English
新闻公告
More
化学进展 2013, Vol. 25 Issue (10): 1763-1770 DOI: 10.7536/PC130203 前一篇   后一篇

• 综述与评论 •

金属-有机骨架材料用于色谱固定相

谢生明, 袁黎明   

  1. 云南师范大学化学化工学院 昆明650500
  • 收稿日期:2013-02-01 修回日期:2013-03-01 出版日期:2013-11-12 发布日期:2013-07-18
  • 通讯作者: 袁黎明 E-mail:yuan_limingpd@aliyun.com
  • 基金资助:

    国家自然科学基金项目(No.21075109,21127012)和国家重点基础研究发展计划(973)项目(No.2011CB612312)资助

Metal-Organic Frameworks Used as Chromatographic Stationary Phases

Xie Shengming, Yuan Liming   

  1. Faculty of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, China
  • Received:2013-02-01 Revised:2013-03-01 Online:2013-11-12 Published:2013-07-18

金属-有机骨架材料(metal-organic frameworks, MOFs)是一类新型多功能材料,具有迷人的结构和不同寻常的特性,如多孔性、高比表面积及良好的化学和热稳定性。MOFs在近十来年的时间里已经引起了人们的广泛关注。与传统的无机多孔材料相比,其最重要的特点在于MOFs的结构具有可设计性,可以灵活选择适宜的金属离子或簇以及具有特定官能团和形状的有机配体合成出具有特定功能、孔穴尺寸可控的MOFs。目前,已有大量的MOFs被合成出来,并在许多领域显示出了良好的应用前景,如气体储存、催化和分离方面。本文综述了近年来MOFs用于色谱固定相的研究进展,详细介绍了MOFs在液相色谱(LC)和气相色谱(GC)中的应用。最后,对这种新型多功能材料在色谱方面的应用进行了前景展望。

Metal-organic frameworks (MOFs) is relatively a new class of multi-functional materials with fascinating structures and unusual properties, such as porosity, high surface areas, as well as excellent chemical and thermal stability. MOFs have attracted a great deal of attention in the past decade. Comparing with conventional inorganic porous materials, an important feature of MOFs is that their framework structures can be finely controlled. Therefore, MOFs with specific function and adjustable pore size can be synthesized by the choice of metal ions or clusters and organic building blocks with specific functional groups and shape. Recently, a large number of MOFs have been synthesized and shown potential applications in many areas, such as gas storage, catalysis and separation. This review summarizes the research progress on application of MOFs as stationary phases in liquid chromatography and gas chromatography. Finally, a prospect of the application of this new class of multi-functional materials in chromatography is given.

Contents
1 Introduction
2 Metal-organic frameworks used as chromatographic stationary phases
2.1 Metal-organic frameworks used as stationary phases in liquid chromatography
2.2 Metal-organic frameworks used as stationary phases in gas chromatography
3 Outlook

中图分类号: 

()
[1] Hoskins B F, Robson R. J. Am. Chem. Soc., 1989, 111: 5962—5964
[2] Hoskins B F, Robson R. J. Am. Chem. Soc., 1990, 112: 1546—1554
[3] Li J R, Kuppler R J, Zhou H C. Chem. Soc. Rev., 2009, 38: 1477—1504
[4] Lee J Y, Farha O K, Roberts J, Scheidt K A, Nguyen S B T, Hupp J T. Chem. Soc. Rev., 2009, 38: 1450—1459
[5] Kurmoo M. Chem. Soc. Rev., 2009, 38: 1353—1379
[6] Shimomura S, Bureekaew S, Kitagawa S. Struct. Bond., 2009, 132: 51—86
[7] Kuppler R J, Timmons D J, Fang Q R, Li J R, Makal T A, Young M D, Yuan D Q, Zhao D, Zhuang W J, Zhou H C. Coord. Chem. Rev., 2009, 253: 3042—3066
[8] Farrusseng D, Aguado S, Pinel C. Angew. Chem. Int. Ed., 2009, 48: 7502—7513
[9] Corma A, García H, Llabrés i Xamena F X. Chem. Rev., 2010, 110: 4606—4655
[10] Meek S T, Greathouse J A, Allendorf M D. Adv. Mater., 2011, 23: 249—267
[11] Cychosz K A, Ahmad R, Matzger A J. Chem. Sci., 2010, 1: 293—302
[12] Alaerts L, Kirschhock C E A, Maes M, van der Veen M A, Finsy V, Depla A, Martens J A, Baron G V, Jacobs P A, Denayer J E M, de Vos D E. Angew. Chem. Int. Ed., 2007, 46: 4293—4297
[13] Alaerts L, Maes M, Giebeler L, Jacobs P A, Martens J A, Denayer J F M, Kirschhock C E A, de Vos D E. J. Am. Chem. Soc., 2008, 130: 14170—14178
[14] Alaerts L, Maes M, Jacobs P A, Denayer J F M, de Vos D E. Phys. Chem. Chem. Phys., 2008, 10 : 2979—2985
[15] Alaerts L, Maes M, van der Veen M A, Jacobs P A, de Vos D E. Phys. Chem. Chem. Phys., 2009, 11: 2903—2911
[16] Maes M, Vermoortele F, Alaerts L, Couck S, Kirschhock C E A, Denayer J F M, de Vos D E. J. Am. Chem. Soc., 2010, 132: 15277—15285
[17] Ameloot R, Liekens A, Alaerts L, Maes M, Galarneau A, Coq B, Desmet G, Sels B F, Denayer J F M, De Vos D E. Eur. J. Inorg. Chem., 2010, 3735—3738
[18] Yang C X, Yan X P. Anal. Chem., 2011, 83: 7144—7150
[19] Fu Y Y, Yang C X, Yan X P. Langmuir, 2012, 28: 6794—6802
[20] Yang C X, Liu S S, Wang H F, Wang S W, Yan X P. Analyst, 2012, 137: 133—139
[21] Ahmad R, Wong-Foy A G, Matzger A J. Langmuir, 2009, 25: 11977—11979
[22] Jiang H L, Tatsu Y, Lu Z H, Xu Q. J. Am. Chem. Soc., 2010, 132: 5586—5587
[23] Yang C X, Chen Y J, Wang H F, Yan X P. Chem. Eur. J., 2011, 17: 11734—11737
[24] Centrone A, Santiso S S, Hatton T A. Small, 2011, 7: 2356—2364
[25] Liu S S, Yang C X, Wang S W, Yan X P. Analyst, 2012, 137: 816—818
[26] Fu Y Y, Yang C X, Yan X P. J. Chromatogr. A, 2013, 1274: 137—144
[27] Nuzhdin A L, Dybtsev D N, Bryliakov K P, Talsi E P, Fedin V P. J. Am. Chem. Soc., 2007, 129: 12958—12959
[28] Padmanaban M, Müller P, Lieder C, Gedrich K, Grünker R, Bon V, Senkovska I, Baumgrtner S, Opelt S, Paasch S, Brunner E, Glorius F, Klemm E, Kaskel S. Chem. Commun., 2011, 47: 12089—12091
[29] Tanaka K, Muraoka T, Hirayama D, Ohnish A. Chem. Commun., 2012, 48: 8577—8579
[30] Chen B L, Liang C D, Yang J, Contreras D S, Clancy Y L, Lobkovsky E B, Yaghi O M, Dai S. Angew. Chem. Int. Ed., 2006, 45: 1390—1393
[31] Yoon J W, Jhung S H, Hwang Y K, Humphrey S M, Wood P T, Chang J S. Adv. Mater., 2007, 19: 1830—1834
[32] Finsy V, Verelst H, Alaerts L, de Vos D E, Jacobs P A, Baron G V, Denayer J F M. J. Am. Chem. Soc., 2008, 130: 7110—7118
[33] Finsy V, Calero S, García-Pérez E, Merkling P J, Vedts G, de Vos D E, Baron G V, Denayer J F M. Phys. Chem. Chem. Phys., 2009, 11: 3515—3521
[34] Remy T, Ma L, Maes M, de Vos D E, Baron G V, Denayer J F M. Ind. Eng. Chem. Res., 2012, 51: 14824—14833
[35] Gu Z Y, Jiang D Q, Wang H F, Cui X Y, Yan X P. J. Phys. Chem. C, 2010, 114: 311—316
[36] Luebbers M T, Wu T J, Shen L J, Masel R I. Langmuir, 2010, 26: 15625—15633
[37] Gu Z Y, Yang C X, Chang N, Yan X P. Acc. Chem. Res., 2012, 45: 734—745
[38] Gu Z Y, Yan X P. Angew. Chem. Int. Ed., 2010, 49: 1477—1480
[39] Chang N, Gu Z Y, Yan X P. J. Am. Chem. Soc., 2010, 132: 13645—13647
[40] Chang N, Yan X P. J. Chromatogr. A, 2012, 1257: 116—124
[41] Gu Z Y, Jiang J Q, Yan X P. Anal. Chem., 2011, 83: 5093—5100
[42] Fan L, Yan X P. Talanta, 2012, 99: 944—950
[43] Chang N, Gu Z Y, Wang H F, Yan X P. Anal. Chem., 2011, 83: 7094—7101
[44] Xie S M, Zhang Z J, Wang Z Y, Yuan L M. J. Am. Chem. Soc., 2011, 133: 11892—11895
[1] 张沐雅, 刘嘉琪, 陈旺, 王利强, 陈杰, 梁毅. 蛋白质凝聚作用在神经退行性疾病中的作用机制研究[J]. 化学进展, 2022, 34(7): 1619-1625.
[2] 尹晓庆, 陈玮豪, 邓博苑, 张佳路, 刘婉琪, 彭开铭. 超润湿膜在乳化液破乳中的应用及作用机制[J]. 化学进展, 2022, 34(3): 580-592.
[3] 汤波, 王微, 罗爱芹. 新型多孔材料用作色谱手性固定相[J]. 化学进展, 2022, 34(2): 328-341.
[4] 闫保有, 李旭飞, 黄维秋, 王鑫雅, 张镇, 朱兵. 氨/醛基金属有机骨架材料合成及其在吸附分离中的应用[J]. 化学进展, 2022, 34(11): 2417-2431.
[5] 吴明明, 林凯歌, 阿依登古丽·木合亚提, 陈诚. 超浸润光热材料的构筑及其多功能应用研究[J]. 化学进展, 2022, 34(10): 2302-2315.
[6] 胡豪, 何云鹏, 杨水金. 多酸@金属-有机骨架材料的制备及其在废水处理中的应用[J]. 化学进展, 2021, 33(6): 1026-1034.
[7] 杨宇州, 李政, 黄艳凤, 巩继贤, 乔长晟, 张健飞. MOF基水凝胶材料的制备及其应用[J]. 化学进展, 2021, 33(5): 726-739.
[8] 罗贤升, 邓汉林, 赵江颖, 李志华, 柴春鹏, 黄木华. 多孔氮化石墨烯(C2N)的合成及应用[J]. 化学进展, 2021, 33(3): 355-367.
[9] 王德超, 辛洋洋, 李晓倩, 姚东东, 郑亚萍. 多孔液体在气体捕集与分离领域的应用[J]. 化学进展, 2021, 33(10): 1874-1886.
[10] 李波, 马利建, 罗宁, 李首建, 陈云明, 张劲松. 固相萃取分离铀[J]. 化学进展, 2020, 32(9): 1316-1333.
[11] 黄炎, 刘国东, 张学记. 新型冠状病毒(COVID-19)的检测和诊断[J]. 化学进展, 2020, 32(9): 1241-1251.
[12] 高凤凤, 杨言言, 杜晓, 郝晓刚, 官国清, 汤兵. 电控离子(交换)膜分离技术——从ESIX到ESIPM[J]. 化学进展, 2020, 32(9): 1344-1351.
[13] 徐国华, 成凯, 王晨, 李从刚. 生物凝聚态物质的多层次结构表征[J]. 化学进展, 2020, 32(8): 1231-1239.
[14] 汪润田, 柳春丽, 陈振斌. 印迹复合膜[J]. 化学进展, 2020, 32(7): 989-1002.
[15] 李孝建, 张海军, 李赛赛, 张 俊, 贾全利, 张少伟. 超亲水疏油材料的制备及其油水分离性能[J]. 化学进展, 2020, 32(6): 851-860.