Y J, Li K, Yang J, Xu R, Xie X J. Inorg. Chem. Front., 2019, 6(6): 1507.

doi: 10.1039/c9qi00302a    
[54]
Zhou T F, Hu J C, Li J L. Appl. Catal. B: Environ., 2011, 110: 221.

doi: 10.1016/j.apcatb.2011.09.004     URL    
[55]
Dumrongrojthanath P, Thongtem T, Phuruangrat A, Thongtem S. Res. Chem. Intermed., 2016, 42(5): 5087.

doi: 10.1007/s11164-015-2346-1     URL    
[56]
Wang L, Wang P, Huang B B, Ma X J, Wang G, Dai Y, Zhang X Y, Qin X Y. Appl. Surf. Sci., 2017, 391: 557.

doi: 10.1016/j.apsusc.2016.06.159     URL    
[57]
Fu C X, Gong Y Y, Wu Y T, Liu J Q, Zhang Z, Li C, Niu L Y. Appl. Surf. Sci., 2016, 379: 83.

doi: 10.1016/j.apsusc.2016.03.192     URL    
[58]
Dutta D P, Ballal A, Chopade S, Kumar A. J. Photochem. Photobiol. A: Chem., 2017, 346: 105.

doi: 10.1016/j.jphotochem.2017.05.044     URL    
[59]
Zhang X B, Zhang L, Hu J S, Huang X H. RSC Adv., 2016, 6(38): 32349.
[60]
Meng Q Q, Lv C, Sun J X, Hong W Z, Xing W N, Qiang L S, Chen G, Jin X L. Appl. Catal. B: Environ., 2019, 256: 117781.
[61]
Chakraborty M, Ghosh S, Mahalingam V. Sustain. Energy Fuels, 2020, 4(3): 1507.

doi: 10.1039/C9SE00796B     URL    
[62]
Phuruangrat A, Dumrongrojthanath P, Thongtem S, Thongtem T. Mater. Lett., 2017, 194: 114.

doi: 10.1016/j.matlet.2017.02.026     URL    
[63]
Wang J, Sun Y G, Wang Z M, Wu C C, Rao P H. Russ. J. Phys. Chem., 2019, 93(4): 736.

doi: 10.1134/S0036024419040307     URL    
[64]
Meng X C, Zhang Z S. Appl. Surf. Sci., 2017, 392: 169.

doi: 10.1016/j.apsusc.2016.08.113     URL    
[65]
Ding X, Ho W, Shang J, Zhang L Z. Appl. Catal. B: Environ., 2016, 182: 316.

doi: 10.1016/j.apcatb.2015.09.046     URL    
[66]
Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y. Science, 2001, 293: 269.

pmid: 11452117
[67]
Dong G H, Zhao K, Zhang L Z. Chem. Commun., 2012, 48(49): 6178.

doi: 10.1039/c2cc32181e     URL    
[68]
Chang D W, Baek J B. Chem. Asian J., 2016, 11(8): 1125.

doi: 10.1002/asia.201501328     URL    
[69]
Wang S Y, Ding X, Zhang X H, Pang H, Hai X, Zhan G M, Zhou W, Song H, Zhang L Z, Chen H, Ye J H. Adv. Funct. Mater., 2017, 27(47): 1703923.
[70]
Xing Y X, Gao X C, Ji G F, Liu Z L, Du C F. Appl. Surf. Sci., 2019, 465: 369.

doi: 10.1016/j.apsusc.2018.09.200     URL    
[71]
Wang M, Han J, Guo P Y, Sun M Z, Zhang Y, Tong Z, You M Y, Lv C. J. Phys. Chem. Solids, 2018, 113: 86.

doi: 10.1016/j.jpcs.2017.10.019     URL    
[72]
Zhong Y, He Z T, Chen D M, Hao D, Hao W C. Appl. Surf. Sci., 2019, 467/468: 740.

doi: 10.1016/j.apsusc.2018.10.185     URL    
[73]
Khazaee Z, Mahjoub A R, Cheshme Khavar A H, Srivastava V, Sillanpää M. J. Photochem. Photobiol. A: Chem., 2019, 379: 130.

doi: 10.1016/j.jphotochem.2019.04.046     URL    
[74]
Khazaee Z, Khavar A H C, Mahjoub A R, Motaee A, Srivastava V, Sillanpää M. Sol. Energy, 2020, 196: 567.

doi: 10.1016/j.solener.2019.12.061     URL    
[75]
Phuruangrat A, Dumrongrojthanath P, Kuntalue B, Thongtem S, Thongtem T. Mater. Lett., 2017, 196: 256.

doi: 10.1016/j.matlet.2017.03.073     URL    
[76]
Liu Z, Liu X Q, Yu C L, Wei L F, Ji H B. Sep. Purif. Technol., 2020, 247: 116951.
[77]
Chen S G, Li Y H, Wu Z X, Wu B X, Li H B, Li F J. J. Solid State Chem., 2017, 249: 124.

doi: 10.1016/j.jssc.2017.02.027     URL    
[78]
Huo W C, Xu W N, Cao T, Guo Z Y, Liu X Y, Ge G X, Li N, Lan T, Yao H C, Zhang Y X, Dong F. J. Colloid Interface Sci., 2019, 557: 816.

doi: 10.1016/j.jcis.2019.09.089     URL    
[79]
Irfan S, Li L L, Saleemi A S, Nan C W. J. Mater. Chem. A, 2017, 5(22): 11143.
[80]
Li H L, Qiu L, Bharti B, Dai F W, Zhu M Y, Ouyang F, Lin L. Chemosphere, 2020, 249: 126135.
[81]
Ye Z Z, He H P, Jiang L. Nano Energy, 2018, 52: 527.

doi: 10.1016/j.nanoen.2018.08.001     URL    
[82]
Li H D, Li W J, Gu S N, Wang F Z, Zhou H L, Liu X T, Ren C J. RSC Adv., 2016, 6(53): 48089.
[83]
Li H D, Li W J, Wang F Z, Liu X T, Ren C J. Appl. Catal. B: Environ., 2017, 217: 378.

doi: 10.1016/j.apcatb.2017.06.015     URL    
[84]
Li H D, Li W J, Liu X T, Ren C J, Miao X, Li X Y. Appl. Surf. Sci., 2019, 463: 556.

doi: 10.1016/j.apsusc.2018.08.254     URL    
[85]
Jin S S, Hao H S, Gan Y J, Guo W H, Li H, Hu X F, Hou H M, Zhang G L, Yan S, Gao W Y, Liu G S. Mater. Chem. Phys., 2017, 199: 107.

doi: 10.1016/j.matchemphys.2017.06.053     URL    
[86]
Zhang Z W, Hao H S, Jin S S, Hou Y X, Hou H M, Zhang G L, Bi J R, Yan S, Liu G S, Gao W Y. J. Mater. Res., 2020, 35(3): 312.

doi: 10.1557/jmr.2020.4     URL    
[87]
Wang D J, Shen H D, Guo L, Wang C, Fu F, Liang Y C. RSC Adv., 2016, 6(75): 71052.
[88]
Wang J, Sun Y G, Wu C C, Cui Z, Rao P H. J. Phys. Chem. Solids, 2019, 129: 209.

doi: 10.1016/j.jpcs.2019.01.014    
[89]
Chen X, Liu L, Yu P Y, Mao S S. Science, 2011, 331(6018): 746.

doi: 10.1126/science.1200448     URL    
[90]
Zhu K Y, Shi F, Zhu X F, Yang W S. Nano Energy, 2020, 73: 104761.
[91]
Ji Q Q, Bi L, Zhang J T, Cao H J, Zhao X S. Energy Environ. Sci., 2020, 13(5): 1408.

doi: 10.1039/D0EE00092B     URL    
[92]
Li L, Feng X H, Nie Y, Chen S G, Shi F, Xiong K, Ding W, Qi X Q, Hu J S, Wei Z D, Wan L J, Xia M R. ACS Catal., 2015, 5(8): 4825.

doi: 10.1021/acscatal.5b00320     URL    
[93]
Zhang H X, Zhao M, Jiang Q. Appl. Phys. Lett., 2013, 103(2): 023111.
[94]
Li J L, Zhang M, Guan Z J, Li Q Y, He C Q, Yang J J. Appl. Catal. B: Environ., 2017, 206: 300.

doi: 10.1016/j.apcatb.2017.01.025     URL    
[95]
Pan X Y, Yang M Q, Fu X Z, Zhang N, Xu Y J. Nanoscale, 2013, 5(9): 3601.

doi: 10.1039/c3nr00476g     URL    
[96]
Wang R Q, Li D Y, Wang H L, Liu C L, Xu L J. Nanomaterials, 2019, 9(9): 1341.

doi: 10.3390/nano9091341     URL    
[97]
Phuruangrat A, Ekthammathat N, Kuntalue B, Dumrongrojthanath P, Thongtem S, Thongtem T. J. Nanomater., 2014, 2014: 1.
[98]
Wang M, You M Y, Guo P Y, Tang H Y, Lv C, Zhang Y, Zhu T, Han J. J. Alloys Compd., 2017, 728: 739.

doi: 10.1016/j.jallcom.2017.09.066     URL    
[99]
Dai Z, Qin F, Zhao H P, Ding J, Liu Y L, Chen R. ACS Catal., 2016, 6(5): 3180.

doi: 10.1021/acscatal.6b00490     URL    
[100]
Li H D, Li W J, Gu S N, Wang F Z, Liu X T, Ren C J. Mol. Catal., 2017, 433: 301.
[101]
Jing K Q, Ma W, Ren Y H, Xiong J H, Guo B B, Song Y J, Liang S J, Wu L. Appl. Catal. B: Environ., 2019, 243: 10.

doi: 10.1016/j.apcatb.2018.10.027     URL    
[102]
Wang S Y, Ding X, Yang N, Zhan G M, Zhang X H, Dong G H, Zhang L Z, Chen H. Appl. Catal. B: Environ., 2020, 265: 118585.
[103]
Bai J W, Li X M, Hao Z W, Liu L. J. Colloid Interface Sci., 2020, 560: 510.

doi: 10.1016/j.jcis.2019.10.013     URL    
[104]
Wang D J, Shen H D, Guo L, Wang C, Fu F, Liang Y C. Appl. Surf. Sci., 2018, 436: 536.

doi: 10.1016/j.apsusc.2017.12.002     URL    
[105]
Fu F, Shen H D, Sun X, Xue W W, Shoneye A, Ma J N, Luo L, Wang D J, Wang J G, Tang J W. Appl. Catal. B: Environ., 2019, 247: 150.

doi: 10.1016/j.apcatb.2019.01.056     URL    
[106]
Shen H D, Xue W W, Fu F, Sun J F, Zhen Y Z, Wang D J, Shao B, Tang J W. Chem. Eur. J., 2018, 24(69): 18463.
[107]
Sun Y J, Wang H, Xing Q, Cui W, Li J Y, Wu S J, Sun L D. Chin. J. Catal., 2019, 40(5): 647.

doi: 10.1016/S1872-2067(19)63277-8     URL    
[108]
Guo L, Zhao Q, Shen H D, Han X X, Zhang K L, Wang D J, Fu F, Xu B. Catal. Sci. Technol., 2019, 9(12): 3193.

doi: 10.1039/c9cy00579j    
[109]
Guo J H, Shi L, Zhao J Y, Wang Y, Tang K B, Zhang W Q, Xie C Z, Yuan X Y. Appl. Catal. B: Environ., 2018, 224: 692.

doi: 10.1016/j.apcatb.2017.11.030     URL    
[110]
Chen Y, Yang W Y, Gao S, Sun C X, Li Q. ACS Appl. Nano Mater., 2018, 1(7): 3565.

doi: 10.1021/acsanm.8b00719     URL    
[111]
Di J, Zhao X X, Lian C, Ji M X, Xia J X, Xiong J, Zhou W, Cao X Z, She Y B, Liu H L, Loh K P, Pennycook S J, Li H M, Liu Z. Nano Energy, 2019, 61: 54.

doi: 10.1016/j.nanoen.2019.04.029     URL    
[112]
Samadi M, Shivaee H A, Pourjavadi A, Moshfegh A Z. Appl. Catal. A: Gen., 2013, 466: 153.

doi: 10.1016/j.apcata.2013.06.024     URL    
[113]
Zhao B, Wang X, Zhang Y Z, Gao J N, Chen Z W, Lu Z Y. J. Photochem. Photobiol. A: Chem., 2019, 382: 111928.
[114]
Zhang Y F, Zhu G Q, Hojamberdiev M, Gao J Z, Hao J, Zhou J P, Liu P. Appl. Surf. Sci., 2016, 371: 231.

doi: 10.1016/j.apsusc.2016.02.210     URL    
[115]
Zhao K, Zhang Z S, Feng Y L, Lin S L, Li H, Gao X. Appl. Catal. B: Environ., 2020, 268: 118740.
[1] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[2] 杨越, 续可, 马雪璐. 金属氧化物中氧空位缺陷的催化作用机制[J]. 化学进展, 2023, 35(4): 543-559.
[3] 刘雨菲, 张蜜, 路猛, 兰亚乾. 共价有机框架材料在光催化CO2还原中的应用[J]. 化学进展, 2023, 35(3): 349-359.
[4] 李锋, 何清运, 李方, 唐小龙, 余长林. 光催化产过氧化氢材料[J]. 化学进展, 2023, 35(2): 330-349.
[5] 范倩倩, 温璐, 马建中. 无铅卤系钙钛矿纳米晶:新一代光催化材料[J]. 化学进展, 2022, 34(8): 1809-1814.
[6] 马晓清. 石墨炔在光催化及光电催化中的应用[J]. 化学进展, 2022, 34(5): 1042-1060.
[7] 李晓微, 张雷, 邢其鑫, 昝金宇, 周晋, 禚淑萍. 磁性NiFe2O4基复合材料的构筑及光催化应用[J]. 化学进展, 2022, 34(4): 950-962.
[8] 庞欣, 薛世翔, 周彤, 袁蝴蝶, 刘冲, 雷琬莹. 二维黑磷基纳米材料在光催化中的应用[J]. 化学进展, 2022, 34(3): 630-642.
[9] 占兴, 熊巍, 梁国熙. 从废水到新能源:光催化燃料电池的优化与应用[J]. 化学进展, 2022, 34(11): 2503-2516.
[10] 王文婧, 曾滴, 王举雪, 张瑜, 张玲, 王文中. 铋基金属有机框架的合成与应用[J]. 化学进展, 2022, 34(11): 2405-2416.
[11] 唐晨柳, 邹云杰, 徐明楷, 凌岚. 金属铁络合物光催化二氧化碳还原[J]. 化学进展, 2022, 34(1): 142-154.
[12] 葛明, 胡征, 贺全宝. 基于尖晶石型铁氧体的高级氧化技术在有机废水处理中的应用[J]. 化学进展, 2021, 33(9): 1648-1664.
[13] 陈肖萍, 陈巧珊, 毕进红. 光催化降解土壤中多环芳烃[J]. 化学进展, 2021, 33(8): 1323-1330.
[14] 郭俊兰, 梁英华, 王欢, 刘利, 崔文权. 光催化制氢的助催化剂[J]. 化学进展, 2021, 33(7): 1100-1114.
[15] 毕洪飞, 刘劲松, 吴正颖, 索赫, 吕学良, 付云龙. 硫化铟锌的改性合成及光催化特性[J]. 化学进展, 2021, 33(12): 2334-2347.
阅读次数
全文


摘要

钼酸铋光催化剂的结构缺陷调控