English
新闻公告
More
化学进展 2019, Vol. 31 Issue (9): 1213-1220 DOI: 10.7536/PC190132 前一篇   后一篇

• •

可控核/壳结构聚合物电纺纤维的制备与应用

马亮, 时学娟, 张笑笑, 李莉莉**()   

  1. 吉林大学材料科学与工程学院 汽车材料教育部重点实验室 长春 130025
  • 收稿日期:2019-01-28 出版日期:2019-09-15 发布日期:2019-07-02
  • 通讯作者: 李莉莉
  • 基金资助:
    国家自然科学基金项目(No.51103058)

Preparation of the Controllable Core-Shell Structured Electrospun Polymer Fibers and Their Application

Liang Ma, Xuejuan Shi, Xiaoxiao Zhang, Lili Li**()   

  1. Key Laboratory of Automobile Materials, Ministry of Education, College of Materials Science and Engineering, Jilin University, Changchun 130025, China
  • Received:2019-01-28 Online:2019-09-15 Published:2019-07-02
  • Contact: Lili Li
  • About author:
  • Supported by:
    The National Natural Science Foundation of China(No.51103058)

核/壳结构纳米纤维是一种兼具核层与壳层优异性能的功能化复合纤维, 通常具有优于核层和壳层自身的性能, 如可控的机械强度和较好的热传导系数等。其特殊的结构极大地提高了纤维的使用价值, 拓宽了纤维的应用领域, 因此, 核/壳结构纳米纤维成为纤维领域的研究热点之一。静电纺丝技术因其简单有效的特点, 近些年来在众多纳米纤维制备技术中一直备受关注, 制备结构和形貌可控的核/壳结构纤维的方法对于指导其在实际中的应用尤为重要。本文系统介绍了以静电纺丝技术制备核/壳结构纳米纤维的方法, 主要包括单喷头相分离法、同轴静电纺丝法、乳液静电纺丝法以及模板法, 重点讨论了影响核/壳结构的主要因素以及核/壳结构对纤维性能的影响。综述了近几年来国内外关于可控核/壳结构电纺纤维制备的研究新进展及其在药物缓释体系、组织工程支架、多功能敷料、污水处理材料、疏水性材料等领域的潜在应用价值。

Core-shell structured fiber, as a functional composite fiber, has the excellent properties of both core and shell layers. Its special structure and properties greatly broaden the application field of the fibers. Therefore, core-shell structured fiber has become a research hotspot. Electrospinning is an efficient and facile technique for the fabrication of polymer nanofibers, which has attracted much attention in recent years. The method for preparing core-shell structured fibers with controllable structure and morphology is especially useful for guiding its application. The preparation methods of core/shell nanofibers are presented in this review. The methods mainly include single nozzle through phase separation, coaxial electrospinning, emulsion electrospinning, and template method. The major factors for forming the core/shell structure and the effect on the properties of the fibers are discussed in detail. The new research progress of electrospinning core-shell structured fibers in recent years is summarized. The various potential applications in drug controlled release system, tissue engineering scaffold, multifunctional wound dressing, wastewater treatment material, superhydrophobic material, and other fields are also reviewed.

()
图1 静电纺丝设备[1]
Fig. 1 Electrospinning facility[1]
图2 核/壳结构示意图
Fig. 2 Core/shell nanofibers
图3 电场诱导相分离法装置图[6]
Fig. 3 Schematic representation of the electrospinning setup[6]
图4 水蒸气诱导相分离法装置图[8]
Fig. 4 Schematic of the core/shell nanofiber electrospinning setup[8]
图5 PAN/PVP核/壳结构纳米纤维TEM图像:(a) PAN∶PVP=2∶1;(b) PAN∶PVP=1∶1;(c) PAN∶PVP=1∶2;(d) PAN∶PVP=1∶1;(e) 无蒸气处理PAN∶PVP=1∶1[8]
Fig. 5 TEM images of PAN/PVP core/shell structure nanfibers:(a) PAN∶PVP=2∶1;(b) PAN∶PVP=1∶1;(c) PAN∶PVP=1∶2;(d) PAN∶PVP=1∶1;(e) PAN∶PVP=1∶1 without vapor[8]
图6 同轴静电纺丝操作:(a)同轴喷嘴;(b)核/壳液滴;(c)12.5 kV的电压下, 泰勒锥和同轴射流的形成[13]
Fig. 6 Coaxial electrospinning operation:(a) diagram of the coaxial nozzle;(b) core-sheath droplet without bias; and(c)Taylor cone and coaxial jet formation at 12.5 kV[13]
图7 纤维结构形成机制[34]
Fig. 7 The proposed mechanism for fiber structural formation[34]
图8 纤维结构和组成示意图[51]
Fig. 8 Schematic figure of core-shell fiber[51]
图9 PPFEMA涂覆PCL纤维的接触角, 从左到右依次为5个不同直径的样品的接触角[52]
Fig. 9 Contact angles for PPFEMA-coated PCL mats. From left to right in the inset are representative droplet images on five samples[52]
[1]
侯甲子(Hou J Z), 张万喜(Zhang W X), 管东波(Guan D B), 孙晓平(Sun X P), 李莉莉(Li L L) . 化学进展(Progress in Chemistry), 2012, 24(12):2359.
[2]
Lu Y, Jiang H, Tu K, Wang L . Acta.Biomater., 2009, 5:1562.
[3]
Zhao P, Jiang H, Pan H, Zhu K, Chen W . J. Biomed. Mater. Res. A, 2007, 83:372. https://www.ncbi.nlm.nih.gov/pubmed/17450578

doi: 10.1002/jbm.a.31242     URL     pmid: 17450578
[4]
Zhang Y Z, Venugopal J, Huang Z M, Lim C T, Remakrishna S . Biomacromolecules, 2005, 6:2583. https://www.ncbi.nlm.nih.gov/pubmed/16153095

doi: 10.1021/bm050314k     URL     pmid: 16153095
[5]
Mu X, Liu Y, Fang D, Wang Z, Nie J, Ma G . Carbohyd.Polym., 2012, 90:1582.
[6]
Chen G, Fang D, Wang K, Nie J, Ma G . J. Polym. Sci. Pol. Chem., 2015, 53:2298.
[7]
Chen G, Guo J, Nie J, Ma G . Polymer, 2016, 83:12.
[8]
Jiang Y, Fang D, Song G, Nie J, Chen B, Ma G . New J.Chem., 2013, 37:2917.
[9]
Wei M, Kang B, Sung C, Mead J . Macromol. Mater. Eng., 2006, 291:1307.
[10]
Wang M, Fang D, Wang N, Jiang S, Nie J, Yu Q, Ma G . Polymer, 2014, 55:2188.
[11]
Loscertales I G, Barrero A, Guerrero I, Cortijo R, Marquez M, Ganan-Calvo A M . Science, 2002, 295:1695. https://www.ncbi.nlm.nih.gov/pubmed/11872835

doi: 10.1126/science.1067595     URL     pmid: 11872835
[12]
Larsen G, Velarde-Ortiz R, Minchow K, Barrero A, Loscertales I G . J. Am. Chem. Soc., 2003, 125:1154. https://www.ncbi.nlm.nih.gov/pubmed/12553802

doi: 10.1021/ja028983i     URL     pmid: 12553802
[13]
Han D, Steckl A J . Langmuir, 2009, 25:9454. https://www.ncbi.nlm.nih.gov/pubmed/19374456

doi: 10.1021/la900660v     URL     pmid: 19374456
[14]
Yu J H, Fridrikh S V, Rutledge G C . Adv. Mater., 2004, 16:1562.
[15]
Sun B, Duan B, Yuan X . J. Appl. Polym. Sci., 2006, 102:39.
[16]
Kaerkitcha N, Chuangchote S, Sagawa T . Nanoscale Res. Lett., 2016, 11:186. https://www.ncbi.nlm.nih.gov/pubmed/27067734

doi: 10.1186/s11671-016-1416-7     URL     pmid: 27067734
[17]
Chen R, Huang C, Ke Q, He C, Wang H, Mo X . Colloid. Surface. B, 2010, 79:315.
[18]
Jalaja K, Naskar D, Kundu S C, James N R . Carbohyd. Polym., 2016, 136:1098. https://www.ncbi.nlm.nih.gov/pubmed/26572452

doi: 10.1016/j.carbpol.2015.10.014     URL     pmid: 26572452
[19]
Wu L, Li H, Li S, Li X, Yuan X, Li X, Zhang Y . J. Biomed. Mater. Res. A, 2010, 92:563.
[20]
Xie Q, Jia L N, Xu H Y, Hu X G, Wang W, Jia J . Stem Cells Int., 2016, 5385137. https://www.ncbi.nlm.nih.gov/pubmed/27313626

doi: 10.1155/2016/5385137     URL     pmid: 27313626
[21]
Zhang H, Zhao C G, Zhao Y H, Tang G W, Yuan X Y . Sci. China Chem., 2010, 53:1246.
[22]
Homaeigohar S, Davoudpour Y, Habibi Y, Elbahri M . Nanomaterials, 2017, 7:383.
[23]
Li Y, Xu G, Yao Y, Xue L, Yanilmaz M, Lee H, Zhang X . Solid State Ionics, 2014, 258:67.
[24]
Zhan S, Zhu D, Ren G, Shen Z, Qiu M, Yang S, Yu H, Li Y . ACS Appl. Mater. Interfaces, 2014, 6:16841. https://www.ncbi.nlm.nih.gov/pubmed/25226354

doi: 10.1021/am505751z     URL     pmid: 25226354
[25]
Sun Z, Zussman E, Yarin A L, Wendorff J H, Greiner A . Adv. Mater, 2003, 15:1929.
[26]
López-Herrera J M, Barrero A, López A, Loscertales I G, Márquez M . J. Aerosol Sci., 2003, 34:535.
[27]
Wang C, Yan K W, Lin Y D, Hsieh P C H . Macromolecules, 2010, 43:6389.
[28]
Wang X, Wang Q, Huang F, Wei Q . Fiber. Polym., 2016, 17:624.
[29]
Rahimi M, Mokhtari J . J. Ind. Text., 2018, 47:1134. http://journals.sagepub.com/doi/10.1177/1528083716676816

doi: 10.1177/1528083716676816     URL    
[30]
Kaerkitcha N, Chuangchote S, Hachiya K, Sagawa T . Polym. J., 2017, 49:497.
[31]
Wang L, Yang H, Hou J, Zhang W, Xiang C, Li L . New J. Chem., 2017, 41:15072.
[32]
Bazilevsky A V, Yarin A L, Megaridis C M . Langmuir, 2007, 23:2311. https://www.ncbi.nlm.nih.gov/pubmed/17266345

doi: 10.1021/la063194q     URL     pmid: 17266345
[33]
Xu X, Zhuang X, Chen X, Wang X, Yang L, Jing X . Macromol. Rapid Commun., 2006, 27:1637.
[34]
Li Y, Ko F K, Hamad W Y . Biomacromolecules, 2013, 14:3801. https://www.ncbi.nlm.nih.gov/pubmed/23789830

doi: 10.1021/bm400540v     URL     pmid: 23789830
[35]
Pal P, Srivas P K, Dadhich P, Das B, Maulik D, Dhara S . ACS Biomater. Sci. Eng., 2017, 3:3563. https://pubs.acs.org/doi/10.1021/acsbiomaterials.7b00681

doi: 10.1021/acsbiomaterials.7b00681     URL    
[36]
Jiang H, Hu Y, Li Y, Zhao P, Zhu K, Chen W . J. Control. Release, 2005, 108:237. https://www.ncbi.nlm.nih.gov/pubmed/16153737

doi: 10.1016/j.jconrel.2005.08.006     URL     pmid: 16153737
[37]
He M, Jiang H, Wang R, Xie Y, Zhao C . J. Colloid Interf. Sci., 2017, 490:270.
[38]
Yu D G, Wang X, Li X Y, Chian W, Li Y, Liao Y Z . Acta Biomater., 2013, 9:5665. https://www.ncbi.nlm.nih.gov/pubmed/23099302

doi: 10.1016/j.actbio.2012.10.021     URL     pmid: 23099302
[39]
Verreck G, Chun I, Peeters J, Rosenblatt J, Brewster M E . Pharm. Res., 2003, 20:810.
[40]
Gatti J W, Smithgall M C, Paranjape S M, Rolfes R J, Paranjape M . Biomed Microdevices, 2013, 15:887. https://www.ncbi.nlm.nih.gov/pubmed/23764950

doi: 10.1007/s10544-013-9777-5     URL     pmid: 23764950
[41]
Rubert M, Li Y F, Dehli J, Taskin M B, Besenbacher F, Chen M . RSC Adv., 2014, 4:51537. http://xlink.rsc.org/?DOI=C4RA08358J

doi: 10.1039/C4RA08358J     URL    
[42]
Zhang Y Z, Wang X, Feng Y, Li J, Lim C T, Ramakrishna S . Biomacromolecules, 2006, 7:1049. https://www.ncbi.nlm.nih.gov/pubmed/16602720

doi: 10.1021/bm050743i     URL     pmid: 16602720
[43]
Xie Z, Paras C B, Weng H, Punnakitikashem P, Su L C, Vu K, Tang L, Yang J, Nguyen K T . Acta Biomater., 2013, 9:9351. https://www.ncbi.nlm.nih.gov/pubmed/23917148

doi: 10.1016/j.actbio.2013.07.030     URL     pmid: 23917148
[44]
Cao H, Jiang X, Chai C, Chew S Y . J. Control. Release, 2010, 144:203.
[45]
Su Y, Su Q, Liu W, Lim M, Venugopal J R, Mo X, Ramakrishna S, Al-Deyab S S, El-Newehy M . Acta Biomater., 2012, 8:763. https://www.ncbi.nlm.nih.gov/pubmed/22100346

doi: 10.1016/j.actbio.2011.11.002     URL     pmid: 22100346
[46]
Ye L, Cao J, Chen L, Geng X, Zhang A Y, Guo L R, Gu Y Q, Feng Z G . J. Biomed. Mater. Res. A, 2015, 103:3863. https://www.ncbi.nlm.nih.gov/pubmed/26123627

doi: 10.1002/jbm.a.35531     URL     pmid: 26123627
[47]
Zhang J, Qiu K, Sun B, Fang J, Zhang K, EI-Hamshary H, Al-Deyab S S, Mo X . J. Mater. Chem. B, 2014, 2:7945. https://www.ncbi.nlm.nih.gov/pubmed/32262084

doi: 10.1039/c4tb01185f     URL     pmid: 32262084
[48]
Nagiah N, Madhavi L, Anitha R, Anandan C, Srinivasan N T, Sivagnanam U T . Mat. Sci. Eng. C-Mater.Mater., 2013, 33:4444.
[49]
Horner C B, Ico G, Johnson J, Zhao Y, Nam J . J. Mech. Behav. Biomed., 2016, 59:207. https://www.ncbi.nlm.nih.gov/pubmed/26774618

doi: 10.1016/j.jmbbm.2015.12.034     URL     pmid: 26774618
[50]
Elsner J J, Zilberman M . Acta Biomater., 2009, 5:2872. https://www.ncbi.nlm.nih.gov/pubmed/19416766

doi: 10.1016/j.actbio.2009.04.007     URL     pmid: 19416766
[51]
Wei Q, Xu F, Xu X, Geng X, Ye L, Zhang A, Feng Z . Front. Mater. Sci., 2016, 10:113.
[52]
Ma M, Mao Y, Gupta M, Gleason K K, Rutledge G C . Macromolecules, 2005, 38:9742.
[53]
Muthiah P, Hsu S H, Sigmund W . Langmuir, 2010, 26:12483. https://www.ncbi.nlm.nih.gov/pubmed/20614895

doi: 10.1021/la100748g     URL     pmid: 20614895
[54]
Ma W, Guo Z, Zhao J, Yu Q, Wang F, Han J, Pan H, Yao J, Zhang Q, Samal S K, De Smedt S C, Huang C . Sep. Purif. Technol., 2017, 177:71.
[55]
Bedford N M, Steckl A J . ACS Appl. Mater. Interfaces, 2010, 2:2448. https://www.ncbi.nlm.nih.gov/pubmed/30576099

doi: 10.1021/acsami.8b21027     URL     pmid: 30576099
[56]
Wang J, Pan K, Giannelis E P, Cao B . RSC Adv., 2013, 3:8978.
[57]
Wang J, Pan K, He Q, Cao B . J. Hazard. Mater., 2013, 244:121. https://www.ncbi.nlm.nih.gov/pubmed/23246947

doi: 10.1016/j.jhazmat.2012.11.020     URL     pmid: 23246947
[58]
Wen H F, Yang C, Yu D G, Li X Y, Zhang D F . Chem. Eng. J., 2016, 290:263.
[59]
Chang Z, Zeng J . Macromol. Chem. Phys., 2016, 217:1007.
[60]
Kang Y L, Zhang J, Wu G, Zhang M X, Chen S C, Wang Y Z . ACS Sustainable Chem. Eng., 2018, 6:11783.
[61]
Li Y, Zhao Y, Lu X, Zhu Y, Jiang L . Nano Res., 2016, 9:2034.
[62]
Xue R, Behera P, Xu J, Viapiano M S, Lannutti J J . Sensor. Actuat. B-Chem., 2014, 192:697. https://www.ncbi.nlm.nih.gov/pubmed/25006274

doi: 10.1016/j.snb.2013.10.084     URL     pmid: 25006274
[63]
Lin M F, Xiong J, Wang J, Parida K, Lee P S . Nano Energy, 2018, 44:248.
[64]
Park S H, Kim B K, Lee W J . J. Power Sources, 2013, 239:122.
[65]
Lu X, Shen C, Zhang Z, Barrios E, Zhai L . ACS Appl. Mater. Inter., 2018, 10:4041. https://www.ncbi.nlm.nih.gov/pubmed/29297674

doi: 10.1021/acsami.7b12997     URL     pmid: 29297674
[66]
Zhou X, Shang C, Gu L, Dong S, Chen X, Han P, Li L, Yao J, Liu Z, Xu H, Zhu Y, Cui G . ACS Appl. Mater. Interfaces, 2011, 3:3058. https://www.ncbi.nlm.nih.gov/pubmed/21728351

doi: 10.1021/am200564b     URL     pmid: 21728351
[67]
Peng X, Santulli A C, Sutter E, Wong S S . Chem. Sci., 2012, 3:1262.
[68]
Zhang M, Huang X, Xin H, Li D, Zhao Y, Shi L, Lin Y, Yu J, Yu Z, Zhu C, Xu J . Appl. Surf. Sci., 2019, 473:352.
[69]
Korina E, Stoilova O, Manolova N, Rashkov I . J. Environ. Chem. Eng., 2018, 6:2075.
[70]
Liu K, Liu C, Hsu P C, Xu J, Kong B, Wu T, Zhang R, Zhou G, Huang W, Sun J, Cui Y . ACS Cent. Sci., 2018, 4:894. https://www.ncbi.nlm.nih.gov/pubmed/30062118

doi: 10.1021/acscentsci.8b00285     URL     pmid: 30062118
[71]
Liu Q, Zhu J, Zhang L, Qiu Y . Renew. Sust. Energ. Rev., 2018, 81:1825.
[1] 柳凤琦, 姜勇刚, 彭飞, 冯军宗, 李良军, 冯坚. 超轻纳米纤维气凝胶的制备及其应用[J]. 化学进展, 2022, 34(6): 1384-1401.
[2] 牛小连, 刘柯君, 廖子明, 徐慧伦, 陈维毅, 黄棣. 基于骨组织工程的静电纺纳米纤维[J]. 化学进展, 2022, 34(2): 342-355.
[3] 李祥业, 白天娇, 翁昕, 张冰, 王珍珍, 何铁石. 电纺纤维在超级电容器中的应用[J]. 化学进展, 2021, 33(7): 1159-1174.
[4] 朱蕾, 王嘉楠, 刘建伟, 王玲, 延卫. 静电纺丝一维纳米材料在气敏传感器的应用[J]. 化学进展, 2020, 32(2/3): 344-360.
[5] 郑勰, 周一凡, 陈思远, 刘晓云, 查刘生. 刺激响应性电纺纳米纤维[J]. 化学进展, 2018, 30(7): 958-975.
[6] 李勃天, 温幸, 唐黎明. 一维聚合物-无机纳米复合材料的制备[J]. 化学进展, 2018, 30(4): 338-348.
[7] 蒋敏, 王敏, 魏仕勇, 陈志宝, 木士春. 基于静电纺丝技术的取向纳米纤维[J]. 化学进展, 2016, 28(5): 711-726.
[8] 孟德芃, 吴俊涛. 静电纺丝法制备新型吸附分离材料[J]. 化学进展, 2016, 28(5): 657-664.
[9] 郭世伟, 苑春刚. 电纺含银纳米粒子复合纤维的制备及应用[J]. 化学进展, 2015, 27(12): 1841-1850.
[10] 龚雪, 杨金龙, 姜玉林, 木士春. 静电纺丝技术在锂离子动力电池中的应用[J]. 化学进展, 2014, 26(01): 41-47.
[11] 侯甲子, 张万喜, 管东波, 孙晓平, 李莉莉* . 静电纺丝法在制备改性醋酸纤维素中的应用[J]. 化学进展, 2012, 24(12): 2359-2366.
[12] 刘瑞来, 刘海清*, 刘俊劭, 江慧华. 静电纺丝制备图案化无机纳米纤维[J]. 化学进展, 2012, 24(08): 1484-1496.
[13] 龚光明, 吴俊涛, 江雷. 静电纺丝法制备聚酰亚胺新型材料[J]. 化学进展, 2011, 23(4): 750-759.
[14] 代云容 牛军峰 殷立峰 刘佳 蒋国翔. 静电纺丝纳米纤维膜固定化酶及其应用*[J]. 化学进展, 2010, 22(09): 1808-1818.
[15] 任天斌 曹春红 王刚 苏俭生 袁伟忠 任杰. 可吸收引导组织再生膜*[J]. 化学进展, 2010, 22(01): 179-185.