English
新闻公告
More
化学进展 2013, Vol. 25 Issue (10): 1739-1750 DOI: 10.7536/PC130115 前一篇   后一篇

• 综述与评论 •

共轭聚合物的双光子吸收性质及其在生物成像领域的应用

任晓杰, 卢晓梅, 范曲立, 黄维   

  1. 南京邮电大学信息材料与纳米技术研究院 江苏省有机电子与信息显示重点实验室 南京210046
  • 收稿日期:2013-01-01 修回日期:2013-04-01 出版日期:2013-11-12 发布日期:2013-07-18
  • 通讯作者: 范曲立, 黄维 E-mail:iamqlfan@njupt.edu.cn; wei-huang@njupt.edu.cn
  • 基金资助:

    国家重点基础研究发展计划(973)项目(No.009CB930600,2012CB933301,2012CB723402)、国家自然科学基金项目(No.21222404,51173080,21104033)、教育部“新世纪优秀人才支持计划”(No.NCET-10-0179)、高等学校博士点专项科研基金(No.20093223110003)、江苏省研究生培养创新工程(No.CXLX11_0414)资助

Conjugated Polymers with Two-Photon Absorption for Bioimaging

Ren Xiaojie, Lu Xiaomei, Fan Quli, Huang Wei   

  1. Jiangsu Key Lab of Organic Electronics & Information Displays and Institute of Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing 210046, China
  • Received:2013-01-01 Revised:2013-04-01 Online:2013-11-12 Published:2013-07-18

双光子吸收有着明显不同于单光子吸收的特点,这使得有强双光子吸收的有机分子在许多方面都有应用,比如三维光数据存储,医疗设备的精密加工,DNA装载,光动力学诊疗等。本文综述了近些年来研究较多的共轭聚合物双光子材料,根据其结构特点分为芴类、苯乙烯苯乙炔类、噻吩类、三苯胺类、蒽类等,并阐述了不同结构对于双光子吸收截面的影响。同时重点关注了他们在生物成像领域的潜在应用。

Conjugated polymers with large two-photon absorption cross sections have potential applications in data storage, phototherapy, 3D imaging, and micro-fabrication. Substantial efforts have been recently made to develop materials with large two-photon absorption cross sections. In this communication, we have summarized some classes of conjugated polymers with two-photon absorption cross section, including the molecules with conjugated bridge of fluorene, benzene, thiophene and anthracene, and the molecules incorporating triphenylamine. These materials have been demonstrated acting as fluorescent probes in the application of two-photon fluorescence bioimaging.

Contents
1 Introduction
2 Two-photon absorption materials
2.1 Fluorene with two-photon absorption
2.2 Phenyl materials with two-photon absorption
2.3 Thiophene with two-photon absorption
2.4 Anthracene with two-photon absorption
2.5 Triphenylamine with two-photon absorption
3 Conclusion and outlook

中图分类号: 

()

[1] Göppert-Mayer M. Annals of Physics, 1931, 9: 273
[2] Kaiser W, Garrett C. Physical Review Letters, 1961, 7 (6): 229—231
[3] Hayek A, Ercelen S, Zhang X, Bolze F, Nicoud J F, Schaub E, Baldeck P L, Mély Y. Bioconjugate Chemistry, 2007, 18 (3): 844—851
[4] Zhao C F, He G S, Bhawalkar J D, Park C K, Prasad P N. Chemistry of Materials, 1995, 7: 1979—1983
[5] Yuan L X, He G S, Prasad P N. Chemistry of Materials, 1998, 10: 1863—1874
[6] Bhawalkar J D, He G S, Prasad P N. Reports on Progress in Physics, 1996, 59: 1041
[7] Chung S J, Kim K S, Lin T C, He G S, Swiatkiewicz J, Prasad P N. The Journal of Physical Chemistry B, 1999, 103 (49): 10741—10745
[8] Yao S, Belfield K D. European Journal of Organic Chemistry, 2012, (17): 3199—3217
[9] Fitilis I, Fakis M, Polyzos I, Giannetas V, Persephonis P, Vellis P, Mikroyannidis J. Chemical Physics Letters, 2007, 447 (4/6): 300—304
[10] Soos Z, Ramasesha S, Galvo D. Physical Review Letters, 1993, 71 (10): 1609—1612
[11] Shukla A, Ghosh H, Mazumdar S. Physical Review B, 2003, 67 (24): 5203—5212
[12] Belfield K D, Hagan D J, Van Stryland E W, Schafer K J, Negres R A. Organic Letters, 1999, 1 (10): 1575—1578
[13] Moroni L, Salvi P R, Gellini C, Dellepiane G, Comoretto D, Cuniberti C. The Journal of Physical Chemistry A, 2001, 105 (32): 7759—7764
[14] Pond S J K, Rumi M, Levin M D, Parker T C, Beljonne D, Day M W, Brédas J L, Marder S R, Perry J W. The Journal of Physical Chemistry A, 2002, 106 (47): 11470—11480
[15] Morales A R, Belfield K D, Hales J M, Van Stryland E W, Hagan D J. Chemistry of Materials, 2006, 18 (20): 4972—4980
[16] Jiang Y, Wang Y, Yang J, Hua J, Wang B, Qian S, Tian H. Journal of Polymer Science Part A: Polymer Chemistry, 2011, 49 (8): 1830—1839
[17] Wu C, Szymanski C, Cain Z, McNeill J. Journal of the American Chemical Society, 2007, 129 (43): 12904—12905
[18] 赵俊芳(Zhao J F). 山东师范大学硕士论文(Thesis of Shandong Normal University), 2006
[19] Yao S, Belfield K D. The Journal of Organic Chemistry, 2005, 70 (13): 5126—5132
[20] Tian N, Xu Q H. Advanced Materials, 2007, 19 (15): 1988—1991
[21] Ren X, Xu Q H. Langmuir, 2009, 25 (1): 29—31
[22] Guan Z, Polavarapu L, Xu Q H. Langmuir, 2010, 26 (23): 18020—18023
[23] Zheng Q, Gupta S K, He G S, Tan L S, Prasad P N. Advanced Functional Materials, 2008, 18 (18): 2770—2779
[24] Lin N B, Liu X Y, Diao Y Y, Xu H Y, Chen C Y, Ouyang X H, Yang H Z, Ji W. Advanced Functional Materials, 2012, 22 (2): 361—368
[25] Wu C, Bull B, Szymanski C, Christensen K, McNeill J. ACS Nano, 2008, 2 (11): 2415—2423
[26] Wang X H, Nguyen D M, Yanez C O, Rodriguez L, Ahn H Y, Bonder M V, Belfield K D. Journal of the American Chemical Society, 2010, 132 (35): 12237—12239
[27] Pecher J, Huber J, Winterhalder M, Zumbusch A, Mecking S. Biomacromolecules, 2010, 11 (10): 2776—2780
[28] Wang X, Nguyen D M, Yanez C O, Rodriguez L, Ahn H Y, Bondar M V, Belfield K D. Journal of the American Chemical Society, 2010, 132 (35): 12237—12239
[29] Wang L, Tao X, Yang J, Xu G, Ren Y, Liu Y, Yan Y, Liu Z, Jiang M. Synthetic Metals, 2006, 156 (2/4): 141—145
[30] Tian L, Hu Z, Shi P, Zhou H, Wu J, Tian Y, Zhou Y, Tao X, Jiang M. Journal of Luminescence, 2007, 127 (2): 423—430
[31] Lincker F, Bourgun P, Masson P, Didier P, Guidoni L, Bigot J Y, Nicoud J F, Donnio B, Guillon D. Organic Letters, 2005, 7 (8): 1505—1508
[32] Pu K Y, Liu B. Advanced Functional Materials, 2011, 21 (18): 3408—3423
[33] McRae R L, Phillips R L, Kim I B, Bunz U H F, Fahrni C J. Journal of the American Chemical Society, 2008, 130 (25): 7851—7853
[34] Parthasarathy A, Ahn H Y, Belfield K D, Schanze K S. ACS Applied Materials & Interfaces, 2010, 2 (10): 2744—2748
[35] Lee K, Lee J, Jeong E J, Kronk A, Elenitoba-Johnson K S J, Lim M S, Kim J. Advanced Materials, 2012, 24 (18): 2479—2484
[36] Yuksel M, Colak D G, Akin M, Cianga I, Kukut M, Medine E I, Can M, Sakarya S, Unak P, Timur S, Yagci Y. Biomacromolecules, 2012, 13 (9): 2680—2691
[37] Zhu M Q, Zhang G F, Li C, Aldred M P, Chang E, Drezek R A, Li A D Q. Journal of the American Chemical Society, 2011, 133 (2): 365—372
[38] Wu C L, Xu Q H. Macromolecular Rapid Communications, 2009, 30 (7): 504—508
[39] He F, Ren X, Shen X, Xu Q H. Macromolecules, 2011, 44 (13): 5373—5380
[40] Shen X, He F, Wu J, Xu G Q, Yao S Q, Xu Q H. Langmuir, 2011, 27 (5): 1739—1744
[41] Stabo-Eeg F, Lindgren M, Nilsson K P R, Inganäs O, Hammarström P. Chemical Physics, 2007, 336 (2/3): 121—126
[42] Nilsson K P R, Hammarström P, Ahlgren F, Herland A, Schnell E A, Lindgren M, Westermark G T, Inganäs O. ChemBioChem, 2006, 7 (7): 1096—1104
[43] Åslund A, Sigurdson C J, Klingstedt T s, Grathwohl S, Bolmont T, Dickstein D L, Glimsdal E, Prokop S, Lindgren M, Konradsson P, Holtzman D M, Hof P R, Heppner F L, Gandy S, Jucker M, Aguzzi A, Hammarstrm P, Nilsson K P R. ACS Chemical Biology, 2009, 4 (8): 673—684
[44] Ellinger S, Graham K R, Shi P J, Farley R T, Steckler T T, Brookins R N, Taranekar P, Mei J G, Padilha L A, Ensley T R, Hu H H, Webster S, Hagan D J, Van Stryland E W, Schanze K S, Reynolds J R. Chemistry of Materials, 2011, 23 (17): 3805—3817
[45] Chen Y, Cao D, Wang S, Zhang C, Liu Z. Journal of Molecular Structure, 2010, 969 (1/3): 182—186
[46] Li Q Q, Zhong C, Huang J, Huang Z L, Pei Z G, Liu J, Qin J G, Li Z. Journal of Physical Chemistry B, 2011, 115 (27): 8679—8685
[47] Kato S I, Matsumoto T, Shigeiwa M, Gorohmaru H, Maeda S, Ishi I T, Mataka S. Chemistry - A European Journal, 2006, 12 (8): 2303—2317
[48] Yan P, Xie A, Wei M, Loew L M. The Journal of Organic Chemistry, 2008, 73 (17): 6587—6594
[49] Ren S, Zeng D, Zhong H, Wang Y, Qian S, Fang Q. The Journal of Physical Chemistry B, 2010, 114 (32): 10374—10383
[50] Jiang Y, Wang Y, Wang B, Yang J, He N, Qian S, Hua J. Chemistry - An Asian Journal, 2011, 6 (1): 157—165
[51] Jiang Y, Wang Y, Hua J, Qu S, Qian S, Tian H. Journal of Polymer Science Part A: Polymer Chemistry, 2009, 47 (17): 4400—4408
[52] Wang X H, Yao S, Ahn H Y, Zhang Y W, Bondar M V, Torres J A, Belfield K D. Biomedical Optics Express, 2010, 1 (2): 453—462
[53] Li Q, Zhong A, Liu H, Peng M, Liu J, Pei Z, Huang Z, Qin J, Li Z. Science China Chemistry, 2011, 54 (4): 625—630
[54] Li Q, Huang J, Pei Z, Zhong A, Peng M, Liu J, Huang Z, Qin J, Li Z. Journal of Polymer Science Part A: Polymer Chemistry, 2011, 44(12): 2538—2545
[55] Li Q, Yu G, Huang J, Liu H, Li Z, Ye C, Liu Y, Qin J. Macromolecular Rapid Communications, 2008, 29 (10): 798—803
[56] Wang H, Li Z, Shao P, Qin J, Huang Z L. The Journal of Physical Chemistry B, 2010, 114 (1): 22—27
[57] Allain C, Schmidt F, Lartia R, Bordeau G, Fiorini-Debuisschert C, Charra F, Tauc P, Teulade-Fichou M P. ChemBioChem, 2007, 8 (4): 424—433
[58] Lartia R, Allain C, Bordeau G, Schmidt F, Fiorini-Debuisschert C, Charra F, Teulade-Fichou M P. The Journal of Organic Chemistry, 2008, 73 (5): 1732—1744
[59] Zhang X H, Wen L, Li X J, Liu T L, Fan Z B, Yang W J. Journal of Polymer Science Part A: Polymer Chemistry, 2010, 48 (24): 5704—5711
[60] Kim S, Pudavar H E, Bonoiu A, Prasad P N. Advanced Materials, 2007, 19 (22): 3791—3795
[61] Wang Y L, Liu T L, Bu L Y, Li J F, Yang C, Li X J, Tao Y, Yang W J. Journal of Physical Chemistry C, 2012, 116 (29): 15576—15583
[62] Gu P Y, Lu C J, Xu Q F, Ye G J, Chen W Q, Duan X M, Wang L H, Lu J M. Journal of Polymer Science Part A-Polymer Chemistry, 2012, 50 (3): 480—487
[63] Li Q Q, Huang J, Pei Z G, Zhong A S, Peng M, Liu J, Huang Z L, Qin J G, Li Z. Journal of Polymer Science Part A-Polymer Chemistry, 2011, 49 (12): 2538—2545

[1] 何静, 陈佳, 邱洪灯. 中药碳点的合成及其在生物成像和医学治疗方面的应用[J]. 化学进展, 2023, 35(5): 655-682.
[2] 廖子萱, 王宇辉, 郑建萍. 碳点基水相室温磷光复合材料研究进展[J]. 化学进展, 2023, 35(2): 263-373.
[3] 张荡, 王曦, 王磊. 生物酶驱动的微纳米马达在生物医学领域的应用[J]. 化学进展, 2022, 34(9): 2035-2050.
[4] 陆峰, 赵婷, 孙晓军, 范曲立, 黄维. 近红外二区发光稀土纳米材料的设计及生物成像应用[J]. 化学进展, 2022, 34(6): 1348-1358.
[5] 赵惠, 胡文博, 范曲立. 双光子荧光探针在生物传感中的应用[J]. 化学进展, 2022, 34(4): 815-823.
[6] 王学川, 王岩松, 韩庆鑫, 孙晓龙. 有机小分子荧光探针对甲醛的识别及其应用[J]. 化学进展, 2021, 33(9): 1496-1510.
[7] 许惠凤, 董永强, 朱希, 余丽双. 新型二维材料MXene在生物医学的应用[J]. 化学进展, 2021, 33(5): 752-766.
[8] 刘园园, 郭芸, 罗晓刚, 刘根炎, 孙琦. 近红外荧光探针检测金属离子、小分子和生物大分子[J]. 化学进展, 2021, 33(2): 199-215.
[9] 孙亚芳, 周子平, 舒桐, 钱立生, 苏磊, 张学记. 多彩金纳米簇:从结构到生物传感和成像[J]. 化学进展, 2021, 33(2): 179-187.
[10] 刘加伟, 王婧, 王其, 范曲立, 黄维. 激活型有机光声造影剂的应用[J]. 化学进展, 2021, 33(2): 216-231.
[11] 胡子涛, 丁寅. 基于共价有机框架材料的纳米体系在生物医学中的应用[J]. 化学进展, 2021, 33(11): 1935-1946.
[12] 谢嘉恩, 罗雨珩, 张黔玲, 张平玉. 金属配合物在双光子荧光探针中的应用研究[J]. 化学进展, 2021, 33(1): 111-123.
[13] 张继东, 刘阿晨, 陈娇, 袁光辉, 金华峰. 基于生物素的荧光有机小分子及其应用[J]. 化学进展, 2020, 32(5): 594-603.
[14] 王阳, 黄楚森, 贾能勤. 监测细胞微环境及活性分子的有机小分子荧光探针[J]. 化学进展, 2020, 32(2/3): 204-218.
[15] 杨欣达, 姜琴, 施鹏飞*. 具有双光子效应的多核配合物[J]. 化学进展, 2018, 30(8): 1172-1185.