English
新闻公告
More
化学进展 2021, Vol. 33 Issue (4): 678-688 DOI: 10.7536/PC200695 前一篇   后一篇

• 综述 •

功能蛋白纳米材料在环境保护中的应用

程熙萌1, 张庆瑞1,2,*()   

  1. 1 河北省水体重金属深度修复与资源利用重点实验室 河北省应用化学重点实验室 燕山大学 秦皇岛 066004
    2 亚稳材料制备科学与技术国家重点实验室 燕山大学 秦皇岛 066004
  • 收稿日期:2020-07-01 修回日期:2020-07-29 出版日期:2021-04-20 发布日期:2020-12-22
  • 通讯作者: 张庆瑞
  • 基金资助:
    国家自然科学基金项目(21876145)

Functional Protein Based Nanomaterials for Environmental Protection Application

Ximeng Cheng1, Qingrui Zhang1,2()   

  1. 1 Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse and Hebei Key Laboratory of Applied Chemistry, Yanshan University,Qinhuangdao 066004, China
    2 State Key Laboratory of Metastable Materials Science and Technology, Yanshan University,Qinhuangdao 066004, China
  • Received:2020-07-01 Revised:2020-07-29 Online:2021-04-20 Published:2020-12-22
  • Contact: Qingrui Zhang
  • Supported by:
    the National Natural Science Foundation of China(21876145)

蛋白质是一类结构稳定、官能基团丰富的生物大分子。近年来基于功能蛋白纳米材料的改性制备逐渐成为环境领域的研究热点。其中多巴胺、淀粉样纤维和蛋白质杂化纳米花是最具代表性的三类功能蛋白纳米材料。受海洋生物贻贝启发,多巴胺在碱性条件下可氧化自聚成富有黏性的聚多巴胺涂层广泛用于界面改性;淀粉样纤维是功能蛋白经热处理或化学变性形成超高长径比纳米结构,进一步暴露氨基酸活性位点,进而强化对污染物净化性能;而蛋白三维结构也方便与金属磷酸盐形成杂化纳米花结构,提供较大比表面积,可协同金属磷酸盐高效净污。本文基于蛋白质的结构特性,总结了多巴胺、淀粉样纤维和蛋白质杂化纳米花三类纳米复合材料的制备、形成机理及在环境污染控制工程中的应用进展,为后续科研工作提供借鉴。

Protein is a kind of biological macromolecule with stable structure and abundant functional groups. Recently, the development of protein based nanomaterials has raised wide-spread research enthusiasm, especially in environmental remediation. Dopamine, amyloid-fibrils and protein-inorganic hybrid nanoflower are the three most representative ones. Inspired by mussels, the strong adhesive polydopamine coating forms in alkaline condition through self-polymerization, which is widely used in surface modification. Amyloid-fibrils, obtained by the heat treatment or chemical denaturation of functional protein, possess the large aspect ratio and more active sites for enhancing the decontamination. Besides, the three-dimensional structure of protein makes it easy to form hybrid nanoflower with metallic phosphate. The protein nanoflower provides high surface area for wastewater purification with the assistance of the metallic phosphate. Based on the structural properties of protein, this review summarizes the fabrication, formation mechanism and applications of above three nanomaterials in water pollution control, providing reference to the subsequent scientific study.

Contents

1 Introduction

2 Mussel-inspired dopamine coating and its application

2.1 Preparation and polymerization mechanism of dopamine

2.2 Modification and application of dopamine in environmental protection

3 The structure and environmental application of amyloid-fibrils

3.1 Physicochemical properties and fabrication of amyloid-fibrils

3.2 The environmental applications of amyloid-fibrils

4 Preparation and application of protein induced nanoflower

4.1 Formation and characterization of protein-nanoflower

4.2 Application of protein nanoflower in the field of environment protection

5 Conclusion and outlook

()
图1 受无脊椎生物贻贝启发的得到的聚多巴胺[13]
Fig.1 Polydopamine,inspired from invertebrate mussels[13]. Copyright 2014, ACS.
图2 “真黑色素”模型下多巴胺聚合机理[23]
Fig.2 “Eumelanin” model of the molecular mechanism for the formation of polydopamine[23]. Copyright 2000, ACS.
图3 非共价作用下形成PDA 的形成机理[18]
Fig.3 Mechanistic scheme for the formation of PDA by non-covalent polymerization[18].Copyright 2012, ACS.
图4 (a~c)Ca(Ⅱ)/Mg(Ⅱ)/Na(Ⅰ)存在时PDA-Ms对Pb(Ⅱ) 的吸附,(d)不同Ca(Ⅱ)下PDA-Ms的选择性分配系数[30]
Fig.4 (a~c)The removal of Pb(Ⅱ) by polydopamine microspheres in the existence of Ca(Ⅱ)/Mg(Ⅱ)/Na(Ⅰ),(d)The seiective coefficient value onto PDA-Ms[30].Copyright 2017, ACS.
图5 (a)四环素在可见光照射下的光降解曲线和(b)动力学线性模拟曲线[36]
Fig.5 (a) Photodegradation of tetracycline under visible-light irradiation and(b)the corresponding kinetic linear simulation curves[36]. Copyright 2013, ACS.
图6 蛋白质纤维化的两种自组装途径:(1)β-折叠部分展开重排;(2)β-折叠变性水解重排[60]
Fig.6 Two theoretical pathways of protein fibril assembling from: globular protein:(1) partial denaturation and β-sheet alignment,(2)denaturation, hydrolysis, and β-sheet alignment from oligopeptides [60]. Copyright 2012, RSC.
图7 (a)淀粉样纤维合成示意图;(b)不同热处理时间对淀粉样纤维形态的影响[70]
Fig.7 (a)Schematic diagram of the synthesis of the AβL nanofibrils;(b)Morphology of AβL nanofibrils with different heat treatment time[70]. Copyright 2020, Elsevier.
图8 四种金属离子经淀粉样纤维-碳杂化膜过滤前后的浓度分布(a)氰化亚金钾;(b)氯化汞;(c)醋酸铅;(d)氯酸钯钠[73]
Fig.8 Concentrations of heavy metal pollutants before and after filtration through the amyloid fibril-activated carbon hybrid membrane.(a)Potassium dicyanoaurate(I);(b) Mercury chloride;(c)Lead acetate;(d)Disodiumtetrachloropalladate[73]. Copyright 2016, Nature.
图9 Cu-Ag-Au@β-LGF CMR膜催化反应器的构建[77]
Fig.9 Schematic illustration of the construction of the Cu-Ag-Au@β-LGF catalytic membrane reator[77].Copyright 2016, ACS.
图10 不同胰蛋白酶浓度对纳米化形态的影响[92]
Fig.10 Effect of different trypsin concentrations on the morphologies of nanoflowers[92]. Copyright 2014, RSC.
图11 (a)木瓜蛋白酶;(b)漆酶和(c)HRP制备得到的磷酸铜纳米花[95]
Fig.11 Cu3(PO4)2-hybrid nanoflowers prepared by(a) papain;(b) laccase and (c)HRP[95]. Copyright 2016, ACS
图12 (a)SL、ML、SP三类杂化纳米花吸附Pb(Ⅱ)的速率图及吸附前后SEM对比图;(b)Cd(Ⅱ)//Hg(Ⅱ)存在时SP型杂化纳米花对不同重金属的吸附[97]
Fig.12 (a) Adsorption rate curve for Pb(Ⅱ) by different types of hybrid flowers and SEM images before and after Pb(Ⅱ) adsorption;(b)Comparative study of adsorption rate(%) of different heavy metals by SP-hybrid flowers[97].Copyright 2016,ACS.
图13 pH(A)和温度(B)对游离脂肪酶、脂肪酶/Zn3(PO4)2纳米花催化活性的影响[105]
Fig.13 Effect of pH(A) and reaction temperature(B) on enzyme activity of free lipase and lipase/Zn3(PO4)2 hybrid nanoflowers[105]. Copyright 2016, Elsevier
[1]
Abe S, Maity B, Ueno T. Chem. Commun., 2016, 52(39): 6496.
[2]
Maity B, Fujita K, Ueno T. Curr. Opin. Chem. Biol., 2015, 25: 88.

URL     pmid: 25579455
[3]
Balbirnie M, Grothe R, Eisenberg D S. PNAS, 2001, 98(5): 2375.

URL     pmid: 11226247
[4]
Pelegri-O’day E M, Lin E W, Maynard H D. J. Am. Chem. Soc., 2014, 136(41): 14323.

doi: 10.1021/ja504390x     URL     pmid: 25216406
[5]
Lee H, Rho J, Messersmith P B. Adv. Mater., 2009, 21(4): 431.

URL     pmid: 19802352
[6]
Lee B P, Messersmith P B, Israelachvili J N, Waite J H. Annu. Rev. Mater. Res., 2011, 41(1): 99.
[7]
Maier G P, Rapp M V, Waite J H, Israelachvili J N, Butler A. Science, 2015, 349(6248): 628.

doi: 10.1126/science.aab0556     URL     pmid: 26250681
[8]
Lee H, Dellatore S M, Miller W M, Messersmith P B. Science, 2007, 318(5849): 426.

URL     pmid: 17947576
[9]
Ye Q, Zhou F, Liu W M. Chem. Soc. Rev., 2011, 40(7): 4244.

URL     pmid: 21603689
[10]
El Yakhlifi S, Ball V. Colloids Surf. B: Biointerfaces, 2020, 186: 110719.

URL     pmid: 31846893
[11]
Zhang Q R, Li Y X, Chen H, Zhang S Q, Qiao L L. Journal of Yanshan University, 2018, 42(1): 1.
张庆瑞, 李奕璇, 陈贺, 张帅其, 乔丽丽. 燕山大学学报, 2018, 42(1): 1.
[12]
Chen H, Zhang S Q, Zhao Z X, Liu M, Zhang Q R. Progress in Chemistry, 2019, 31(4): 89.
陈贺, 张帅其, 赵致雪, 刘萌, 张庆瑞. 化学进展, 2019, 31(4): 89.
[13]
Liu Y L, Ai K L, Lu L H. Chem. Rev., 2014, 114(9): 5057.

URL     pmid: 24517847
[14]
He W, Shuai T, Gao M Y, Ou J F. Jiangxi Chemical Industry, 2017,(4): 4.
贺武, 帅韬, 高明阳, 欧军飞. 江西化工, 2017, (4): 4.
[15]
Ball V, Frari D D, Toniazzo V, Ruch D. J. Colloid Interface Sci., 2012, 386(1): 366.

doi: 10.1016/j.jcis.2012.07.030     URL     pmid: 22874639
[16]
Bernsmann F, Ball V, Addiego F, Ponche A, Michel M, de Almeida Gracio J J, Toniazzo V, Ruch D. Langmuir, 2011, 27(6): 2819.

URL     pmid: 21332218
[17]
Ding Y H, Weng L T, Yang M, Yang Z L, Lu X, Huang N, Leng Y. Langmuir, 2014, 30(41): 12258.

URL     pmid: 25262750
[18]
Dreyer D R, Miller D J, Freeman B D, Paul D R, Bielawski C W. Langmuir, 2012, 28(15): 6428.

URL     pmid: 22475082
[19]
Hedlund J, Andersson M, Fant C, Bitton R, Bianco-Peled H, Elwing H, Berglin M. Biomacromolecules, 2009, 10(4): 845.

doi: 10.1021/bm801325j     URL     pmid: 19209903
[20]
Cho J H, Shanmuganathan K, Ellison C J. ACS Appl. Mater. Interfaces, 2013, 5(9): 3794.

URL     pmid: 23544666
[21]
Zhang C, Lv Y, Qiu W Z, He A, Xu Z K. ACS Appl. Mater. Interfaces, 2017, 9(16): 14437.

doi: 10.1021/acsami.7b03115     URL     pmid: 28367626
[22]
Tan Y M, Deng W F, Li Y Y, Huang Z, Meng Y, Xie Q J, Ma M, Yao S Z. J. Phys. Chem. B, 2010, 114(15): 5016.

URL     pmid: 20337455
[23]
Clancy C M R, Nofsinger J B, Hanks R K, Simon J D. J. Phys. Chem. B, 2000, 104(33): 7871.
[24]
Chen H F, Zhou Y, Wang J Y, Lu J, Zhou Y B. J. Hazard. Mater., 2020, 389: 121897.

doi: 10.1016/j.jhazmat.2019.121897     URL     pmid: 31874753
[25]
Gholami Derami H, Gupta P, Gupta R, Rathi P, Morrissey J J, Singamaneni S. ACS Appl. Nano Mater., 2020, 3(6): 5437.

doi: 10.1021/acsanm.0c00787     URL    
[26]
Cheng W, Zeng X W, Chen H Z, Li Z M, Zeng W F, Mei L, Zhao Y L. ACS Nano, 2019, 13(8): 8537.

doi: 10.1021/acsnano.9b04436     URL     pmid: 31369230
[27]
Li W, Zhou S P, Zou J H, Fang R Y, Jiang T, Bao Y, Shi H X. Journal of Zhejiang University(Science Edition), 2018, 45(5): 569.
李威, 周尚平, 邹骏华, 方荣业, 蒋婷, 鲍玥, 史惠祥. 浙江大学学报(理学版), 2018, 45(5): 569.
[28]
Shao D D, Chen C L, Wang X K. Chem. Eng. J., 2012, 185/186: 144.
[29]
Farnad N, Farhadi K, Voelcker N H. Water Air Soil Pollut., 2012, 223(6): 3535.
[30]
Zhang Q R, Yang Q G, Phanlavong P, Li Y X, Wang Z K, Jiao T F, Peng Q M. ACS Sustainable Chem. Eng., 2017, 5(5): 4161.
[31]
Fu J, Chen Z, Wang M, Liu S, Zhang J, Zhang J, Han R, Xu Q. Chem. Eng. J., 2015, 259: 53.
[32]
Wan Q, Liu M Y, Tian J W, Deng F J, Dai Y F, Wang K, Li Z, Zhang Q S, Zhang X Y, Wei Y. RSC Adv., 2015, 5(48): 38316.
[33]
Vaiano V, Sacco O, Sannino D, Ciambelli P, Longo S, Venditto V, Guerra G. J. Chem. Technol. Biotechnol., 2014, 89(8): 1175.
[34]
Lima C S, Batista K A, García Rodríguez A, Souza J R, Fernandes K F. Sol. Energy, 2015, 114: 105.
[35]
Qin L, Huang D L, Xu P, Zeng G M, Lai C, Fu Y K, Yi H, Li B S, Zhang C, Cheng M, Zhou C Y, Wen X F. J. Colloid Interface Sci., 2019, 534: 357.

URL     pmid: 30243177
[36]
Wang C, Wu Y L, Lu J, Zhao J, Cui J Y, Wu X L, Yan Y S, Huo P W. ACS Appl. Mater. Interfaces, 2017, 9(28): 23687.

URL     pmid: 28656749
[37]
Tang J, Zhang C Y, Chen K Z, Wan J Q. Journal of Qingdao University of Science and Technology(Natural Science Edition), 2016, 37(1): 47.
唐婧, 张冲宇, 陈克正, 万家齐. 青岛科技大学学报(自然科学版), 2016, 37(1): 47.
[38]
Wetzel R, Shivaprasad S, Williams A D. Biochemistry, 2007, 46(1): 1.

doi: 10.1021/bi0620959     URL     pmid: 17198370
[39]
Harrison R S, Sharpe P C, Singh Y, Fairlie D P. Rev. Physio., Biochem. Pharmacol., 2007, 159: 1.
[40]
Chiti F, Dobson C M. Annu. Rev. Biochem., 2006, 75(1): 333.
[41]
Sreenivasan S, Narayan M. ACS Chem. Neurosci., 2019, 10(9): 3911.

doi: 10.1021/acschemneuro.9b00445     URL     pmid: 31456389
[42]
Iwata K, Fujiwara T, Matsuki Y, Akutsu H, Takahashi S, Naiki H, Goto Y. PNAS, 2006, 103(48): 18119.

doi: 10.1073/pnas.0607180103     URL     pmid: 17108084
[43]
Bolisetty S, Vallooran J J, Adamcik J, Mezzenga R. ACS Nano, 2013, 7(7): 6146.

URL     pmid: 23750744
[44]
van der Hilst J C H, Simon A, Drenth J P H. N. Engl. J. Med., 2003, 349: 1872.

doi: 10.1056/NEJM200311063491920     URL     pmid: 14602890
[45]
Dobson C M. Nature, 2003, 426(6968): 884.

doi: 10.1038/nature02261     URL     pmid: 14685248
[46]
Klunk W E, Debnath M L, Pettegrew J W. Neurobiol. Aging, 1994, 15(6): 691.

doi: 10.1016/0197-4580(94)90050-7     URL     pmid: 7891823
[47]
Jung J M, Savin G, Pouzot M, Schmitt C, Mezzenga R. Biomacromolecules, 2008, 9(9): 2477.

doi: 10.1021/bm800502j     URL     pmid: 18698816
[48]
Wei G, Su Z Q, Reynolds N P, Arosio P, Hamley I W, Gazit E, Mezzenga R. Chem. Soc. Rev., 2017, 46(15): 4661.

doi: 10.1039/c6cs00542j     URL     pmid: 28530745
[49]
Kontopidis G, Holt C, Sawyer L. J. Dairy Sci., 2004, 87(4): 785.

doi: 10.3168/jds.S0022-0302(04)73222-1     URL     pmid: 15259212
[50]
Bolisetty S, Harnau L, Jung J M, Mezzenga R. Biomacromolecules, 2012, 13(10): 3241.

doi: 10.1021/bm301005w     URL     pmid: 22924940
[51]
Papiz M Z, Sawyer L, Eliopoulos E E, North A C T, Findlay J B C, Sivaprasadarao R, Jones T A, Newcomer M E, Kraulis P J. Nature, 1986, 324(6095): 383.

doi: 10.1038/324383a0     URL     pmid: 3785406
[52]
Sawyer L, Brownlow S, Polikarpov I, Wu S Y. Int. Dairy J., 1998, 8(2): 65.
[53]
Uversky V N, Li J, Fink A L. J. Biol. Chem., 2001, 276(14): 10737.

doi: 10.1074/jbc.M010907200     URL     pmid: 11152691
[54]
Roberts C J. Biotechnol. Bioeng., 2007, 98(5): 927.

doi: 10.1002/bit.21627     URL     pmid: 17705294
[55]
MacPhee C E, Dobson C M. J. Mol. Biol., 2000, 297(5): 1203.

doi: 10.1006/jmbi.2000.3600     URL     pmid: 10764584
[56]
Chiti F, Webster P, Taddei N, Clark A, Stefani M, Ramponi G, Dobson C M. PNAS, 1999, 96(7): 3590.

doi: 10.1073/pnas.96.7.3590     URL     pmid: 10097081
[57]
Jordens S, Adamcik J, Amar-Yuli I, Mezzenga R. Biomacromolecules, 2011, 12(1): 187.

doi: 10.1021/bm101119t     URL     pmid: 21142059
[58]
Lara C, Adamcik J, Jordens S, Mezzenga R. Biomacromolecules, 2011, 12(5): 1868.

doi: 10.1021/bm200216u     URL     pmid: 21466236
[59]
Akkermans C, Venema P, van der Goot A J, Gruppen H, Bakx E J, Boom R M, van der Linden E. Biomacromolecules, 2008, 9(5): 1474.

doi: 10.1021/bm7014224     URL     pmid: 18416530
[60]
Jones O G, Mezzenga R. Soft Matter, 2012, 8(4): 876.
[61]
Hoffmann M A M, van Mil P J J M. J. Agric. Food Chem., 1997, 45(8): 2942.
[62]
Wang Y J, Shen Y T, Qi G Y, Li Y, Sun X S, Qiu D, Li Y H. Int. J. Biol. Macromol., 2020, 149: 609.

URL     pmid: 32006578
[63]
Ye X C, Junel K, Gällstedt M, Langton M, Wei X F, Lendel C, Hedenqvist M S. ACS Sustainable Chem. Eng., 2018, 6(4): 5462.
[64]
Arnaudov L N, de Vries R, Ippel H, van Mierlo C P M. Biomacromolecules, 2003, 4(6): 1614.

URL     pmid: 14606887
[65]
Schokker E P, Singh H, Pinder D N, Creamer L K. Int. Dairy J., 2000, 10(4): 233.
[66]
Nielsen L, Khurana R, Coats A, Frokjaer S, Brange J, Vyas S, Uversky V N, Fink A L. Biochemistry, 2001, 40(20): 6036.

URL     pmid: 11352739
[67]
Ako K, Nicolai T, Durand D. Biomacromolecules, 2010, 11(4): 864.

doi: 10.1021/bm9011437     URL     pmid: 20297835
[68]
Akkermans C, Venema P, Rogers S S, van der Goot A J, Boom R M, van der Linden E. Food Biophys., 2006, 1(3): 144.
[69]
Liu M, Jia L D, Zhao Z X, Han Y, Li Y X, Peng Q M, Zhang Q R. Chem. Eng. J., 2020, 390: 124667.
[70]
Zhang Q R, Zhang S Q, Zhao Z X, Liu M, Yin X F, Zhou Y P, Wu Y, Peng Q M. J. Clean. Prod., 2020, 255: 120297.
[71]
Nicomel N, Leus K, Folens K, van der Voort P, du Laing G. Int. J. Environ. Res. Public Heal., 2015, 13(1): 62.
[72]
Yang M, Wang J Q, Liu R P, Hu C Z, Liu H J, Qu J H. ACS Sustainable Chem. Eng., 2020, 8(21): 7795.
[73]
Bolisetty S, Mezzenga R. Nat. Nanotechnol., 2016, 11(4): 365.

URL     pmid: 26809058
[74]
Zhang Q R, Bolisetty S, Cao Y P, Handschin S, Adamcik J, Peng Q M, Mezzenga R. Angew. Chem., 2019, 131(18): 6073.
[75]
Bolisetty S, Reinhold N, Zeder C, Orozco M N, Mezzenga R. Chem. Commun., 2017, 53(42): 5714.
[76]
Morshedi D, Mohammadi Z, Akbar Boojar M M, Aliakbari F. Colloids Surfaces B: Biointerfaces, 2013, 112: 245.

doi: 10.1016/j.colsurfb.2013.08.004     URL     pmid: 23999142
[77]
Huang R L, Zhu H X, Su R X, Qi W, He Z M. Environ. Sci. Technol., 2016, 50(20): 11263.

URL     pmid: 27623375
[78]
Bolisetty S, Arcari M, Adamcik J, Mezzenga R. Langmuir, 2015, 31(51): 13867.

doi: 10.1021/acs.langmuir.5b03205     URL     pmid: 26673736
[79]
Feng Y H, Wang H J, Zhang J, Song Y X, Meng M J, Mi J L, Yin H B, Liu L. Biomacromolecules, 2018, 19(7): 2432.

doi: 10.1021/acs.biomac.8b00045     URL     pmid: 29698605
[80]
Ye M D, Liu H Y, Lin C J, Lin Z Q. Small, 2013, 9(2): 312.

URL     pmid: 23047462
[81]
King’ondu C K, Iyer A, Njagi E C, Opembe N, Genuino H, Huang H, Ristau R A, Suib S L. J. Am. Chem. Soc., 2011, 133(12): 4186.

URL     pmid: 21332136
[82]
Shcharbin D, Halets-Bui I, Abashkin V, Dzmitruk V, Loznikova S, Odaba塂ı M, Acet Ö, Önal B, Özdemir N, Shcharbina N, Bryszewska M. Colloids Surfaces B: Biointerfaces, 2019, 182: 110354.

doi: 10.1016/j.colsurfb.2019.110354     URL     pmid: 31325775
[83]
Chen Y, Luo L H, Wu Y F, Cheng L, Shi J J, Shao Y J. China Ceramics, 2013, 49(5): 1.
陈昱, 罗凌虹, 吴也凡, 程亮, 石纪军, 邵由俊. 中国陶瓷, 2013, 49(5): 1.
[84]
Tao T, Glushenkov A M, Liu H W, Liu Z W, Dai X J, Chen H, Ringer S P, Chen Y. J. Phys. Chem. C, 2011, 115(35): 17297.
[85]
Zhang H, Cao G P, Wang Z Y, Yang Y S, Shi Z J, Gu Z N. Nano Lett., 2008, 8(9): 2664.

URL     pmid: 18715042
[86]
Liu Y, Zhang Y M, Li X J, Yuan Q P, Liang H. Chem. Commun., 2017, 53(22): 3216.
[87]
Huang Y Y, Ran X, Lin Y H, Ren J S, Qu X G. Chem. Commun., 2015, 51(21): 4386.
[88]
Talens-Perales D, Fabra M J, Martínez-Argente L, Marín-Navarro J, Polaina J. Int. J. Biol. Macromol., 2020, 151: 602.

URL     pmid: 32061698
[89]
Harford C, Sarkar B. Acc. Chem. Res., 1997, 30(3): 123.

doi: 10.1021/ar9501535     URL    
[90]
Querejeta-Fernández A, Hernández-Garrido J C, Yang H X, Zhou Y L, Varela A, Parras M, Calvino-Gámez J J, González-Calbet J M, Green P F, Kotov N A. ACS Nano, 2012, 6(5): 3800.

doi: 10.1021/nn300890s     URL     pmid: 22515512
[91]
Xu L G, Ma W, Wang L B, Xu C L, Kuang H, Kotov N A. Chem. Soc. Rev., 2013, 42(7): 3114.

URL     pmid: 23455957
[92]
Lin Z A, Xiao Y, Wang L, Yin Y Q, Zheng J N, Yang H H, Chen G N. RSC Adv., 2014, 4(27): 13888.

doi: 10.1039/C4RA00268G     URL    
[93]
Zhang Z P, Shao X Q, Yu H D, Wang Y B, Han M Y. Chem. Mater., 2005, 17(2): 332.

doi: 10.1021/cm048436r     URL    
[94]
Ghosh K, Balog E R M, Sista P, Williams D J, Kelly D, Martinez J S, Rocha R C. APL Mater., 2014, 2(2): 021101.

doi: 10.1063/1.4863235     URL    
[95]
Li M F, Luo M Y, Li F, Wang W W, Liu K, Liu Q Z, Wang Y D, Lu Z T, Wang D. J. Phys. Chem. C, 2016, 120(31): 17348.

doi: 10.1021/acs.jpcc.6b03537     URL    
[96]
Zhang T, Zhou Y M, Wang Y J, Zhang L P, Wang H Y, Wu X. Mater. Lett., 2014, 128: 227.

doi: 10.1016/j.matlet.2014.04.166     URL    
[97]
Koley P, Sakurai M, Aono M. ACS Appl. Mater. Interfaces, 2016, 8(3): 2380.

URL     pmid: 26736132
[98]
Zhang B L, Li P T, Zhang H P, Li X J, Tian L, Wang H, Chen X, Ali N, Ali Z, Zhang Q Y. Appl. Surf. Sci., 2016, 366: 328.

doi: 10.1016/j.apsusc.2016.01.074     URL    
[99]
Patel S K S, Choi H, Lee J K. ACS Sustainable Chem. Eng., 2019, 7(16): 13633.

doi: 10.1021/acssuschemeng.9b02583     URL    
[100]
Li K, Wang J H, He Y J, Abdulrazaq M A, Yan Y J. J. Biotechnol., 2018, 281: 87.

doi: 10.1016/j.jbiotec.2018.06.344     URL     pmid: 29928917
[101]
Zhang Y F, Ge J, Liu Z. ACS Catal., 2015, 5(8): 4503.

doi: 10.1021/acscatal.5b00996     URL    
[102]
Ansari S A, Husain Q. Biotechnol. Adv., 2012, 30(3): 512.

URL     pmid: 21963605
[103]
Jia F, Narasimhan B, Mallapragada S. Biotechnol. Bioeng., 2014, 111(2): 209.

doi: 10.1002/bit.25136     URL     pmid: 24142707
[104]
Li Y, Fei X, Liang L W, Tian J, Xu L Q, Wang X Y, Wang Y. J. Mol. Catal. B:Enzym., 2016, 133: 92.

doi: 10.1016/j.molcatb.2016.08.001     URL    
[105]
Zhang B L, Li P T, Zhang H P, Wang H, Li X J, Tian L, Ali N, Ali Z, Zhang Q Y. Chem. Eng. J., 2016, 291: 287.

doi: 10.1016/j.cej.2016.01.104     URL    
[106]
He G L, Hu W H, Li C M. Colloids Surfaces B: Biointerfaces, 2015, 135: 613.

URL     pmid: 26322475
[107]
He L H, Zhang S, Ji H F, Wang M H, Peng D L, Yan F F, Fang S M, Zhang H Z, Jia C X, Zhang Z H. Biosens. Bioelectron., 2016, 79: 553.

doi: 10.1016/j.bios.2015.12.095     URL     pmid: 26749096
[108]
Altinkaynak C, Yilmaz I, Koksal Z, Özdemir H, Ocsoy I, Özdemir N. Int. J. Biol. Macromol., 2016, 84: 402.

doi: 10.1016/j.ijbiomac.2015.12.018     URL     pmid: 26712698
[109]
Gutierrez H, Portman T, Pershin V, Ringuette M. J. Appl. Microbiol., 2013, 114(3): 680.

doi: 10.1111/jam.12094     URL     pmid: 23228103
[1] 刘峻, 叶代勇. 抗病毒涂层[J]. 化学进展, 2023, 35(3): 496-508.
[2] 陆峰, 赵婷, 孙晓军, 范曲立, 黄维. 近红外二区发光稀土纳米材料的设计及生物成像应用[J]. 化学进展, 2022, 34(6): 1348-1358.
[3] 周晋, 陈鹏鹏. 二维纳米材料的改性及其环境污染物治理方面的应用[J]. 化学进展, 2022, 34(6): 1414-1430.
[4] 李彬, 于颖, 幸国香, 邢金峰, 刘万兴, 张天永. 手性无机纳米材料圆偏振发光的研究进展[J]. 化学进展, 2022, 34(11): 2340-2350.
[5] 郑明心, 谭臻至, 袁金颖. 光响应Janus粒子体系的构建与应用[J]. 化学进展, 2022, 34(11): 2476-2488.
[6] 漆晨阳, 涂晶. 无抗生素纳米抗菌剂:现状、挑战与展望[J]. 化学进展, 2022, 34(11): 2540-2560.
[7] 王嘉莉, 朱凌, 王琛, 雷圣宾, 杨延莲. 循环肿瘤细胞及细胞外囊泡的纳米检测技术[J]. 化学进展, 2022, 34(1): 178-197.
[8] 赵丹, 王昌涛, 苏磊, 张学记. 荧光纳米材料在病原微生物检测中的应用[J]. 化学进展, 2021, 33(9): 1482-1495.
[9] 谢勇, 韩明杰, 徐钰豪, 熊晨雨, 王日, 夏善红. 荧光内滤效应在环境检测领域的应用[J]. 化学进展, 2021, 33(8): 1450-1460.
[10] 谭莎, 马建中, 宗延. 聚(3,4-乙烯二氧噻吩)∶聚苯乙烯磺酸/无机纳米复合材料的制备及应用[J]. 化学进展, 2021, 33(10): 1841-1855.
[11] 蒋乔, 徐雪卉, 丁宝全. 纳米材料对生物凝聚态的调控[J]. 化学进展, 2020, 32(8): 1128-1139.
[12] 秦瑞轩, 邓果诚, 郑南峰. 金属纳米材料表面配体聚集效应[J]. 化学进展, 2020, 32(8): 1140-1157.
[13] 刘阳, 张新波, 赵樱灿. 二维MoS2纳米材料及其复合物在水处理中的应用[J]. 化学进展, 2020, 32(5): 642-655.
[14] 陈豪登, 徐建兴, 籍少敏, 姬文晋, 崔立峰, 霍延平. MOFs衍生金属氧化物及其复合材料在锂离子电池负极材料中的应用[J]. 化学进展, 2020, 32(2/3): 298-308.
[15] 朱蕾, 王嘉楠, 刘建伟, 王玲, 延卫. 静电纺丝一维纳米材料在气敏传感器的应用[J]. 化学进展, 2020, 32(2/3): 344-360.