English
新闻公告
More
化学进展 2020, Vol. 32 Issue (4): 454-466 DOI: 10.7536/PC190832 前一篇   后一篇

所属专题: 锂离子电池

• •

碳在锂离子电池硅碳复合材料中的作用

张伟1,2,3, 齐小鹏1,2, 方升1,2, 张健华1,2,3, 史碧梦1,2, 杨娟玉1,2,3,**()   

  1. 1. 有研科技集团有限公司国家动力电池创新中心 北京 100088
    2. 国联汽车动力电池研究院有限责任公司 北京 100088
    3. 北京有色金属研究总院 北京 100088
  • 收稿日期:2019-08-30 修回日期:2020-01-02 出版日期:2020-04-05 发布日期:2020-03-30
  • 通讯作者: 杨娟玉
  • 作者简介:
    ** 通信作者 Corresponding author e-mail:
  • 基金资助:
    国家重点研发计划(2016YFB0100400); 国家自然科学基金项目(51604032); 北京市优秀人才培养资助项目(2017000097607G094)

Effects of Carbon on Silicon-Carbon Composites in Lithium-Ion Batteries

Wei Zhang1,2,3, Xiaopeng Qi1,2, Sheng Fang1,2, Jianhua Zhang1,2,3, Bimeng Shi1,2, Juanyu Yang1,2,3,**()   

  1. 1. National Power Battery Innovation Center, GRINM Group Co., Ltd., Beijing 100088, China
    2. China Automotive Battery Research Institute Co., Ltd., Beijing 100088, China
    3. General Research Institute for Nonferrous Metals, Beijing 100088, China
  • Received:2019-08-30 Revised:2020-01-02 Online:2020-04-05 Published:2020-03-30
  • Contact: Juanyu Yang
  • Supported by:
    The work was supported by the National Key R&D Program of China(2016YFB0100400); the National Natural Science Foundation of China(51604032); the Beijing Excellent Talents Training Project(2017000097607G094)

随着低比容量硅碳复合材料(<500 mAh/g)在锂离子电池中的商业化应用,硅基负极材料也从实验室研究走向了产业化发展。近年来的研究工作中,许多方法被用来解决硅在循环过程中体积变化(>300%)所带来的一系列问题。在材料结构方面,从最初的硅材料纳米化、硅与其他材料复合等技术手段转变到了硅碳复合材料二次颗粒的结构设计、表面包覆层设计等方法;在应用性能方面,除了早期文献报道的材料比容量、循环性能等参数外,还增加了材料比表面积、振实密度、首次及循环库仑效率等更符合电池实际应用要求的性能参数研究,从而极大地推动了硅基负极材料的商业化应用进程。本文首先综述了近年来硅碳复合材料组成、结构设计的发展脉络,进一步分析了由石墨、软碳、硬碳、碳纤维和石墨烯等碳源合成的硅碳复合材料的结构特点,并对其电化学性能进行分析对比,总结了碳在硅碳复合材料结构及其性能上发挥的作用。最后,对硅碳复合材料制备过程中的结构设计要求和碳材料的选择进行了分析和展望。

With the commercial application of low specific capacity silicon-carbon composites(<500 mAh/g) in lithium-ion batteries, silicon-based anode materials have also evolved from laboratory research to industrialization. In recent years, various investigations have been proposed to solve the problems caused by the volume change (>300%) of silicon during lithiation/delithiation. From the perspective of material structural design, the research focus has gradually shifted from the initial silicon nano-structuration and elaboration of silicon-based composite materials to the structural design of the silicon-carbon composite secondary particles and the surface coating design. In terms of application performance research, in addition to specific capacity and cycle performance of materials reported in the early literature, the specific surface area, tap density, initial and cyclic coulombic efficiency and other parameters of materials which are more in line with the practical application requirements of the batteries have been widely studied, thus greatly promoting the commercial application process of the silicon-based anode materials. In this review, the development of the composition and structural design of silicon-carbon composites in recent years are presented and summarized. The structural characteristics and electrochemical properties of silicon-carbon composites synthesized by graphite, soft carbon, hard carbon, carbon fiber and graphene as carbon sources are further proposed and compared. Moreover, the effects of carbon in the structure and properties of silicon-carbon composites are briefly summarized. Finally, the selection of carbon material and structural design in the preparation of silicon-carbon composites are discussed and prospected.

()
图1 石榴型Si/C结构(a)[41]和西瓜型的Si/C微球(b)[43]的示意图
Fig. 1 Schematic diagram of pomegranate type Si/C structure (a)[41] and watermelon type Si/C microsphere (b)[43]. Reprinted with permission from Ref 41 and Ref 43. Copyright 2014 Springer Nature and 2017 John Wiley and Sons
图2 硅碳复合材料结构截面示意图(a),硅碳复合材料合成示意图(b),颗粒截面(c),石墨表面纳米硅层SEM图(d),元素分布的STEM图(e)和复合材料颗粒截面的高分辨率TEM图像(f)[44]
Fig. 2 Schematic diagram of the structure of silicon-carbon composite material (a), schematic diagram of synthesis of silicon-carbon composite material (b), SEM images of cross-sectional particles (c) and silicon nanolayer on the graphite surface (d), STEM image for element mapping (e), High-resolution TEM image at the interfacial region of composite materials (f)[44]. Reprinted with permission from Ref 44. Copyright 2016 Springer Nature
表1 含硬碳的硅碳复合材料基本性质的比较
Table 1 The comparison of basic properties of hard carbon containing silicon-carbon composites
表2 含软碳的硅碳复合材料基本性质的比较
Table 2 The comparison of basic properties of soft carbon containing silicon-carbon composites
图3 Si/C微球的合成示意图(a),反应0.5、1、1.5和2 h的Si/C微球的SEM图(b~e)[97]
Fig. 3 Schematic diagram of the synthesis process of Si/C microspheres (a), SEM images of composites after reaction for 0.5, 1, 1.5, and 2 h, respectively (b~e)[97]. Reprinted with permission from Ref 97. Copyright 2019 American Chemical Society
[1]
Armand M , Tarascon J M . Nature, 2008,451:652. https://doi.org/10.1038/451652a

doi: 10.1038/451652a     URL    
[2]
Boukamp B A , Lesh G C , Huggins R A . Journal of the Electrochemical Society, 1981,128(4):725. https://iopscience.iop.org/article/10.1149/1.2127495

doi: 10.1149/1.2127495     URL    
[3]
Winter M , Besenhard J O , Spahr M E , Novák P . Advanced Materials, 1998,10(10):725. http://doi.wiley.com/10.1002/%28ISSN%291521-4095

doi: 10.1002/(ISSN)1521-4095     URL    
[4]
Luo F , Chu G , Xia X , Liu B , Zheng J , Li J , Li H , Gu C , Chen L . Nanoscale, 2015,7(17):7651. http://xlink.rsc.org/?DOI=C5NR00045A

doi: 10.1039/C5NR00045A     URL    
[5]
Liu Y , Guo X , Li J , Lv Q , Ma T , Zhu W , Qiu X . Journal of Materials Chemistry A, 2013,1(45):14075. 31d721fd-074c-4a9b-8a3a-31b2e68f9272 http://dx.doi.org/10.1039/c3ta12982a

doi: 10.1039/c3ta12982a     URL    
[6]
Wu H , Chan G , Choi J W , Ryu I , Yao Y , McDowell M T , Lee S W , Jackson A , Yang Y , Hu L , Cui Y . Nature Nanotechnology, 2012,7(5):310. https://doi.org/10.1038/nnano.2012.35

doi: 10.1038/nnano.2012.35     URL    
[7]
Liu X H , Zhong L , Huang S , Mao S X , Zhu T , Huang J Y . ACS Nano, 2012,6(2):1522. https://pubs.acs.org/doi/10.1021/nn204476h

doi: 10.1021/nn204476h     URL    
[8]
Oh S W , Myung S T , Bang H J , Yoon C S , Amine K , Sun Y K . Electrochemical and Solid State Letters, 2009,12(9):A181. https://iopscience.iop.org/article/10.1149/1.3143901

doi: 10.1149/1.3143901     URL    
[9]
Ryu H , Sung Y E , Oh S M . Electrochemical and Solid State Letters, 2004,7(10):A306. https://iopscience.iop.org/article/10.1149/1.1792242

doi: 10.1149/1.1792242     URL    
[10]
Sandu I , Moreau P , Guyomard D , Brousse T , Roue L . Solid State Ionics, 2007,178(21/22):1297. https://linkinghub.elsevier.com/retrieve/pii/S0167273807002342

doi: 10.1016/j.ssi.2007.07.007     URL    
[11]
Jung S C , Choi J W , Han Y K . Nano Letters, 2012,12(10):5342. 350cc32b-2348-4b3a-a564-0e8614dded7e http://dx.doi.org/10.1021/nl3027197

doi: 10.1021/nl3027197     URL    
[12]
Chan C K , Ruffo R , Hong S S , Cui Y . Journal of Power Sources, 2009,189(2):1132. https://linkinghub.elsevier.com/retrieve/pii/S0378775309000524

doi: 10.1016/j.jpowsour.2009.01.007     URL    
[13]
Chan C K , Ruffo R , Hong S S , Huggins R A , Cui Y . Journal of Power Sources, 2009,189(1):34. https://linkinghub.elsevier.com/retrieve/pii/S0378775308023616

doi: 10.1016/j.jpowsour.2008.12.047     URL    
[14]
Cui L F , Ruffo R , Chan C K , Peng H , Cui Y . Nano Letters, 2009,9(1):491. https://pubs.acs.org/doi/10.1021/nl8036323

doi: 10.1021/nl8036323     URL    
[15]
Zhou G , Xu L , Hu G , Mai L , Cui Y . Chemical Reviews, 2019,119(20):11042. https://pubs.acs.org/doi/10.1021/acs.chemrev.9b00326

doi: 10.1021/acs.chemrev.9b00326     URL    
[16]
Park M H , Kim M G , Joo J , Kim K , Kim J , Ahn S , Cui Y , Cho J . Nano Letters, 2009,9(11):3844. https://pubs.acs.org/doi/10.1021/nl902058c

doi: 10.1021/nl902058c     URL    
[17]
Ma T , Xu H , Yu X , Li H , Zhang W , Cheng X , Zhu W , Qiu X . ACS Nano, 2019,13(2):2274.
[18]
Lv Q , Liu Y , Ma T , Zhu W , Qiu . ACS Appl. Mater. Interfaces, 2015,7(42):23501. https://pubs.acs.org/doi/10.1021/acsami.5b05970

doi: 10.1021/acsami.5b05970     URL    
[19]
Yao Y , McDowell M T , Ryu I , Wu H , Liu N , Hu L , Nix W D , Cui Y . Nano Letters, 2011,11(7):2949. https://pubs.acs.org/doi/10.1021/nl201470j

doi: 10.1021/nl201470j     URL    
[20]
Ma T , Yu X , Cheng X , Li H , Zhu W , Qiu X . ACS Appl. Mater. Interfaces, 2017,9(15):13247. https://pubs.acs.org/doi/10.1021/acsami.7b03046

doi: 10.1021/acsami.7b03046     URL    
[21]
Du F H , Wang K X , Chen J S . Journal of Materials Chemistry A, 2016,4(1):32. http://xlink.rsc.org/?DOI=C5TA06962A

doi: 10.1039/C5TA06962A     URL    
[22]
Li Y , Yan K , Lee H W , Lu Z , Liu N , Cui Y . Nature Energy, 2016,1:15029. https://doi.org/10.1038/nenergy.2015.29

doi: 10.1038/nenergy.2015.29     URL    
[23]
Wu J , Cao Y , Zhao H , Mao J , Guo Z . Carbon Energy, 2019,1(1):57. https://onlinelibrary.wiley.com/toc/26379368/1/1

doi: 10.1002/cl2.v1.1     URL    
[24]
Li P , Zhang K , Park J H . Journal of Materials Chemistry A, 2018,6(5):1900. http://xlink.rsc.org/?DOI=C7TA10343C

doi: 10.1039/C7TA10343C     URL    
[25]
Zhang X , Kong D , Li X , Zhi L . Advanced Functional Materials, 2019,29(2):1806061. http://doi.wiley.com/10.1002/adfm.v29.2

doi: 10.1002/adfm.v29.2     URL    
[26]
Xu Y , Yin G , Ma Y , Zuo P , Cheng X . Journal of Materials Chemistry, 2010,20(16):3216. http://xlink.rsc.org/?DOI=b921979j

doi: 10.1039/b921979j     URL    
[27]
Du C , Chen M , Wang L , Yin G . Journal of Materials Chemistry, 2011,21(39):15692. 4cac277c-a7a8-427c-85f6-d60fded41c6a http://dx.doi.org/10.1039/c1jm12368h

doi: 10.1039/c1jm12368h     URL    
[28]
Wang T , Wang F , Zhu H . Materials Letters, 2015,161:89. https://linkinghub.elsevier.com/retrieve/pii/S0167577X15304328

doi: 10.1016/j.matlet.2015.08.077     URL    
[29]
Feng K , Li M , Liu W , Kashkooli A G , Xiao X , Cai M , Chen Z . Small, 2018,14(8):1702737.
[30]
Umeno T , Fukuda K , Wang H , Dimov N , Iwao T , Yoshio M . Chemistry Letters, 2001,30(11):1186. http://www.journal.csj.jp/doi/10.1246/cl.2001.1186

doi: 10.1246/cl.2001.1186     URL    
[31]
Yang X Q , McBreen J , Yoon W S , Yoshio M , Wang H Y , Fukuda K , Umeno T Electrochemistry Communications, 2002,4(11):893. 445a9894-478c-4687-b292-8ee3ae55a854 http://www.sciencedirect.com/science/article/pii/S1388248102004836

doi: 10.1016/S1388-2481(02)00483-6     URL    
[32]
Yoshio M , Wang H Y , Fukuda K , Umeno T , Dimov N , Ogumi Z . Journal of the Electrochemical Society, 2002,149(12):A1598. https://iopscience.iop.org/article/10.1149/1.1518988

doi: 10.1149/1.1518988     URL    
[33]
Dimov N , Fukuda K , Umeno T , Kugino S , Yoshio M . Journal of Power Sources, 2003,114(1):88. https://linkinghub.elsevier.com/retrieve/pii/S0378775302005335

doi: 10.1016/S0378-7753(02)00533-5     URL    
[34]
Dimov N , Kugino S , Yoshio M . Electrochimica Acta, 2003,48(11):1579. 6fd78550-13cb-47ba-87b6-0b2c3c2af22b http://www.sciencedirect.com/science/article/pii/S0013468603000306

doi: 10.1016/S0013-4686(03)00030-6     URL    
[35]
Ng S H , Wang J , Konstantinov K , Wexler D , Chew S Y , Guo Z , Liu H K . Journal of Power Sources, 2007,174(2):823. https://linkinghub.elsevier.com/retrieve/pii/S0378775307013882

doi: 10.1016/j.jpowsour.2007.06.165     URL    
[36]
Liu N , Wu H , McDowell M T , Yao Y , Wang C , Cui Y Nano Letters, 2012,12(6):3315. 7750e39a-a176-4be3-bdbb-2c5a59e4299a http://dx.doi.org/10.1021/nl3014814

doi: 10.1021/nl3014814     URL    
[37]
Zhang L , Rajagopalan R , Guo H , Hu X , Dou S , Liu H . Advanced Functional Materials, 2016,26(3):440. http://doi.wiley.com/10.1002/adfm.v26.3

doi: 10.1002/adfm.v26.3     URL    
[38]
Su H , Barragan A A , Geng L , Long D , Ling L , Bozhilov K N , Mangolini L , Guo J. Angew. Chem. Int. Ed. Engl., 2017,56(36):10780.
[39]
吴帅锦(Wu S J),杨娟玉(Yang J Y),于冰(Yu B),方升(Fang S),武兆辉(Wu Z H),史碧梦(Shi B M) 化学进展(Progress in Chemistry), 2018,30(2/3):272.
[40]
Wu S , Yu B , Wu Z , Fang S , Shi B , Yang J . RSC Advances, 2018,8(16):8544. http://xlink.rsc.org/?DOI=C8RA00539G

doi: 10.1039/C8RA00539G     URL    
[41]
Liu N , Lu Z , Zhao J , McDowell M T , Lee H W , Zhao W , Cui Y Nature Nanotechnology, 2014,9(3):187. 5a0b662a-887e-4fbb-bb8d-adfee236b11a http://dx.doi.org/10.1038/NNANO.2014.6

doi: 10.1038/NNANO.2014.6     URL    
[42]
Lin D , Lu Z , Hsu P C , Lee H R , Liu N , Zhao J , Wang H , Liu C , Cui Y . Energy & Environmental Science, 2015,8(8):2371.
[43]
Xu Q , Li J Y , Sun J K , Yin Y X , Wan L J , Guo Y G . Advanced Energy Materials, 2017,7(3):1601481. http://doi.wiley.com/10.1002/aenm.201601481

doi: 10.1002/aenm.201601481     URL    
[44]
Ko M , Chae S , Ma J , Kim N , Lee H W , Cui Y , Cho J . Nature Energy, 2016,1(9):16113. https://doi.org/10.1038/nenergy.2016.113

doi: 10.1038/nenergy.2016.113     URL    
[45]
Xiao C , He P , Ren J , Yue M , Huang Y , He X . RSC Advances, 2018,8(48):27580. http://xlink.rsc.org/?DOI=C8RA04804E

doi: 10.1039/C8RA04804E     URL    
[46]
Fan P , Mu T , Lou S , Cheng X , Gao Y , Du C , Zuo P , Ma Y , Yin G . Electrochimica Acta, 2019,306:590. https://linkinghub.elsevier.com/retrieve/pii/S0013468619305778

doi: 10.1016/j.electacta.2019.03.154     URL    
[47]
Yazami R , Deschamps M . Journal of Power Sources, 1995,54(2):411.
[48]
Tokumitsu K , Fujimoto H , Mabuchi A , Kasuh T . Journal of Power Sources, 2000,90(2):206. https://linkinghub.elsevier.com/retrieve/pii/S0378775300004122

doi: 10.1016/S0378-7753(00)00412-2     URL    
[49]
Matsumura Y , Wang S , Kasuh T , Maeda T . Synthetic Metals, 1995,71(1):1755.
[50]
Mabuchi A , Tokumitsu K , Fujimoto H , Kasuh T . Journal of the Electrochemical Society, 1995,142(4):1041.
[51]
Dahn J R , Zheng T , Liu Y , Xue J S . Science, 1995,270(5236):590.
[52]
Choi S , Kim M C , Moon S H , Lee J E , Shin Y K , Kim E S , Park K W . Journal of Industrial and Engineering Chemistry, 2018,64:344.
[53]
Li W , Li M , Shi J A , Zhong X , Gu L , Yu Y . Nanoscale, 2018,10(26):12430.
[54]
Zhou X , Liu Y , Du C , Ren Y , Mu T , Zuo P , Yin G , Ma Y , Cheng X , Gao Y . Journal of Power Sources, 2018,381:156.
[55]
Tao H , Zhu S , Xiong L , Zhang L , Yang X . Chemistryselect, 2017,2(9):2832.
[56]
Wang M S , Wang G L , Wang S , Zhang J , Wang J , Zhong W , Tang F , Yang Z L , Zheng J , Li X . Chemical Engineering Journal, 2019,356:895.
[57]
Kim S K , Ha T , Lee C , Chang H , Jang H D . Macromolecular Rapid Communications, 2019,40(9):1800832.
[58]
Jeschull F , Surace Y , Zürcher S , Spahr M E , Novák P , Trabesinger S . Electrochimica Acta, 2019,320:134602.
[59]
Zhu X , Chen H , Wang Y , Xia L , Tan Q , Li H , Zhong Z , Su F , Zhao X S . Journal of Materials Chemistry A, 2013,1(14):4483. http://xlink.rsc.org/?DOI=c3ta01474f

doi: 10.1039/c3ta01474f     URL    
[60]
Wang Z , Mao Z , Lai L , Okubo M , Song Y , Zhou Y , Liu X , Huang W . Chemical Engineering Journal, 2017,313:187.
[61]
Mu T , Zhang Z , Li Q , Lou S , Zuo P , Du C , Yin G . Journal of Colloid and Interface Science, 2019,555:783.
[62]
Hasegawa T , Mukai S R , Shirato Y , Tamon H . Carbon, 2004,42(12/13):2573. https://linkinghub.elsevier.com/retrieve/pii/S0008622304003689

doi: 10.1016/j.carbon.2004.05.050     URL    
[63]
Zuo P , Yin G , Ma Y . Electrochimica Acta, 2007,52(15):4878. 5f314374-3756-4960-90b7-beac83eeaeb1 http://www.sciencedirect.com/science/article/pii/S0013468607000758

doi: 10.1016/j.electacta.2006.12.061     URL    
[64]
Su M , Wang Z , Guo H , Li X , Huang S , Gan L , Xiao W . Powder Technology, 2013,249:105. 4d16a8b8-8c81-4b15-8e0c-2c706e428de2 http://dx.doi.org/10.1016/j.powtec.2013.07.021

doi: 10.1016/j.powtec.2013.07.021     URL    
[65]
Wang M S , Fan L Z . Journal of Power Sources, 2013,244:570.
[66]
Lee J K , Kung M C , Trahey L , Missaghi M N , Kung H H . Chemistry of Materials, 2009,21(1):6. https://pubs.acs.org/doi/10.1021/cm8022314

doi: 10.1021/cm8022314     URL    
[67]
Gan C , Zhang C , Liu P , Liu Y , Wen W , Liu B , Xie Q , Huang L , Luo X . Electrochimica Acta, 2019,307:107. https://linkinghub.elsevier.com/retrieve/pii/S0013468619306188

doi: 10.1016/j.electacta.2019.03.186     URL    
[68]
Lu Z , Liu N , Lee H W , Zhao J , Li W , Li Y , Cui Y . ACS Nano, 2015,9(3):2540.
[69]
Luo W , Wang Y , Chou S , Xu Y , Li W , Kong B , Dou S X , Liu H K , Yang J . Nano Energy, 2016,27:255.
[70]
Lu Z , Li B , Yang D , Lv H , Xue M , Zhang C . RSC Advances, 2018,8(7):3477. http://xlink.rsc.org/?DOI=C7RA13580G

doi: 10.1039/C7RA13580G     URL    
[71]
Li B , Li K , Lu Y , Lu C , Ling L . Energy Sources, 2003,25(8):827.
[72]
Lin J H , Ko T H , Kuo W S , Wei C H . Energy & Fuels, 2010,24(7):4090.
[73]
Jiang X , Fang H C , Xiao P , Liu T , Zhu J M , Wang Y C , Liu P F , Li Y . Journal of Alloys and Compounds, 2018,744:165.
[74]
Guo H , Li X , Zhang X , Wang Z , Peng W , Zhang B . Journal of Central South University, 2006,13:58.
[75]
Hou X , Zhang M , Wang J , Hu S , Liu X . Journal of Solid State Electrochemistry, 2015,19(12):3595. http://link.springer.com/10.1007/s10008-015-2965-x

doi: 10.1007/s10008-015-2965-x     URL    
[76]
Yao Y , Zhang J , Xue L , Huang T , Yu A . Journal of Power Sources, 2011,196(23):10240. https://linkinghub.elsevier.com/retrieve/pii/S0378775311015072

doi: 10.1016/j.jpowsour.2011.08.009     URL    
[77]
Guan P , Li J , Lu T , Guan T , Ma Z , Peng Z , Zhu X , Zhang L . ACS Appl. Mater. Interfaces, 2018,10(40):34283.
[78]
Liu Y , Wen Z Y , Wang X Y , Hirano A , Imanishi N , Takeda Y . Journal of Power Sources, 2009,189(1):733.
[79]
Ng S H , Wang J , Wexler D , Konstantinov K , Guo Z P , Liu H K . Angewandte Chemie, 2006,118(41):7050.
[80]
Ng S H , Wang J , Wexler D , Chew S Y , Liu H K . Journal of Physical Chemistry C, 2007,111(29):11131.
[81]
Gu P , Cai R , Zhou Y , Shao Z . Electrochimica Acta, 2010,55(12):3876.
[82]
Lee S J , Kim H J , Hwang T H , Choi S , Park S H , Deniz E , Jung D S , Choi J W . Nano Letters, 2017,17(3):1870.
[83]
Sohn H , Kim D H , Yi R , Tang D , Lee S E , Jung Y S , Wang D . Journal of Power Sources, 2016,334:128.
[84]
Zhou J , Jiang Z , Cai W , Liu X , Zhu Y , Lan Y , Ma K , Qian Y . Dalton Transactions, 2016,45(35):13667. http://xlink.rsc.org/?DOI=C6DT02551J

doi: 10.1039/C6DT02551J     URL    
[85]
Ren W , Zhang Z , Wang Y , Tan Q , Zhong Z , Su F . Journal of Materials Chemistry A, 2015,3(11):5859.
[86]
Jeong S , Li X , Zheng J , Yan P , Cao R , Jung H J , Wang C , Liu J , Zhang J G . Journal of Power Sources, 2016,329:323.
[87]
Jenkins G M , Kawamura K . Nature, 1971,231(5299):175. https://doi.org/10.1038/231175a0

doi: 10.1038/231175a0     URL    
[88]
Lee J H , Lee H Y , Oh S M , Lee S J , Lee K Y , Lee S M . Journal of Power Sources, 2007,166(1):250. https://linkinghub.elsevier.com/retrieve/pii/S037877530700095X

doi: 10.1016/j.jpowsour.2006.12.078     URL    
[89]
Kim K J , Lee T S , Kim H G , Lim S H , Lee S M . Electrochimica Acta, 2014,135:27. ac8e6c1d-d7bf-4141-afc4-e30d47feae9b http://dx.doi.org/10.1016/j.electacta.2014.04.171

doi: 10.1016/j.electacta.2014.04.171     URL    
[90]
Han Y J , Kim J , Yeo J S , An J C , Hong I P , Nakabayashi K , Miyawaki J , Jung J D , Yoon S H . Carbon, 2015,94:432.
[91]
Park Y S , Kim J Y , Lee S M . Electrochemical and Solid State Letters, 2011,14(4):A36.
[92]
Lee J H , Kim W J , Kim J Y , Lim S H , Lee S M . Journal of Power Sources, 2008,176(1):353.
[93]
Lee E H , Jeong B O , Jeong S H , Kim T J , Kim Y S , Jung Y . Bulletin of the Korean Chemical Society, 2013,34(5):1435. http://koreascience.or.kr/journal/view.jsp?kj=JCGMCS&amp;py=2013&amp;vnc=v34n5&amp;sp=1435

doi: 10.5012/bkcs.2013.34.5.1435     URL    
[94]
Kim S Y , Lee J , Kim B H , Kim Y J , Yang K S , Park M S ACS Appl. Mater. Interfaces, 2016,8(19):12109. https://pubs.acs.org/doi/10.1021/acsami.5b11628

doi: 10.1021/acsami.5b11628     URL    
[95]
Yang Z , Yang Y , Guo H , Wang Z , Li X , Zhou Y , Wang J . Ionics, 2018,24(11):3405.
[96]
Choi S H , Nam G , Chae S , Kim D , Kim N , Kim W S , Ma J , Sung J , Han S M , Ko M , Lee H W , Cho J . Advanced Energy Materials, 2019,9(4):1803121. http://doi.wiley.com/10.1002/aenm.v9.4

doi: 10.1002/aenm.v9.4     URL    
[97]
Li J Y , Li G , Zhang J , Yin Y X , Yue F S , Xu Q , Guo Y G . ACS Appl. Mater. Interfaces, 2019,11(4):4057.
[98]
Liu B , Lu H , Chu G , Luo F , Zheng J , Chen S , Li H . Chinese Physics B, 2018,27(8).
[99]
Li J , Wang J , Yang J , Ma X , Lu S . Journal of Alloys and Compounds, 2016,688:1072.
[100]
Zhang J , Fang S , Qi X , Yu Z , Wu Z , Yang J , Lu S . Journal of Energy Chemistry, 2020,40:171.
[101]
Yang J , Lu S , Kan S , Zhang X , Du J . Chemical Communications, 2009, (22):3273.
[102]
Yoon S , Kim H , Seung M O . Journal of Power Sources, 2001,94:68. https://linkinghub.elsevier.com/retrieve/pii/S0378775300006017

doi: 10.1016/S0378-7753(00)00601-7     URL    
[103]
Lu Z , Zhang L , Liu X . Journal of Power Sources, 2010,195(13):4304.
[104]
Wen Z S , Yang J , Wang B F , Wang K , Liu Y . Electrochemistry Communications, 2003,5(2):165.
[105]
Lee H Y , Lee S M . Electrochemistry Communications, 2004,6(5):465.
[106]
Zhu X , Choi S H , Tao R , Jia X , Lu Y . Journal of Alloys and Compounds, 2019,791:1105.
[107]
Park S W , Shim H W , Kim J C , Kim D W . Journal of Alloys and Compounds, 2017,728:490.
[108]
Wu J B , Lin M L , Cong X , Liu H N , Tan P H . Chemical Society Reviews, 2018,47(5):1822.
[109]
Tao H , Xiong L , Zhu S , Zhang L , Yang X . Journal of Electroanalytical Chemistry, 2017,797:16.
[110]
Yu Y , Li G , Zhou S , Chen X , Lee H W , Yang W . Carbon, 2017, 120: 397.
[1] 朱国辉, 还红先, 于大伟, 郭学益, 田庆华. 废旧锂离子电池选择性提锂[J]. 化学进展, 2023, 35(2): 287-301.
[2] 李芳远, 李俊豪, 吴钰洁, 石凯祥, 刘全兵, 彭翃杰. “蛋黄蛋壳”结构纳米电极材料设计及在锂/钠离子/锂硫电池中的应用[J]. 化学进展, 2022, 34(6): 1369-1383.
[3] 王才威, 杨东杰, 邱学青, 张文礼. 木质素多孔碳材料在电化学储能中的应用[J]. 化学进展, 2022, 34(2): 285-300.
[4] 陈阳, 崔晓莉. 锂离子电池二氧化钛负极材料[J]. 化学进展, 2021, 33(8): 1249-1269.
[5] 陆嘉晟, 陈嘉苗, 何天贤, 赵经纬, 刘军, 霍延平. 锂电池用无机固态电解质[J]. 化学进展, 2021, 33(8): 1344-1361.
[6] 高金伙, 阮佳锋, 庞越鹏, 孙皓, 杨俊和, 郑时有. 高电压锂离子正极材料LiNi0.5Mn1.5O4高温特性[J]. 化学进展, 2021, 33(8): 1390-1403.
[7] 黄国勇, 董曦, 杜建委, 孙晓华, 李勃天, 叶海木. 锂离子电池高压电解液[J]. 化学进展, 2021, 33(5): 855-867.
[8] 张长欢, 李念武, 张秀芹. 柔性锂离子电池的电极[J]. 化学进展, 2021, 33(4): 633-648.
[9] 穆德颖, 刘铸, 金珊, 刘元龙, 田爽, 戴长松. 废旧锂离子电池正极材料及电解液的全过程回收及再利用[J]. 化学进展, 2020, 32(7): 950-965.
[10] 庄全超, 杨梓, 张蕾, 崔艳华. 锂离子电池的电化学阻抗谱分析研究进展[J]. 化学进展, 2020, 32(6): 761-791.
[11] 吴战, 李笑涵, 钱奥炜, 杨家喻, 张文魁, 张俊. 基于无机电致变色材料的变色储能器件[J]. 化学进展, 2020, 32(6): 792-802.
[12] 汪靖伦, 冉琴, 韩冲宇, 唐子龙, 陈启多, 秦雪英. 锂离子电池有机硅功能电解液[J]. 化学进展, 2020, 32(4): 467-480.
[13] 陈豪登, 徐建兴, 籍少敏, 姬文晋, 崔立峰, 霍延平. MOFs衍生金属氧化物及其复合材料在锂离子电池负极材料中的应用[J]. 化学进展, 2020, 32(2/3): 298-308.
[14] 王官格, 张华宁, 吴彤, 刘博睿, 黄擎, 苏岳锋. 废旧锂离子电池正极材料资源化回收与再生[J]. 化学进展, 2020, 32(12): 2064-2074.
[15] 蒋志敏, 王莉, 沈旻, 陈慧闯, 马国强, 何向明. 锂离子电池正极界面修饰用电解液添加剂[J]. 化学进展, 2019, 31(5): 699-713.