English
新闻公告
More
化学进展 2020, Vol. 32 Issue (8): 1231-1239 DOI: 10.7536/PC200536 前一篇   后一篇

• 综述 •

生物凝聚态物质的多层次结构表征

徐国华1, 成凯1, 王晨1, 李从刚1,**()   

  1. 1. 中国科学院精密测量科学与技术创新研究院 中国科学院生物磁共振分析重点实验室 波谱与原子分子物理国家重点实验室 武汉 430071
  • 收稿日期:2020-05-16 修回日期:2020-06-30 出版日期:2020-08-24 发布日期:2020-09-08
  • 通讯作者: 李从刚
  • 基金资助:
    国家自然科学基金项目(21874149); 国家自然科学基金项目(21925406); 国家自然科学基金项目(21904137); 国家自然科学基金项目(21505152)

Multi-Hierarchical Structural Characterization of Biological Condensed Matters

Guohua Xu1, Kai Cheng1, Chen Wang1, Conggang Li1,**()   

  1. 1. Key Laboratory of Magnetic Resonance in Biological Syetems, CAS, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
  • Received:2020-05-16 Revised:2020-06-30 Online:2020-08-24 Published:2020-09-08
  • Contact: Conggang Li
  • About author:
  • Supported by:
    National Natural Science Foundation of China(21874149); National Natural Science Foundation of China(21925406); National Natural Science Foundation of China(21904137); National Natural Science Foundation of China(21505152)

在生物体内到处都是由蛋白质、核酸和多糖等生物大分子构成的各种不同生物凝聚态物质,这些生物凝聚态物质形成不同的高级结构,执行不同的生物功能。获取这些生物凝聚态物质的高分辨结构是理解生命过程的重要途径。在离体环境中,获取高分辨结构的手段主要有X-射线晶体衍射、冷冻电镜和核磁共振等,而在活细胞内原位研究生物凝聚体的结构,核磁共振和化学交联质谱具有独特优势。本文总结了利用多种分析手段对生物凝聚态物质进行多层次结构表征的研究进展:包括简单纯化体系下的蛋白质分子机器,蛋白质纤维等;液-液相分离,大分子拥挤、限域等模拟细胞复杂环境下的生物大分子以及活细胞内生物大分子。

Biological Condensed Matters(BCM), which are composed of proteins, nucleic acids, polysaccharides and other Biological macromolecules, are ubiquitous inside the organism. These BCM form various structures to perform different function. The determination of the high-resolution structures of these BCM is importance of understanding the life process. In Vitro, X-ray crystallography, cryo-electron microscopy(cryo-EM) and nuclear magnetic resonance(NMR) are the main methods to obtain high-resolution structures, while nuclear magnetic resonance and chemical cross-linking mass spectrometry have unique advantages for in situ study of the structure of BCM in living cells. Here, we mainly summarize the research progress in the characterization of the structures of BCM: including purified molecular machines and fibrils, biomolecules under crowding, confinement, liquid-liquid phase separation and in living cells.

Contents

1 Introduction

2 The structural characterization of biomacromolecules in simple system

3 The structural characterization of biomacromolecules in liquid-liquid phase separation environment

4 The structural characterization of biomacromolecules in crowded and confined environments

5 The structural characterization of biomacromolecules in living cells

6 Conclusion and outlook

()
表1 生物凝聚态物质的结构表征方法
Table 1 Structural characterization methods of BCM.
图1 固体核磁共振解析的高分辨淀粉样多肽及蛋白质结构:(A)TTR(105-115)[15];(B)HET-s(218-289)[17];(C)Aβ42[16]
Fig.1 High-resolution amyloid peptides and protein structures determined by solid-state NMR.(A) Ensemble of 20 lowest energy structures(top) and ribbon representation of the structure of TTR(105-115) in amyloid fibrils[15].(B) Structure of HET-s(218-289) fibrils(five molecules of HET-s are shown). The fibril axis is indicated by an arrow[17].(C) Ribbon representation of the lowest energy structure showing the alignment of Aβ42dimers along the fibril axis. Only residues 15-42 are shown[16]. Reproduced by reference 15~17 with permission from Copyright(2004) National Academy of Sciences(NAS), U. S. A., American Association for the Advancement of Science(AAAS), and the American Chemical Society(ACS), respectively
图2 Ddx4形成相分离后仍处于无结构状态[48]:(A) 稀溶液中和相分离后的Ddx4的1H-15N HSQC 谱图的叠加;(B) 基于Ddx4主链归属所获得的δ2D 分数,该值体现Ddx4的二级结构倾向性,越接近于1表明形成该结构类型的倾向性越强
Fig.2
图3 Ub3A and TTHA1718在sf9 细胞中的结构[75]:(A)Ub3A 的结构;(B)TTHA1718的结构
Fig.3 Ub3A and TTHA1718 structures in living sf9 cells[75].(A) The Ub3A structure in sf9 cells(left). Ub3A structures in sf9 cells(blue) and in diluted solution(red), showing the backbone atoms(right). (B) The TTHA1718 structure in sf9 cells(left). TTHA1718 structures in sf9 cells(blue) and in diluted solution(red), showing the backbone atoms(right). Reproduced by reference 75 with permission from John Wiley and Sons
[1]
Srivastava A P, Luo M, Zhou W, Symersky J, Bai D, Chambers M G, Faraldo-Gomez J D, Liao M, Mueller D M. Science, 2018, 360: eaas9699. https://www.ncbi.nlm.nih.gov/pubmed/29650704

doi: 10.1126/science.aas9699     URL     pmid: 29650704
[2]
Kireeva M L, Kashlev M, Burton Z F. Chem. Rev., 2013,113:8325. https://www.ncbi.nlm.nih.gov/pubmed/24219496

doi: 10.1021/cr400436m     URL     pmid: 24219496
[3]
Khatter H, Myasnikov A G, Natchiar S K, Klaholz B P. Nature, 2015,520:640. https://www.ncbi.nlm.nih.gov/pubmed/25901680

doi: 10.1038/nature14427     URL     pmid: 25901680
[4]
Bascos N A D, Landry S J. Int. J. Mol. Sci., 2019,20:6195.
[5]
Rayment I, Holden H M, Whittaker M, Yohn C B, Lorenz M, Holmes K C, Milligan R A. Science, 1993,261:58. https://www.ncbi.nlm.nih.gov/pubmed/8316858

doi: 10.1126/science.8316858     URL     pmid: 8316858
[6]
Cao L, Wang W, Jiang Q, Wang C, Knossow M, Gigant B. Nature Commun., 2014,5:5364.
[7]
Gigant B, Wang W, Dreier B, Jiang Q, Pecqueur L, Pluckthun A, Wang C, Knossow M. Nat. Struct. Mol. Biol., 2013,20:1001. https://www.ncbi.nlm.nih.gov/pubmed/23872990

doi: 10.1038/nsmb.2624     URL     pmid: 23872990
[8]
Atherton J, Farabella I, Yu I M, Rosenfeld S S, Houdusse A, Topf M, Moores C A. ELife, 2014,3:e03680. https://www.ncbi.nlm.nih.gov/pubmed/25209998

URL     pmid: 25209998
[9]
Shang Z, Zhou K, Xu C, Csencsits R, Cochran J C, Sindelar C V. ELife, 2014,3:e04686. https://www.ncbi.nlm.nih.gov/pubmed/25415053

doi: 10.7554/eLife.04686     URL     pmid: 25415053
[10]
Kon T, Oyama T, Shimo-Kon R, Imamula K, Shima T, Sutoh K, Kurisu G. Nature, 2012,484:345. https://www.ncbi.nlm.nih.gov/pubmed/22398446

doi: 10.1038/nature10955     URL     pmid: 22398446
[11]
Bertelsen E B, Chang L, Gestwicki J E, Zuiderweg E R. Proc. Natl. Acad. Sci. U. S. A., 2009,106:8471. https://www.ncbi.nlm.nih.gov/pubmed/19439666

doi: 10.1073/pnas.0903503106     URL     pmid: 19439666
[12]
Song F, Chen P, Sun D, Wang M, Dong L, Liang D, Xu R M, Zhu P, Li G. Science, 2014,344:376. https://www.ncbi.nlm.nih.gov/pubmed/24763583

doi: 10.1126/science.1251413     URL     pmid: 24763583
[13]
Spencer R G, Halverson K J, Auger M, McDermott A E, Griffin R G, Lansbury Jr P T. Biochemistry, 1991,30:10382. https://www.ncbi.nlm.nih.gov/pubmed/1931962

doi: 10.1021/bi00107a004     URL     pmid: 1931962
[14]
Lansbury Jr. P T, Costa P R, Griffiths J M, Simon E J, Auger M, Halverson K J, Kocisko D A, Hendsch Z S, Ashburn T T, Spencer R G, Tidor B, Griffin R G. . Nat. Struct. Biol., 1995,2:990. https://www.ncbi.nlm.nih.gov/pubmed/7583673

doi: 10.1038/nsb1195-990     URL     pmid: 7583673
[15]
Jaroniec C P, MacPhee C E, Bajaj V S, McMahon M T, Dobson C M, Griffin R G. Proc. Natl. Acad. Sci. U. S. A., 2004,101:711. https://www.ncbi.nlm.nih.gov/pubmed/14715898

doi: 10.1073/pnas.0304849101     URL     pmid: 14715898
[16]
Colvin M T, Silvers R, Ni Q Z, Can T V, Sergeyev I, Rosay M, Donovan K J, Michael B, Wall J, Linse S, Griffin R G. J. Am. Chem. Soc., 2016,138:9663. https://www.ncbi.nlm.nih.gov/pubmed/27355699

doi: 10.1021/jacs.6b05129     URL     pmid: 27355699
[17]
Wasmer C, Lange A, Van Melckebeke H, Siemer A B, Riek R, Meier B H. Science, 2008,319:1523. https://www.ncbi.nlm.nih.gov/pubmed/18339938

doi: 10.1126/science.1151839     URL     pmid: 18339938
[18]
Tuttle M D, Comellas G, Nieuwkoop A J, Covell D J, Berthold D A, Kloepper K D, Courtney J M, Kim J K, Barclay A M, Kendall A, Wan W, Stubbs G, Schwieters C D, Lee V M Y, George J M, Rienstra C M. Nat. Struct. Mol. Biol., 2016,23:409. https://www.ncbi.nlm.nih.gov/pubmed/27018801

doi: 10.1038/nsmb.3194     URL     pmid: 27018801
[19]
Struppe J, Quinn C M, Lu M M, Wang M Z, Hou G J, Lu X Y, Kraus J, Andreas L B, Stanek J, Lalli D, Lesage A, Pintacuda G, Maas W, Gronenborn A M, Polenova T. Solid. State. Nucl. Mag., 2017,87:117. https://linkinghub.elsevier.com/retrieve/pii/S0926204017300486

doi: 10.1016/j.ssnmr.2017.07.001     URL    
[20]
Linser R, Dasari M, Hiller M, Higman V, Fink U, del Amo J M L, Markovic S, Handel L, Kessler B, Schmieder P, Oesterhelt D, Oschkinat H, Reif B. Angew. Chem. Int. Edit., 2011,50:4508. f9bdcf2c-1c56-491a-a188-67d66a87111bhttp://dx.doi.org/10.1002/anie.201008244

doi: 10.1002/anie.201008244     URL    
[21]
Stanek J, Andreas L B, Jaudzems K, Cala D, Lalli D, Bertarello A, Schubeis T, Akopjana I, Kotelovica S, Tars K, Pica A, Leone S, Picone D, Xu Z Q, Dixon N E, Martinez D, Berbon M, El Mammeri N, Noubhani A, Saupe S, Habenstein B, Loquet A, Pintacuda G. Angew. Chem. Int. Edit., 2016,55:15503.
[22]
Nadaud P S, Helmus J J, Hofer N, Jaroniec C P. J. Am. Chem. Soc., 2007,129:7502. https://www.ncbi.nlm.nih.gov/pubmed/17530852

doi: 10.1021/ja072349t     URL     pmid: 17530852
[23]
Sengupta I, Nadaud P S, Helmus J J, Schwieters C D, Jaroniec C P. Nat. Chem., 2012,4:410. https://www.ncbi.nlm.nih.gov/pubmed/22522262

doi: 10.1038/nchem.1299     URL     pmid: 22522262
[24]
Theint T, Xia Y J, Nadaud P S, Mukhopadhyay D, Schwieters C D, Surewicz K, Surewicz W K, Jaroniec C P. J. Am. Chem. Soc., 2018,140:13161. https://www.ncbi.nlm.nih.gov/pubmed/30295029

doi: 10.1021/jacs.8b06758     URL     pmid: 30295029
[25]
Bayro M J, Debelouchina G T, Eddy M T, Birkett N R, MacPhee C E, Rosay M, Maas W E, Dobson C M, Griffin R G. J. Am. Chem. Soc., 2011,133:13967. https://www.ncbi.nlm.nih.gov/pubmed/21774549

doi: 10.1021/ja203756x     URL     pmid: 21774549
[26]
Potapov A, Yau W M, Ghirlando R, Thurber K R, Tycko R. J. Am. Chem. Soc., 2015,137:8294. https://www.ncbi.nlm.nih.gov/pubmed/26068174

doi: 10.1021/jacs.5b04843     URL     pmid: 26068174
[27]
Li X, Mooney P, Zheng S, Booth C R, Braunfeld M B, Gubbens S, Agard D A, Cheng Y. Nat. Methods, 2013,10:584. https://www.ncbi.nlm.nih.gov/pubmed/23644547

doi: 10.1038/nmeth.2472     URL     pmid: 23644547
[28]
Guerrero-Ferreira R, Taylor N M I, Mona D, Ringler P, Lauer M E, Riek R, Britschgi M, Stahlberg H. Elife, 2018,7:e36402. https://www.ncbi.nlm.nih.gov/pubmed/29969391

doi: 10.7554/eLife.36402     URL     pmid: 29969391
[29]
Boyer D R, Li B, Sun C, Fan W, Zhou K, Hughes M P, Sawaya M R, Jiang L, Eisenberg D S. Proc. Natl. Acad. Sci. U.S. A., 2020,117:3592.
[30]
Radamaker L, Lin Y H, Annamalai K, Huhn S, Hegenbart U, Schonland S O, Fritz G, Schmidt M, Fandrich M. Nat. Commun., 2019,10:1103. https://www.ncbi.nlm.nih.gov/pubmed/30894526

doi: 10.1038/s41467-019-09032-0     URL     pmid: 30894526
[31]
Gremer L, Scholzel D, Schenk C, Reinartz E, Labahn J, Ravelli R B G, Tusche M, Lopez-Iglesias C, Hoyer W, Heise H, Willbold D, Schroder G F. Science, 2017,358:116. https://www.ncbi.nlm.nih.gov/pubmed/28882996

doi: 10.1126/science.aao2825     URL     pmid: 28882996
[32]
Fitzpatrick A W P, Falcon B, He S, Murzin A G, Murshudov G, Garringer H J, Crowther R A, Ghetti B, Goedert M, Scheres S H W. Nature, 2017,547:185. https://www.ncbi.nlm.nih.gov/pubmed/28678775

doi: 10.1038/nature23002     URL     pmid: 28678775
[33]
Falcon B, Zhang W J, Murzin A G, Murshudov G, Garringer H J, Vidal R, Crowther R A, Ghetti B, Scheres S H W, Goedert M. Nature, 2018,561:137. https://www.ncbi.nlm.nih.gov/pubmed/30158706

doi: 10.1038/s41586-018-0454-y     URL     pmid: 30158706
[34]
Brangwynne C P, Eckmann C R, Courson D S, Rybarska A, Hoege C, Gharakhani J, Julicher F, Hyman A A. Science, 2009,324:1729. https://www.ncbi.nlm.nih.gov/pubmed/19460965

doi: 10.1126/science.1172046     URL     pmid: 19460965
[35]
Buchan J R, Parker R. Mol. Cell, 2009,36:932. https://www.ncbi.nlm.nih.gov/pubmed/20064460

doi: 10.1016/j.molcel.2009.11.020     URL     pmid: 20064460
[36]
Banani S F, Lee H O, Hyman A A, Rosen M K. Nat. Rev. Mol. Cell Biol., 2017,18:285. https://doi.org/10.1038/nrm.2017.7

doi: 10.1038/nrm.2017.7     URL     pmid: 28225081
[37]
Decker C J, Parker R. Cold Spring Harb. Perspect. Biol., 2012,4:a012286. https://www.ncbi.nlm.nih.gov/pubmed/22763747

doi: 10.1101/cshperspect.a012286     URL     pmid: 22763747
[38]
Feng Z, Zeng M, Chen X, Zhang M. Biochemistry, 2018,57:2530. https://www.ncbi.nlm.nih.gov/pubmed/29648450

doi: 10.1021/acs.biochem.8b00313     URL     pmid: 29648450
[39]
Jain A, Vale R D. Nature, 2017,546:243. https://www.ncbi.nlm.nih.gov/pubmed/28562589

doi: 10.1038/nature22386     URL     pmid: 28562589
[40]
Patel A, Lee H O, Jawerth L, Maharana S, Jahnel M, Hein M Y, Stoynov S, Mahamid J, Saha S, Franzmann T M, Pozniakovski A, Poser I, Maghelli N, Royer L A, Weigert M, Myers E W, Grill S, Drechsel D, Hyman A A, Alberti S. Cell, 2015,162:1066. https://www.ncbi.nlm.nih.gov/pubmed/26317470

URL     pmid: 26317470
[41]
Dellaire G, Eskiw C H, Dehghani H, Ching R W, Bazett-Jones D P. J. Cell Sci., 2006,119:1034. https://www.ncbi.nlm.nih.gov/pubmed/16492707

doi: 10.1242/jcs.02817     URL     pmid: 16492707
[42]
Hoyle N P, Castelli L M, Campbell S G, Holmes L E, Ashe M P. J. Cell Biol., 2007,179:65. https://www.ncbi.nlm.nih.gov/pubmed/17908917

doi: 10.1083/jcb.200707010     URL     pmid: 17908917
[43]
Louria-Hayon I, Grossman T, Sionov R V, Alsheich O, Pandolfi P P, Haupt Y. J. Biol. Chem., 2003,278:33134. https://www.ncbi.nlm.nih.gov/pubmed/12810724

doi: 10.1074/jbc.M301264200     URL     pmid: 12810724
[44]
Grousl T, Ivanov P, Frydlova I, Vasicova P, Janda F, Vojtova J, Malinska K, Malcova I, Novakova L, Janoskova D, Valasek L, Hasek J. J. Cell Sci., 2009,122:2078. https://www.ncbi.nlm.nih.gov/pubmed/19470581

doi: 10.1242/jcs.045104     URL     pmid: 19470581
[45]
Le Ferrand H, Duchamp M, Gabryelczyk B, Cai H, Miserez A. J. Am. Chem. Soc., 2019,141:7202. https://pubs.acs.org/doi/10.1021/jacs.9b03083

doi: 10.1021/jacs.9b03083     URL     pmid: 30986043
[46]
Kato M, Han T W, Xie S, Shi K, Du X, Wu L C, Mirzaei H, Goldsmith E J, Longgood J, Pei J, Grishin N V, Frantz D E, Schneider J W, Chen S, Li L, Sawaya M R, Eisenberg D, Tycko R, McKnight S L. Cell, 2012,149:753. 85f036bc-19d3-458f-902c-3a9352e53be7http://dx.doi.org/10.1016/j.cell.2012.04.017

doi: 10.1016/j.cell.2012.04.017     URL     pmid: 22579281
[47]
Sun Z, Diaz Z, Fang X, Hart M P, Chesi A, Shorter J, Gitler A D. PLoS biol., 2011,9:e1000614. https://www.ncbi.nlm.nih.gov/pubmed/21541367

doi: 10.1371/journal.pbio.1000614     URL     pmid: 21541367
[48]
Brady J P, Farber P J, Sekhar A, Lin Y H, Huang R, Bah A, Nott T J, Chan H S, Baldwin A J, Forman-Kay J D, Kay L E. Proc. Natl. Acad. Sci. U.S.A., 2017,114:E8194. https://www.ncbi.nlm.nih.gov/pubmed/28894006

doi: 10.1073/pnas.1706197114     URL     pmid: 28894006
[49]
Ambadipudi S, Biernat J, Riedel D, Mandelkow E, Zweckstetter M. Nat. Commun., 2017,8:275. https://www.ncbi.nlm.nih.gov/pubmed/28819146

doi: 10.1038/s41467-017-00480-0     URL     pmid: 28819146
[50]
Reichheld S E, Muiznieks L D, Keeley F W, Sharpe S. Proc. Natl. Acad. Sci. USA, 2017,114:E4408. https://www.ncbi.nlm.nih.gov/pubmed/28507126

doi: 10.1073/pnas.1701877114     URL     pmid: 28507126
[51]
Ackermann B E, Debelouchina G T. Angew. Chem. Int. Edit., 2019,58:6300. https://onlinelibrary.wiley.com/toc/15213773/58/19

doi: 10.1002/anie.v58.19     URL    
[52]
Ellis R J. Curr. Opin. Struct. Biol., 2001,11:114. https://www.ncbi.nlm.nih.gov/pubmed/11179900

doi: 10.1016/s0959-440x(00)00172-x     URL     pmid: 11179900
[53]
Bai J, Liu M, Pielak G J, Li C. Chemphyschem, 2017,18:55. https://www.ncbi.nlm.nih.gov/pubmed/27860069

doi: 10.1002/cphc.201601097     URL     pmid: 27860069
[54]
Theillet F X, Binolfi A, Bekei B, Martorana A, Rose H M, Stuiver M, Verzini S, Lorenz D, van Rossum M, Goldfarb D, Selenko P. Nature, 2016,530:45. https://www.ncbi.nlm.nih.gov/pubmed/26808899

doi: 10.1038/nature16531     URL     pmid: 26808899
[55]
徐国华(Xu G H), 李从刚(Li C G), 刘买利(Liu M L). 化学进展(Progress in Chemistry), 2017,29(1):75.
[56]
Akabayov S R, Akabayov B, Richardson C C, Wagner G. J. Am. Chem. Soc., 2013,135:10040. https://www.ncbi.nlm.nih.gov/pubmed/23767688

doi: 10.1021/ja404404h     URL     pmid: 23767688
[57]
Perham M, Stagg L, Wittung-Stafshede P. FEBS Lett., 2007,581:5065. https://www.ncbi.nlm.nih.gov/pubmed/17919600

doi: 10.1016/j.febslet.2007.09.049     URL     pmid: 17919600
[58]
Rodriguez G, Orris B, Majumdar A, Bhat S, Stivers J T. DNA Repair, 2020,86:102764. https://www.ncbi.nlm.nih.gov/pubmed/31855846

doi: 10.1016/j.dnarep.2019.102764     URL     pmid: 31855846
[59]
Miyoshi D, Karimata H, Sugimoto N. Angew. Chem. Int. Edit., 2005,44:3740. http://doi.wiley.com/10.1002/%28ISSN%291521-3773

doi: 10.1002/(ISSN)1521-3773     URL    
[60]
Kan Z Y, Yao Y A, Wang P, Li X H, Hao Y H, Tan Z. Angew. Chem. Int. Edit., 2006,45:1629. http://doi.wiley.com/10.1002/%28ISSN%291521-3773

doi: 10.1002/(ISSN)1521-3773     URL    
[61]
Xue Y, Kan Z Y, Wang Q, Yao Y, Liu J, Hao Y H, Tan Z. J. Am. Chem. Soc., 2007,129:11185. https://www.ncbi.nlm.nih.gov/pubmed/17705383

doi: 10.1021/ja0730462     URL     pmid: 17705383
[62]
Kan Z Y, Lin Y, Wang F, Zhuang X Y, Zhao Y, Pang D W, Hao Y H, Tan Z. Nucleic Acids Res., 2007,35:3649.
[63]
Zheng K W, Chen Z, Hao Y H, Tan Z. Nucleic Acids Res., 2010,38:327. https://www.ncbi.nlm.nih.gov/pubmed/19858105

doi: 10.1093/nar/gkp898     URL     pmid: 19858105
[64]
Yu H Q, Gu X B, Nakano S, Miyoshi D, Sugimoto N. J. Am. Chem. Soc., 2012,134:20060. https://www.ncbi.nlm.nih.gov/pubmed/22934853

doi: 10.1021/ja305384c     URL     pmid: 22934853
[65]
Heddi B, Phan A T. J. Am. Chem. Soc., 2011,133:9824. https://www.ncbi.nlm.nih.gov/pubmed/21548653

doi: 10.1021/ja200786q     URL     pmid: 21548653
[66]
Hansel R, Lohr F, Trantirek L, Dotsch V. J. Am. Chem. Soc., 2013,135:2816. https://www.ncbi.nlm.nih.gov/pubmed/23339582

doi: 10.1021/ja312403b     URL     pmid: 23339582
[67]
Babu C R, Flynn P F, Wand A J. J. Am. Chem. Soc., 2001,123:2691. https://www.ncbi.nlm.nih.gov/pubmed/11456950

doi: 10.1021/ja005766d     URL     pmid: 11456950
[68]
O’Brien E S, Nucci N V, Fuglestad B, Tommos C, Wand A J. J. Biol. Chem., 2015,290:30879. https://www.ncbi.nlm.nih.gov/pubmed/26487716

doi: 10.1074/jbc.M115.689406     URL     pmid: 26487716
[69]
Peterson R W, Anbalagan K, Tommos C, Wand A J. J. Am. Chem. Soc., 2004,126:9498. https://www.ncbi.nlm.nih.gov/pubmed/15291527

doi: 10.1021/ja047900q     URL     pmid: 15291527
[70]
Martinez A V, Malolepsza E, Rivera E, Lu Q, Straub J E. J. Chem. Phys., 2014, 141: 22D530. https://www.ncbi.nlm.nih.gov/pubmed/25494801

doi: 10.1063/1.4902550     URL     pmid: 25494801
[71]
Xu G, Cheng K, Wu Q, Liu M, Li C. Angew. Chem. Int. Edit., 2017,56:530.
[72]
Sakakibara D, Sasaki A, Ikeya T, Hamatsu J, Hanashima T, Mishima M, Yoshimasu M, Hayashi N, Mikawa T, Walchli M, Smith B O, Shirakawa M, Guntert P, Ito Y. Nature, 2009,458:102. https://www.ncbi.nlm.nih.gov/pubmed/19262674

doi: 10.1038/nature07814     URL     pmid: 19262674
[73]
Muntener T, Haussinger D, Selenko P, Theillet F X. J. Phys. Chem. Lett., 2016,7:2821. https://www.ncbi.nlm.nih.gov/pubmed/27379949

doi: 10.1021/acs.jpclett.6b01074     URL     pmid: 27379949
[74]
Pan B B, Yang F, Ye Y, Wu Q, Li C, Huber T, Su X C. Chem. Comm., 2016,52:10237. https://www.ncbi.nlm.nih.gov/pubmed/27470136

doi: 10.1039/c6cc05490k     URL     pmid: 27470136
[75]
Tanaka T, Ikeya T, Kamoshida H, Suemoto Y, Mishima M, Shirakawa M, Guntert P, Ito Y. Angew. Chem. Int. Edit., 2019,58:7284. https://onlinelibrary.wiley.com/toc/15213773/58/22

doi: 10.1002/anie.v58.22     URL    
[76]
Sustarsic M, Kapanidis A N. Curr. Opin. Struct. Biol., 2015,34:52. https://www.ncbi.nlm.nih.gov/pubmed/26295172

doi: 10.1016/j.sbi.2015.07.001     URL     pmid: 26295172
[77]
Sakon J J, Weninger K R. Nat. Methods, 2010,7:203. https://www.ncbi.nlm.nih.gov/pubmed/20118931

doi: 10.1038/nmeth.1421     URL     pmid: 20118931
[78]
Konig I, Zarrine-Afsar A, Aznauryan M, Soranno A, Wunderlich B, Dingfelder F, Stuber J C, Pluckthun A, Nettels D, Schuler B. Nat. Methods, 2015,12:773. https://www.ncbi.nlm.nih.gov/pubmed/26147918

doi: 10.1038/nmeth.3475     URL     pmid: 26147918
[79]
Okamoto K, Hibino K, Sako Y. Biochim. Biophys. Acta Gen. Subj., 2020,1864:129358. https://www.ncbi.nlm.nih.gov/pubmed/31071411

doi: 10.1016/j.bbagen.2019.04.022     URL     pmid: 31071411
[80]
Fessl T, Adamec F, Polivka T, Foldynova-Trantirkova S, Vacha F, Trantírek L. Nucleic Acids Res., 2012,40:e121. https://www.ncbi.nlm.nih.gov/pubmed/22544706

doi: 10.1093/nar/gks333     URL     pmid: 22544706
[81]
Crawford R, Torella J P, Aigrain L, Plochowietz A, Gryte K, Uphoff S, Kapanidis A N. Biophys. J., 2013,105:2439. https://www.ncbi.nlm.nih.gov/pubmed/24314075

doi: 10.1016/j.bpj.2013.09.057     URL     pmid: 24314075
[82]
樊盛博(Fan S S), 吴妍洁(Wu Y J), 杨兵(Yang B), 迟浩(Chi H), 孟佳明(Meng J M), 卢珊(Lu S), 张昆(Zhang K), 邬龙(Wu L), 孙瑞祥(Sun S X), 董梦秋(Dong M Q), 贺思敏(He S M). 生物化学与生物物理进展(Progress in Biochemistry and Biophysics), 2014,41(11):1109.
[83]
Zheng C, Yang L, Hoopmann M R, Eng J K, Tang X, Weisbrod C R, Bruce J E. Mol. Cell. Proteomics, 2011. DOI: 10: M110.006841. https://www.ncbi.nlm.nih.gov/pubmed/32737216

doi: 10.1074/mcp.RA120.002049     URL     pmid: 32737216
[84]
Navare A T, Chavez J D, Zheng C, Weisbrod C R, Eng J K, Siehnel R, Singh P K, Manoil C, Bruce J E. Structure, 2015,23:762. https://www.ncbi.nlm.nih.gov/pubmed/25800553

doi: 10.1016/j.str.2015.01.022     URL     pmid: 25800553
[85]
Chavez J D, Weisbrod C R, Zheng C, Eng J K, Bruce J E. Mol. Cell. Proteomics, 2013,12:1451. https://www.ncbi.nlm.nih.gov/pubmed/23354917

doi: 10.1074/mcp.M112.024497     URL     pmid: 23354917
[86]
Chavez J D, Lee C F, Caudal A, Keller A, Tian R, Bruce J E. Cell Syst., 2018,6:136. https://www.ncbi.nlm.nih.gov/pubmed/29199018

doi: 10.1016/j.cels.2017.10.017     URL     pmid: 29199018
[87]
Schweppe D K, Chavez J D, Lee C F, Caudal A, Kruse S E, Stuppard R, Marcinek D J, Shadel G S, Tian R, Bruce J E. Proc. Natl. Acad. Sci. U. S. A., 2017,114:1732. https://www.ncbi.nlm.nih.gov/pubmed/28130547

doi: 10.1073/pnas.1617220114     URL     pmid: 28130547
[1] 鄢剑锋, 徐进栋, 张瑞影, 周品, 袁耀锋, 李远明. 纳米碳分子——合成化学的魅力[J]. 化学进展, 2023, 35(5): 699-708.
[2] 鲍艳, 许佳琛, 郭茹月, 马建中. 基于微纳结构的高灵敏度柔性压力传感器[J]. 化学进展, 2023, 35(5): 709-720.
[3] 徐怡雪, 李诗诗, 马晓双, 刘小金, 丁建军, 王育乔. 表界面调制增强铋基催化剂的光生载流子分离和传输[J]. 化学进展, 2023, 35(4): 509-518.
[4] 杨越, 续可, 马雪璐. 金属氧化物中氧空位缺陷的催化作用机制[J]. 化学进展, 2023, 35(4): 543-559.
[5] 牛文辉, 张达, 赵振刚, 杨斌, 梁风. 钠基-海水电池的发展:“关键部件及挑战”[J]. 化学进展, 2023, 35(3): 407-420.
[6] 杨国栋, 苑高千, 张竞哲, 吴金波, 李发亮, 张海军. 多孔电磁波吸收材料[J]. 化学进展, 2023, 35(3): 445-457.
[7] 蒋昊洋, 熊丰, 覃木林, 高嵩, 何刘如懿, 邹如强. 用于电热转化、存储与利用的导电相变材料[J]. 化学进展, 2023, 35(3): 360-374.
[8] 刘晓珺, 秦朗, 俞燕蕾. 胆甾相液晶螺旋方向的光调控[J]. 化学进展, 2023, 35(2): 247-262.
[9] 李璇, 黄炯鹏, 张一帆, 石磊. 二维材料的一维纳米带[J]. 化学进展, 2023, 35(1): 88-104.
[10] 姬超, 李拓, 邹晓峰, 张璐, 梁春军. 二维钙钛矿光伏器件[J]. 化学进展, 2022, 34(9): 2063-2080.
[11] 叶淳懿, 杨洋, 邬学贤, 丁萍, 骆静利, 符显珠. 钯铜纳米电催化剂的制备方法及应用[J]. 化学进展, 2022, 34(9): 1896-1910.
[12] 张旭, 张蕾, 黄善恩, 柴之芳, 石伟群. 盐包合材料在高温熔盐体系中的合成及其潜在应用[J]. 化学进展, 2022, 34(9): 1947-1956.
[13] 顾顺心, 姜琴, 施鹏飞. 发光铱(Ⅲ)配合物抗肿瘤活性研究及应用[J]. 化学进展, 2022, 34(9): 1957-1971.
[14] 宝利军, 危俊吾, 钱杨杨, 王雨佳, 宋文杰, 毕韵梅. 酶响应性线形-树枝状嵌段共聚物的合成、性能及应用[J]. 化学进展, 2022, 34(8): 1723-1733.
[15] 王萌, 宋贺, 李烨文. 三维自组装蓝相液晶光子晶体[J]. 化学进展, 2022, 34(8): 1734-1747.