English
新闻公告
More
化学进展 2013, Vol. 25 Issue (10): 1751-1762 DOI: 10.7536/PC130135 前一篇   后一篇

• 综述与评论 •

纤维结构形态的原位同步辐射X射线散射及衍射研究

田宇1, 朱才镇2, 龚静华1, 马敬红1, 杨曙光1, 徐坚1   

  1. 1. 东华大学纤维材料改性国家重点实验室 上海201620;
    2. 深圳市功能高分子重点实验室 深圳大学化学与化工学院 深圳518060
  • 收稿日期:2013-01-01 修回日期:2013-03-01 出版日期:2013-11-12 发布日期:2013-07-18
  • 通讯作者: 朱才镇,马敬红 E-mail:czzhu@szu.edu.cn; mjh68@dhu.edu.cn
  • 基金资助:

    国家自然科学基金项目(No.11179027)和国家重点基础研究发展计划(973)项目(No.2011CB605604)资助

In Situ Synchrotron Radiation X-Ray Scattering and Diffraction Measurement Studies on Structure and Morphology of Fibers

Tian Yu1, Zhu Caizhen2, Gong Jinghua1, Ma Jinghong1, Yang Shuguang1, Xu Jian1   

  1. 1. State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, China;
    2. Shenzhen Key Laboratory of Functional Polymers, College of Chemistry and Chemical Engineering, Shenzhen University, Shenzhen 518060, China
  • Received:2013-01-01 Revised:2013-03-01 Online:2013-11-12 Published:2013-07-18

采用传统的X射线检测研究纤维,只能得到静态的结构信息。原位X射线检测,自从这一概念被提出以来就得到了广泛的关注和迅速的发展。与传统的X射线检测技术相比,原位检测可以准确直接地反映材料内部结构的形成和演化过程。同步辐射光源高亮度、高准直等优异特性,可以发挥原位检测高时间、空间分辨的优势,可以在短时间内研究材料动力学变化过程,精确揭示材料微观尺度结构。本文结合国内外研究者的工作以具体研究为例,介绍了应用同步辐射光源对纤维所进行的一些原位X射线检测研究,包括纤维的成型过程以及拉伸等后处理过程。

Fiber is the complex system consisting of diverse microscopic structures with the complicated changing law. The formation of artificial fibers is the multi-component, nonequilibrium and nonlinear process. While only static structure information of fibers can be obtained by using the traditional X-ray measurement technique. In order to take a deep look into the formation and evolution process of materials' structure during the processing and using procedure, a novel research method with high time and space resolution should be established. In situ X-ray measurement technique has received wide attention and developed rapidly since it was brought forth firstly. Compared with the traditional X-ray measurement technique, in situ measurement can detect the process of structure's formation and evolution in a more direct and precise way. Because of the outstanding characteristics of high brightness, high collimation degree of synchrotron radiation, the advantages like high time resolution and high space resolution of in situ X-ray measurement by using synchrotron radiation can be fully exploited to reveal the dynamic evolution process and microscopic scale structures of materials. In this review, combined with the domestic and international researchers' specific works, the research about in situ X-ray measurement of fibers with the application of synchrotron radiation was introduced, including the process of fibers' formation and drawing of post-treatment.

Contents
1 Introduction
2 In situ studies on process of fiber formation
2.1 In situ studies on melt-spinning process of fibers
2.2 In situ studies on other methods of spinning process
3 In situ studies on post-treatment process and stretching process of fibers
3.1 High performance fibers
3.2 Conventional fibers
3.3 Natural fibers
4 In situ studies on other aspects
5 Conclusions

中图分类号: 

()
[1] 晋勇(Jin Y), 孙小松(Song X S), 薛屺(Xue Q). X射线衍射分析技术(X-ray Diffraction Analysis Technology). 北京: 国防工业出版社(Beijing: National Defense Industry Press), 2008. 10—13
[2] 马礼敦(Ma L D). 近代X射线多晶体衍射——实验技术与数据分析(Modern X-ray Diffraction of Polycrystal——Experimental Techniques and Data Analyses). 北京: 化学工业出版社(Beijing: Chemical Industry Press), 2004. 132—137
[3] Chappel F P, Culpin M F, Gosden R G, Tranter T G. Journal of Applied Chemistry, 1964, 14: 12—19
[4] Katayama K, Amano T, Nakamura K. Colloid and Polymer Science, 1968, 226(2): 125—134
[5] Dees J R, Spruiell J E. Journal of Applied Polymer Science, 1974, 18: 1053—1078
[6] Bankar V G, Spruiell J E, White J L. Journal of Applied Polymer Science, 1977, 21: 2341—2358
[7] Ellison M S, Lopes P E, Pennington W T. Journal of Engineered Fibers and Fabrics, 2008, 3: 10—21
[8] Cakmak M, Teitge A, Zachmann H G, White J L. Journal of Polymer Science Part B: Polymer Physics, 1993, 31: 371—381
[9] Samon J M, Schultz J M, Wu J, Hsiao B, Yeh F, Kole R. Journal of Polymer Science Part B: Polymer Physics, 1999, 37: 1277—1287
[10] Samon J M, Schultz J M, Hsiao B S, Seifert S, Stribeck N, Gurke I, Collins G, Saw C. Macromolecules, 1999, 32: 8121—8132
[11] Samon J M, Schultz J M, Hsiao B S, Khot S, Johnson H R. Polymer, 2001, 42: 1547—1559
[12] Samon J M, Schultz J M, Hsiao B S, Wu J, Khot S. Journal of Polymer Science Part B: Polymer Physics, 2000, 38: 1872—1882
[13] Schultz J M, Hsiao B S, Samon J M. Polymer, 2000, 41: 8887—8895
[14] Kolb R, Seifert S, Stribeck N, Zachmann H G. Polymer, 2000, 41: 1497—1505
[15] Kolb R, Seifert S, Stribeck N, Zachmann H G. Polymer, 2000, 41: 2931—2935
[16] Ran S, Burger C, Sics I, Yoon K, Fang D, Kim K, Avila-Orta C, Keum J, Chu B, Hsiao B S, Cookson D, Shultz D, Lee M, Viccaro J, Ohta Y. Colloid and Polymer Science, 2004, 282: 802—809
[17] Ran S, Burger C, Fang D, Zong X, Cruz S, Chu B, Hsiao B S, Bubeck R A, Yabuki K, Teramoto Y, Martin D C, Johnson M A, Cunniff P M. Macromolecules, 2002, 35: 433—439
[18] Ran S, Burger C, Fang D, Zong X, Chu B, Hsiao B S, Ohta Y, Yabuki K, Cunniff P M. Macromolecules, 2002, 35(27): 9851—9853
[19] Rein D M, Shavit L, Khalfin R L, Cohen Y, Terry A, Rastogi S. Journal of Polymer Science Part B: Polymer Physics, 2004, 42: 53—59
[20] Ran S, Fang D, Zong X, Hsiao B S, Chu B, Cunniff P M. Polymer, 2001, 42: 1601—1612
[21] Thünemann A F, Ruland W. Macromolecules, 2000, 33: 2626—2631
[22] Thünemann A F, Ruland W. Macromolecules, 2000, 33: 1848—1852
[23] Rennhofer H, Loidl D, Puchegger S, Peterlik H. Carbon, 2010, 48: 964—971
[24] 高学平(Gao X P), 朱波(Zhu B), 于宽(Yu K). 功能材料(Journal of Functional Materials), 2012, 22(43): 3118—3122
[25] Zhu C, Liu X, Yu X, Zhao N, Liu J, Xu J. Carbon, 2012, 50: 235—243
[26] Kobayashi T, Sumiya K, Fujii Y, Fujie M, Takahagi T, Tashiro K. Carbon, 2012, 50: 1163—1169
[27] Kim K, Aida R, Kang Y, Ohkoshi Y, Gotoh Y, Nagura M, Urakawa H. Polymer, 2009, 50: 4429—4431
[28] Kim K, Kang Y, Yokoyama A, Ikaga T, Ohkoshi Y, Wataoka I, Urakawa H. Polymer Journal, 2012, 44: 1030—1035
[29] Wu J, Schultz J M, Samon J M, Pangelinan A B, Chuah H H. Polymer, 2001, 42: 7141—7151
[30] Wu J, Schultz J M, Samon J M, Pangelinan A B, Chuah H H. Polymer, 2001, 42: 7161—7170
[31] Wu J, Schultz J M, Yeh F, Hsiao B S, Chu B. Macromolecules, 2000, 33: 1765—1777
[32] Samon J M, Schultz J M, Hsiao B S. Polymer, 2000, 41: 2169—2182
[33] Ran S, Fang D, Sics I, Toki S, Hsiao B S, Chu B. Review of Scientific Instruments, 2003, 74(6): 3087—3092
[34] Kang Y, Kim K, Ikehata S, Ohkoshi Y, Gotoh Y, Nagura M, Urakawa H. Polymer, 2011, 52: 2044—2050
[35] Kang Y, Kim K, Ikehata S, Ohkoshi Y, Gotoh Y, Nagura M, Koide M, Urakawa H. Polymer, 2010, 42: 657—662
[36] Shioya M, Kawazoe T, Okazaki R, Suei T, Sakurai S, Yamamoto K, Kikutani T. Macromolecules, 2008, 41: 4758—4765
[37] Martinschitz K J, Boesecke P, Garvey C J, Gindl W, Keckes J. Journal of Material Science, 2008, 43: 350—356
[38] Crawshaw J, Cameron R E. Polymer, 2000, 41: 4691—4698
[39] Crawshaw J, Bras W, Mant G R, Cameron R E. Journal of Applied Polymer Science, 2002, 83: 1209—1218
[40] Grubb D T, Jelinski L W. Macromolecules, 1997, 30: 2860—2867
[41] Riekel C, Müller M, Vollrath F. Macromolecules, 1999, 32: 4464—4466
[42] Seydel T, Klln K, Krasnov I, Diddens I, Hauptmann N, Helms G, Ogurreck M, Kang S, Koza M M, Müller M. Macromolecules, 2007, 40: 1035—1042
[43] 张瑞静(Zhang R J), 邵春光(Shao C G), 李倩(Li Q), 曹伟(Cao W), 张阳(Zhang Y), 刘成刚(Liu C G), 申长雨(Shen C Y). 高分子材料科学与工程(Polymer Materials Science and Engineering), 2012, 28(9): 116—119
[44] Riekel C, Davies R J. Current Opinion in Colloid & Interface Science, 2005, 9: 396—403
[45] Ratner S, Weinberg A, Wachtel E, Moret P M, Marom G. Macromolecular Rapid Commun., 2004, 25: 1150—1154
[46] Davies R J, Burghammer M, Riekel C. Macromolecules, 2007, 40: 5038—5046
[47] Kobayashi T, Sumiya K, Fukuba Y, Fujie M, Takahagi T, Tashiro K. Carbon, 2011, 49: 1646—1652
[48] Kobayashi T, Sumiya K, Fuji Y, Fujie M, Takahagi T, Tashiro T. Carbon, 2013, 53: 29—37
[1] 柳凤琦, 姜勇刚, 彭飞, 冯军宗, 李良军, 冯坚. 超轻纳米纤维气凝胶的制备及其应用[J]. 化学进展, 2022, 34(6): 1384-1401.
[2] 孙华悦, 向宪昕, 颜廷义, 曲丽君, 张光耀, 张学记. 基于智能纤维和纺织品的可穿戴生物传感器[J]. 化学进展, 2022, 34(12): 2604-2618.
[3] 吴巧妹, 杨启悦, 曾宪海, 邓佳慧, 张良清, 邱佳容. 纤维素基生物质催化转化制备二醇[J]. 化学进展, 2022, 34(10): 2173-2189.
[4] 李金召, 李政, 庄旭品, 巩继贤, 李秋瑾, 张健飞. 纤维素纳米晶体的制备及其在复合材料中的应用[J]. 化学进展, 2021, 33(8): 1293-1310.
[5] 李祥业, 白天娇, 翁昕, 张冰, 王珍珍, 何铁石. 电纺纤维在超级电容器中的应用[J]. 化学进展, 2021, 33(7): 1159-1174.
[6] 程熙萌, 张庆瑞. 功能蛋白纳米材料在环境保护中的应用[J]. 化学进展, 2021, 33(4): 678-688.
[7] 程丽丽, 章赟, 朱烨坤, 吴瑛. 选择性氧化HMF[J]. 化学进展, 2021, 33(2): 318-330.
[8] 贾航, 乔越, 张玉, 孟庆鑫, 刘程, 蹇锡高. 玄武岩纤维增强树脂基复合材料界面改性策略[J]. 化学进展, 2020, 32(9): 1307-1315.
[9] 徐国华, 成凯, 王晨, 李从刚. 生物凝聚态物质的多层次结构表征[J]. 化学进展, 2020, 32(8): 1231-1239.
[10] 黄倩文, 张晓文, 李密, 吴晓燕, 袁立永. 功能性纤维状二氧化硅纳米粒子的调控制备及在吸附分离中的应用[J]. 化学进展, 2020, 32(2/3): 230-238.
[11] 史利娜, 胡欣, 朱宁, 郭凯. 纤维素基介电材料[J]. 化学进展, 2020, 32(12): 2022-2033.
[12] 黄秉乾, 王立艳, 韦漩, 徐伟超, 孙振, 李庭刚. 低共熔溶剂预处理木质纤维素生产生物丁醇[J]. 化学进展, 2020, 32(12): 2034-2048.
[13] 马亮, 时学娟, 张笑笑, 李莉莉. 可控核/壳结构聚合物电纺纤维的制备与应用[J]. 化学进展, 2019, 31(9): 1213-1220.
[14] 易锦馨, 霍志鹏, AbdullahM.Asiri, KhalidA.Alamry, 李家星. 农林废弃生物质吸附材料在水污染治理中的应用[J]. 化学进展, 2019, 31(5): 760-772.
[15] 乔颖, 腾娜, 翟承凯, 那海宁, 朱锦. 化学法催化纤维素高效水解成糖[J]. 化学进展, 2018, 30(9): 1415-1423.