English
新闻公告
More
化学进展 2021, Vol. 33 Issue (7): 1159-1174 DOI: 10.7536/PC200718 前一篇   后一篇

• 综述 •

电纺纤维在超级电容器中的应用

李祥业1, 白天娇1, 翁昕1, 张冰1, 王珍珍1, 何铁石1,2,*()   

  1. 1 渤海大学化学与材料工程学院 锦州 121013
    2 辽宁省超级电容器工程技术中心 锦州 121000
  • 收稿日期:2020-07-09 修回日期:2020-09-24 出版日期:2021-07-20 发布日期:2020-11-09
  • 通讯作者: 何铁石
  • 基金资助:
    国家重点研发计划(2020YFF0413818); 辽宁省自然科学基金项目(0518XN011); 辽宁省自然科学基金项目(0519BS014); 国家自然科学基金项目(21671025); 国家自然科学基金项目(21471021); 辽宁省大学生创新创业训练计划(202010167019); 辽宁省大学生创新创业训练计划(S202010167045); 辽宁省大学生创新创业训练计划(S202010167046)

Application of Electrospun Fibers in Supercapacitors

Xiangye Li1, Tianjiao Bai1, Xin Weng1, Bing Zhang1, Zhenzhen Wang1, Tieshi He1,2,*()   

  1. 1 School of Chemistry & Materials Engineering, Bohai University, Jinzhou 121013, China
    2 Liaoning Engineering Technology Center of Supercapacitor, Jinzhou 121000, China
  • Received:2020-07-09 Revised:2020-09-24 Online:2021-07-20 Published:2020-11-09
  • Contact: Tieshi He
  • About author:
    * Corresponding author e-mail:
  • Supported by:
    National Key R&D Program of China(2020YFF0413818); Natural Science Foundation of Liaoning Province, China(0518XN011); Natural Science Foundation of Liaoning Province, China(0519BS014); National Natural Science Foundation of China(21671025); National Natural Science Foundation of China(21471021); Innovation and Entrepreneurship Training Project of Liaoning Province, China(202010167019); Innovation and Entrepreneurship Training Project of Liaoning Province, China(S202010167045); Innovation and Entrepreneurship Training Project of Liaoning Province, China(S202010167046)

对高性能超级电容器不断增长的需求促进了电极隔膜和电极材料的快速发展。静电纺丝法制备的纳米纤维具有较高的孔隙率、较好电化学活性、较大的表面积以及良好的结构稳定性等优点,已被广泛应用于超级电容器的隔膜和电极材料。本文简要综述了近年来电纺纳米纤维在超级电容器用隔膜和电极材料的研究进展;着重讨论了通过静电纺丝和其他后处理方法制备的碳基纳米纤维、碳基复合纳米纤维、导电聚合物基复合纳米纤维和金属氧化物纳米纤维等用于超级电容器的电极材料。研究表明,多孔结构的构建、活化处理以及杂原子掺杂可以提高碳纳米纤维的比表面积、电化学活性、润湿性和石墨化程度,从而增强其电化学性能。此外,通过共混、化学沉积和电化学沉积等方法,将碳纳米纤维与金属氧化物、导电聚合物结合,可以改善其电容、倍率性能和循环稳定性。最后,提出上述研究中存在的问题,并对未来静电纺丝纳米纤维材料在超级电容器的发展前景进行了展望。

The increasing demand for high-performance supercapacitor has promoted the rapid development of separators and electrode materials. Recently, electrospun nanofibers have been widely used as separators and electrode materials of supercapacitor, which is due to the high porosity, high electrochemical activity, large specific surface area and good structural stability. In this survey, the recent research progress in separator membranes and electrode materials of supercapacitor is reviewed. The discussion focuses on obtaining electrode materials for supercapacitor by electrospinning and other post-processing methods, including carbon nanofibers, carbon-based composite nanofibers, conductive polymer-based composite and metal oxide nanofibers. These investigation demonstrate that pore structure construction, activation treatment, and heteroatom doping can improve the specific surface area, electrochemical activity, wettability, and graphitization degree of carbon nanofibers, furthermore the electrochemical properties of electrode materials are enhanced. Moreover, combining carbon nanofibers with metal oxides, conductive polymers via blending, chemical deposition, electrochemical deposition, etc., can also improve capacitance, rate performance, and cycling stabilities of electrode materials. In addition, the existing problems of the regarding studies are pointed out. Finally, the future developments of electrospun nanofiber materials in supercapacitor is prospected.

Contents

1 Introduction

2 Separators

3 Electrode materials

3.1 Electrode materials of electric double layer capacitors

3.2 Electrode materials of pseudocapacitors

4 Conclusion and outlook

()
图1 NFs和CNFs的扫描电镜图,对应的CNFs截面和电纺纳米纤维直径分布图[56]
Fig. 1 SEM images of electrospun NFs and CNFs, corresponding cross-section of CNFs and the diameter distribution of the electrospun nanofibers[56]
图2 (a)CNFs合成示意图,(b)CNFs透射电镜图,(c)CNFs在不同电流密度时的比电容,(d)电流密度为1 A/g时的比电容[63]
Fig. 2 (a)Schematic illustration of the synthesis process for CNFs, (b)SEM images of CNFs, (c)specific capacitance of CNFs at different current densities, (d)specific capacitances at 1 A/g current density[63]
图3 (a)不同扫描速率的CV曲线,(b)不同密度下的充放电曲线,(c)阻抗图,(d)在电流密度6 A/g时充放电10 000次的循环稳定性[80]
Fig. 3 (a) CV curves at different scan rates; (b) charge-discharge curves at different current densities; (c) Nyquist plot; (d) cycling stability at a current density of 6 A/g over 10 000 cycles[80]
图4 (a) N-S共掺杂活性CNFs超级电容器制备工艺示意图, (b)含有0.30 wt%石墨烯的CNFs扫描电镜图像,(c)氮气的吸附-脱附等温线,(d)对称超级电容器件的循环稳定性[99]
Fig. 4 (a) Schematic illustration of the production processes for supercapacitor based on the N-S co-doped activated lignin-based carbon nanofibers, (b) SEM images of CNFs prepared with 0.30 wt% GNs, (c) Nitrogen adsorption-desorption isotherms, (d) cycling stability of the symmetric supercapacitor devices[99]
图5 (a) Co3O4/PAN复合材料的SEM和TEM图像,(b)不同电流密度下的比电容,(c) Co3O4/CNF(4∶3)在电流密度为2 A/g时充放电后的循环性能[140]
Fig. 5 (a) Schematic illustration, SEM and TEM images of Co3O4/CNF nanocomposite, (b) Specific capacitance at current density for different electrode materials, (c) cyclic performance of Co3O4/CNFs (4∶3) at 2 A/g Charge/discharge profiles[140]
图6 (a)1000次充放电后的循环性能;(b)不同电流密度下的比电容
Fig. 6 (a) cyclic performance of PANI-CNT before and after cycling for 1000 cycles; (b) Specific capacitance at current density for different electrode materials.
[1]
Shen L F, Yu L, Yu X Y, Zhang X G, Lou X W D. Angew. Chem. Int. Ed., 2015, 54(6):1868.

doi: 10.1002/anie.201409776     URL    
[2]
Ding J, Wang H L, Li Z, Cui K, Karpuzov D, Tan X H, Kohandehghan A, Mitlin D. Energy Environ. Sci., 2015, 8(3):941.

doi: 10.1039/C4EE02986K     URL    
[3]
Peng X, Peng L L, Wu C Z, Xie Y. Chem. Soc. Rev., 2014, 43(10):3303.

doi: 10.1039/c3cs60407a     pmid: 24614864
[4]
Jing C, Song X Y, Li K L, Zhang Y M, Liu X Y, Dong B Q, Dong F, Zhao S L, Yao H C, Zhang Y X. J. Mater. Chem. A, 2020, 8(4):1697.

doi: 10.1039/C9TA12192G     URL    
[5]
Zhang Y M, Wang F, Zhu H, Zhang D D, Chen J. Compos. A: Appl. Sci. Manuf., 2017, 101:297.

doi: 10.1016/j.compositesa.2017.06.026     URL    
[6]
Li L, Zhang M Y, Zhang X T, Zhang Z G. J. Power Sources, 2017, 364:234.

doi: 10.1016/j.jpowsour.2017.08.029     URL    
[7]
Zhang S, Zhu J Y, Qing Y, Wang L X, Zhao J, Li J, Tian W H, Jia D Z, Fan Z J. Adv. Funct. Mater., 2018, 28(52):1805898.

doi: 10.1002/adfm.v28.52     URL    
[8]
Li D, Liu Y R, Lin B P, Sun Y, Yang H, Zhang X Q. Prog. Chem., 2015, 27:404.
( 李丹, 刘玉荣, 林保平, 孙莹, 杨洪, 张雪勤. 化学进展. 2015, 27:404.)
[9]
Xiong G P, Meng C Z, Reifenberger R G, Irazoqui P P, Fisher T S. Electroanalysis, 2014, 26(1):30.

doi: 10.1002/elan.201300238     URL    
[10]
Li X Y, Yan Y, Zhang B. J. Mater. Sci., 2021, (56):1.
[11]
Augustyn V, Simon P, Dunn B. Energy Environ. Sci., 2014, 7(5):1597.

doi: 10.1039/c3ee44164d     URL    
[12]
Ike I S, Sigalas I, Iyuke S. Phys. Chem. Chem. Phys., 2016, 18(2):661.

doi: 10.1039/C5CP05459A     URL    
[13]
Majumdar D, Mandal M, Bhattacharya S K. ChemElectroChem, 2019, 6(6):1623.

doi: 10.1002/celc.v6.6     URL    
[14]
Chen ZX, Lu HB. Chem. J. Chin. Univ., 2013, 34:2020.
( 陈仲欣, 卢红斌. 高等学校化学学报, 2013, 34:2020.)
[15]
Wu N S, Low J, Liu T, Yu J G, Cao S W. Appl. Surf. Sci., 2017, 413:35.

doi: 10.1016/j.apsusc.2017.03.297     URL    
[16]
Li Y, Cao L, Qiao L, Zhou M, Yang Y, Xiao P, Zhang Y. J. Mater. Chem. A, 2014, 2:6540.

doi: 10.1039/C3TA15373H     URL    
[17]
He Y M, Chen W J, Gao C T, Zhou J Y, Li X D, Xie E Q. Nanoscale, 2013, 5(19):8799.

doi: 10.1039/c3nr02157b     URL    
[18]
Snook G A, Kao P, Best A S. J. Power Sources, 2011, 196(1):1.

doi: 10.1016/j.jpowsour.2010.06.084     URL    
[19]
Lu X F, Wang C, Favier F, Pinna N. Adv. Energy Mater., 2017, 7(2):1601301.

doi: 10.1002/aenm.201601301     URL    
[20]
Gu W, Yushin G. WIREs, 2014, 3:424.
[21]
Wu Z, Zhang X B. Acta Phys. Chimica Sin., 2017, 33: 305.
( 吴中, 张新波. 物理化学学报, 2017, 33: 305.)
[22]
Li X Q, Chang L, Zhao S L, Hao C L, Lu C G, Zhu Y H, Tang Z Y. Acta Phys. Chimica Sin., 2017, 33:130.
( 李雪芹, 常琳, 赵慎龙, 郝昌龙, 陆晨光, 朱以华, 唐智勇. 物理化学学报, 2017, 33:130.)
[23]
Arthi R, Jaikumar V, Muralidharan P. Energy Sources A: Recovery Util. Environ. Eff., 2019,1.
[24]
Peng H, Xiao L L, Sun K J, Ma G F, Wei G G, Lei Z Q. J. Power Sources, 2019, 435:226800.

doi: 10.1016/j.jpowsour.2019.226800     URL    
[25]
Shen C Q, Xu H, Liu L, Hu H S, Chen S Y, Su L W, Wang L B. J. Alloys Compd., 2020, 830:154599.

doi: 10.1016/j.jallcom.2020.154599     URL    
[26]
Li B E, Sun Z H, Zhao Y, Tian Y, Tan T Z, Gao F, Li J D. J. Nanoparticle Res., 2018, 21(1):1.

doi: 10.1007/s11051-018-4445-6     URL    
[27]
Zang X N, Jiang Y Q, Sanghadasa M, Lin L W. Sens. Actuat. A: Phys., 2020, 304:111886.

doi: 10.1016/j.sna.2020.111886     URL    
[28]
Mohamed Ismail M, Hemaanandhan S, Mani D, Arivanandhan M, Anbalagan G, Jayavel R. J. Sol Gel Sci. Technol., 2020, 93(3):703.

doi: 10.1007/s10971-019-05184-z     URL    
[29]
Liu Y Y, Zeng Z, Sharma R K, Gbewonyo S, Allado K, Zhang L F, Wei J J. J. Power Sources, 2019, 409:1.

doi: 10.1016/j.jpowsour.2018.10.084     URL    
[30]
He T S, Fu Y R, Meng X L, Yu X D, Wang X L. Electrochimica Acta, 2018, 282:97.

doi: 10.1016/j.electacta.2018.06.029     URL    
[31]
Pazhamalai P, Krishnamoorthy K, Mariappan V K, Sahoo S, Manoharan S, Kim S J. Adv. Mater. Interfaces, 2018, 5(12):1870056.

doi: 10.1002/admi.v5.12     URL    
[32]
Tian D, Lu X F, Li W M, Li Y, Wang C. Acta Phys. Chimica Sin., 2020, 36(2):71.
( 田地, 卢晓峰, 李闱墨, 李悦, 王策. 物理化学学报, 2020, 36(2):71.)
[33]
Wu C, Zhou T Z, Du Y, Dou S X, Zhang H, Jiang L, Cheng Q F. Nano Energy, 2019, 58:517.

doi: 10.1016/j.nanoen.2019.01.055     URL    
[34]
Gupta R, Kumar R, Sharma A, Verma N. Int. J. Energy Res., 2015, 39(5):668.

doi: 10.1002/er.v39.5     URL    
[35]
Gan Y, Wang C, Chen X, Liang P, Wan H Z, Liu X, Tan Q Y, Wu H, Rao H, Wang H B, Zhang J, Wang Y, van Aken P A, Wang H. Chem. Eng. J., 2020, 392:123661.

doi: 10.1016/j.cej.2019.123661     URL    
[36]
Gong X, Yang J L, Jiang Y L, Mu S C. Prog. Chem., 2014, 26:41.

doi: 10.7536/PC130641    
( 龚雪, 杨金龙, 姜玉林, 木士春. 化学进展, 2014, 26:41.)

doi: 10.7536/PC130641    
[37]
Ying Liu, Liang Zhan, Rui Zhang, Wen Ming. Carbon, 2007, 45:1.
[38]
Cai M, Yuan D, Zhang X, Pu Y, Liu X F, He H W, Zhang L X, Ning X. J. Power Sources, 2020, 461:228123.

doi: 10.1016/j.jpowsour.2020.228123     URL    
[39]
Mahant Y P, Kondawar S B, Nandanwar D V, Koinkar P. Mater. Renew. Sustain. Energy, 2018, 7(2):1.

doi: 10.1007/s40243-017-0108-2     URL    
[40]
Shi C, Zhang P, Huang S H, He X Y, Yang P T, Wu D Z, Sun D H, Zhao J B. J. Power Sources, 2015, 298:158.

doi: 10.1016/j.jpowsour.2015.08.008     URL    
[41]
He T S, Jia R, Lang X S, Wu X Y, Wang Y J. J. Electrochem. Soc., 2017, 164(13):E379.

doi: 10.1149/2.0631713jes     URL    
[42]
He T S, Fu Y R, Meng X L, Yu X D, Wang X L. Electrochimica Acta, 2018, 282:97.

doi: 10.1016/j.electacta.2018.06.029     URL    
[43]
Jabbarnia A, Khan W S, Ghazinezami A, Asmatulu R. J. Appl. Polym. Sci., 2016, 133(30):43707.
[44]
Yan J H, Dong K Q, Zhang Y Y, Wang X, Aboalhassan A A, Yu J Y, Ding B. Nat. Commun., 2019, 10(1):1.

doi: 10.1038/s41467-018-07882-8     URL    
[45]
Li Y J, Zhu G, Huang H L, Xu M, Lu T, Pan L K. J. Mater. Chem. A, 2019, 7(15):9040.

doi: 10.1039/C8TA12246F     URL    
[46]
Aboagye A, Liu Y Y, Ryan J G, Wei J J, Zhang L F. Mater. Chem. Phys., 2018, 214:557.

doi: 10.1016/j.matchemphys.2018.05.009     URL    
[47]
Nan W, Zhao Y, Ding Y C, Shende A R, Fong H, Shende R V. Mater. Lett., 2017, 205:206.

doi: 10.1016/j.matlet.2017.06.092     URL    
[48]
Hatori H, Kobayashi T, Hanzawa Y, Yamada Y, Iimura Y, Kimura T, Shiraishi M. J. Appl. Polym. Sci., 2001, 79(5):836.

doi: 10.1002/(ISSN)1097-4628     URL    
[49]
Kim B H, Yang K S, Ferraris J P. Electrochimica Acta, 2012, 75:325.

doi: 10.1016/j.electacta.2012.05.004     URL    
[50]
Abeykoon N C, Bonso J S, Ferraris J P. RSC Adv., 2015, 5(26):19865.

doi: 10.1039/C4RA16594B     URL    
[51]
Le T, Yang Y, Huang Z H, Kang F Y. J. Power Sources, 2015, 278:683.

doi: 10.1016/j.jpowsour.2014.12.055     URL    
[52]
Bing H J, Wu Y H, Zhou J, Ming L L, Sun S Q, Li X D. Atmos. Environ., 2014, 99:425.

doi: 10.1016/j.atmosenv.2014.10.014     URL    
[53]
Park S H, Jung H R, Lee W J. Electrochimica Acta, 2013, 102:423.

doi: 10.1016/j.electacta.2013.04.044     URL    
[54]
Joh H I, Song H K, Lee C H, Yun J M, Jo S M, Lee S, Na S I, Chien A T, Kumar S. Carbon, 2014, 70:308.

doi: 10.1016/j.carbon.2013.12.069     URL    
[55]
He T S, Yu X D, Bai T J, Li X Y, Fu Y R, Cai K D. Ionics, 2020, 26(8):4103.

doi: 10.1007/s11581-020-03529-1     URL    
[56]
Wang H, Wang W Y, Wang H J, Jin X, Niu H T, Wang H X, Zhou H, Lin T. ACS Appl. Mater. Interfaces., 2018, 1:431.
[57]
Zainab G, Babar A A, Ali N, Aboalhassan A A, Wang X F, Yu J Y, Ding B. J. Colloid Interface Sci., 2020, 561:659.

doi: 10.1016/j.jcis.2019.11.041     URL    
[58]
He G H, Song Y H, Chen S L, Wang L. J. Mater. Sci., 2018, 53(13):9721.

doi: 10.1007/s10853-018-2277-5     URL    
[59]
Ju Y W, Park S H, Jung H R, Lee W J. J. Electrochem. Soc., 2009, 156(6):A489.

doi: 10.1149/1.3116245     URL    
[60]
Ma C, Chen J N, Fan Q C, Guo J C, Liu W N, Cao E C, Shi J L, Song Y. J. Mater. Sci., 2018, 53(6):4527.

doi: 10.1007/s10853-017-1887-7     URL    
[61]
Xu T, Ding Y C, Liang Z P. Mater. Sci., 2020, 112:100656.
[62]
Jiang Q T, Pang X, Geng S T, Zhao Y H, Wang X M, Qin H, Liu B, Zhou J, Zhou T. Appl. Surf. Sci., 2019, 479:128.

doi: 10.1016/j.apsusc.2019.02.077     URL    
[63]
Zhang L J, Jiang Y Z, Wang L W, Zhang C, Liu S X. Electrochimica Acta, 2016, 196:189.

doi: 10.1016/j.electacta.2016.02.050     URL    
[64]
Gopalakrishnan A, Sahatiya P, Badhulika S. ChemElectroChem, 2018, 5(3):531.

doi: 10.1002/celc.201700962     URL    
[65]
Kim C H, Yang C M, Kim Y A, Yang K S. Appl. Surf. Sci., 2019, 497:143693.

doi: 10.1016/j.apsusc.2019.143693     URL    
[66]
Perananthan S, Bonso J S, Ferraris J P. Carbon, 2016, 106:20.

doi: 10.1016/j.carbon.2016.04.083     URL    
[67]
Abeykoon N C, Garcia V, Jayawickramage R A, Perera W, Cure J, Chabal Y J, Balkus K J, Ferraris J P. RSC Adv., 2017, 7(34):20947.

doi: 10.1039/C7RA01727H     URL    
[68]
Kim C, Yang K S. Appl. Phys. Lett., 2003, 83(6):1216.

doi: 10.1063/1.1599963     URL    
[69]
Ma C, Wang R R, Xie Z Y, Zhang H X, Li Z Y, Shi J L. J. Porous Mater., 2017, 24(6):1437.

doi: 10.1007/s10934-017-0384-3     URL    
[70]
Ma C, Li Y J, Shi J L, Song Y, Liu L. Chem. Eng. J., 2014, 249:216.

doi: 10.1016/j.cej.2014.03.083     URL    
[71]
Liu Y W, Liu Q, Wang L, Yang X F, Yang W Y, Zheng J J, Hou H L. ACS Appl. Mater. Interfaces, 2020, 12(4):4777.

doi: 10.1021/acsami.9b19977     URL    
[72]
Li X, Tian X D, Yang T, He Y T, Liu W H, Song Y, Liu Z J. ACS Sustainable Chem. Eng., 2019, 7(6):5742.

doi: 10.1021/acssuschemeng.8b05210     URL    
[73]
Lillo-Ródenas M A, Cazorla-Amorós D, Linares-Solano A. Carbon, 2003, 41(2):267.

doi: 10.1016/S0008-6223(02)00279-8     URL    
[74]
Raymundo-Piñero E, Azaïs P, Cacciaguerra T, Cazorla-Amorós D, Linares-Solano A, Béguin F. Carbon, 2005, 43(4):786.

doi: 10.1016/j.carbon.2004.11.005     URL    
[75]
Yoon S H, Lim S, Song Y, Ota Y, Qiao W M, Tanaka A, Mochida I. Carbon, 2004, 42(8/9):1723.

doi: 10.1016/j.carbon.2004.03.006     URL    
[76]
Azargohar R, Dalai A K. Microporous Mesoporous Mater., 2008, 110(2/3):413.

doi: 10.1016/j.micromeso.2007.06.047     URL    
[77]
Li Q. J. South. Univ., 2009, 39:1008.
[78]
Jayawickramage R A P, Balkus K J, Ferraris J P. Nanotechnology, 2019, 30(35):355402.

doi: 10.1088/1361-6528/ab2274     pmid: 31100735
[79]
Shi G F, Liu C, Wang G Y, Chen X F, Li L, Jiang X, Zhang P, Dong Y C, Jia S M, Tian H Q, Liu Y R, Wang Z, Zhang Q, Zhang H Q. Ionics, 2019, 25(4):1805.

doi: 10.1007/s11581-018-2675-3     URL    
[80]
Liu Y W, Liu Q, Wang L, Yang X F, Yang W Y, Zheng J J, Hou H L. ACS Appl. Mater. Interfaces, 2020, 12(4):4777.

doi: 10.1021/acsami.9b19977     URL    
[81]
Sun H J, Li S Y, Shen Y L, Miao F J, Zhang P, Shao G S. Appl. Surf. Sci., 2020, 501:144001.

doi: 10.1016/j.apsusc.2019.144001     URL    
[82]
Liu Y, Zhang Z Y, Fang Y R, Liu B K, Huang J D, Miao F J, Bao Y N, Dong B. Appl. Catal. B: Environ., 2019, 252:164.

doi: 10.1016/j.apcatb.2019.04.035     URL    
[83]
Lin T, Chen I W, Liu F, Yang C, Bi H, Xu F, Huang F. Science, 2015, 350(6267):1508.

doi: 10.1126/science.aab3798     URL    
[84]
Wang K, Li L W, Zhang T Z, Liu Z F. Energy, 2014, 70:612.

doi: 10.1016/j.energy.2014.04.034     URL    
[85]
Xin G X, Wang Y H, Jia S P, Tian P F, Zhou S Y, Zang J B. Appl. Surf. Sci., 2017, 422:654.

doi: 10.1016/j.apsusc.2017.06.084     URL    
[86]
Shilpa S, Sharma A. RSC Adv., 2016, 6(82):78528.

doi: 10.1039/C6RA17014E     URL    
[87]
Bai Y, Huang Z H, Kang F Y. Carbon, 2014, 66:705.

doi: 10.1016/j.carbon.2013.09.074     URL    
[88]
Shen C, Sun Y P, Yao W, Lu Y. Polymer, 2014, 55(12):2817.

doi: 10.1016/j.polymer.2014.04.042     URL    
[89]
Xiao Y, Sun P P, Cao M H. ACS Nano, 2014, 8(8):7846.

doi: 10.1021/nn501390j     URL    
[90]
Bianco G V, Losurdo M, Giangregorio M M, Capezzuto P, Bruno G. Phys. Chem. Chem. Phys., 2014, 16(8):3632.

doi: 10.1039/c3cp54451f     pmid: 24413594
[91]
Li M, Xue J M. J. Phys. Chem. C, 2014, 118(5):2507.

doi: 10.1021/jp410198r     URL    
[92]
Guo H L, Su P, Kang X, Ning S K. J. Mater. Chem. A, 2013, 1:2248.

doi: 10.1039/C2TA00887D     URL    
[93]
Han J, Xu G, Ding B, Pan J, Dou H, Macfarlane D R. J. Mater. Chem. A, 2014, 2:5352.

doi: 10.1039/C3TA15271E     URL    
[94]
Luo W, Wang B, Heron C G, Allen M J, Morre J, Maier C S, Stickle W F, Ji X L. Nano Lett., 2014, 14(4):2225.

doi: 10.1021/nl500859p     URL    
[95]
Quan S, Zhang R, Lv Y, Deng Y, Zhao D. Carbon, 2015, 84:335.

doi: 10.1016/j.carbon.2014.12.013     URL    
[96]
Jiang Q, Liu M Z, Shao C L, Li X W, Liu H Y, Li X H, Liu Y C. Electrochimica Acta, 2020, 330:135212.

doi: 10.1016/j.electacta.2019.135212     URL    
[97]
Nie G D, Zhu Y, Tian D, Wang C. Chem. J. Chin. Univ., 2018, 39(7):1349.
( 乜广弟, 朱云, 田地, 王策. 高等学校化学学报, 2018, 39(7):1349.)
[98]
Li X L, Zhao Y J, Bai Y, Zhao X Y, Wang R H, Huang Y C, Liang Q H, Huang Z H. Electrochimica Acta, 2017, 230:445.

doi: 10.1016/j.electacta.2017.02.030     URL    
[99]
Zhang S, Sui L N, Dong H Z, He W B, Dong L F, Yu L Y. ACS Appl. Mater. Interfaces, 2018, 10(15):12983.

doi: 10.1021/acsami.8b00323     URL    
[100]
Tian X D, Zhao N, Song Y, Wang K, Xu D F, Li X, Guo Q G, Liu L. Electrochimica Acta, 2015, 185:40.

doi: 10.1016/j.electacta.2015.10.096     URL    
[101]
Hosseini S R, Ghasemi S, Vahdat Y. Synth. Met., 2018, 246:16.

doi: 10.1016/j.synthmet.2018.09.017     URL    
[102]
Yilmaz M, Hsu S H, Raina S, Howell M, Kang W P. J. Renew. Sustain. Energy, 2018, 10(6):063503.

doi: 10.1063/1.5050038     URL    
[103]
Zhou G J, Ye Z K, Shi W W, Liu J X, Xi F N. Prog. Chem., 2014, 26:950.
( 周国珺, 叶志凯, 石微微, 刘吉洋, 奚凤娜. 化学进展, 2014, 26:950.)

doi: 10.7536/PC131250    
[104]
Tai Z X, Yan X, Lang J, Xue Q J. J. Power Source, 2012, 199:373.

doi: 10.1016/j.jpowsour.2011.10.009     URL    
[105]
Wang X, Zhang W, Chen M Z, Zhou X Y. Polymers, 2018, 10(12):1306.

doi: 10.3390/polym10121306     URL    
[106]
Lai C L, Zhou Z P, Zhang L F, Wang X X, Zhou Q X, Zhao Y, Wang Y C, Wu X F, Zhu Z T, Fong H. J. Power Sources, 2014, 247:134.

doi: 10.1016/j.jpowsour.2013.08.082     URL    
[107]
Zhu J, Dong Y, Zhang S, Fan Z. Acta Phys. Chimica Sin., 2020, 36:30.
[108]
Deng L B, Young R J, Kinloch I A, Abdelkader A M, Holmes S M, de Haro-Del Rio D A, Eichhorn S J. ACS Appl. Mater. Interfaces, 2013, 5(20):9983.

doi: 10.1021/am403622v     URL    
[109]
Dong Q, Wang G, Hu H, Yang J, Qian B Q, Ling Z, Qiu J S. J. Power Sources, 2013, 243:350.

doi: 10.1016/j.jpowsour.2013.06.060     URL    
[110]
Guo M X, Guo J X, Jia D Z, Zhao H Y, Sun Z P, Song X L, Li Y H. J. Mater. Chem. A, 2015, 3(42):21178.

doi: 10.1039/C5TA05743D     URL    
[111]
Chen S L, He S J, Hou H Q. Curr. Org. Chem., 2013, 17(13):1402.

doi: 10.2174/1385272811317130007     URL    
[112]
Jiang J, Li Y Y, Liu J P, Huang X T, Yuan C Z, Lou X W D. Adv. Mater., 2012, 24(38):5166.

doi: 10.1002/adma.201202146     URL    
[113]
Wu Z, Li L, Yan J M, Zhang X B. Adv. Sci., 2017, 4(6):1600382.

doi: 10.1002/advs.201600382     URL    
[114]
Dipanwita, Majumdar, Manas, Mandal, Swapan, K., Bhattacharya. Chemelectrochem, 2019, 6:1623.

doi: 10.1002/celc.201801761    
[115]
Wang J G, Yang Y, Huang Z H, Kang F Y. Carbon, 2013, 61:190.

doi: 10.1016/j.carbon.2013.04.084     URL    
[116]
Chen I L, Chen T Y, Wei Y C, Hu C C, Lin T L. Nanoscale, 2014, 6(5):2861.

doi: 10.1039/c3nr04479c     pmid: 24468800
[117]
Choudhury A, Kim J H, Yang K S, Yang D J. Electrochimica Acta, 2016, 213:400.

doi: 10.1016/j.electacta.2016.06.111     URL    
[118]
Vidhyadharan B, Zain N K M, Misnon I I, Aziz R A, Ismail J, Yusoff M M, Jose Y. J. Alloys Compd., 2014, 610:143.

doi: 10.1016/j.jallcom.2014.04.211     URL    
[119]
Lee H, Kim Y J, Lee D J, Song J, Lee Y M, Kim H T, Park J K. J. Mater. Chem. A, 2014, 2(30):11891.

doi: 10.1039/C4TA01311E     URL    
[120]
Binitha G, Soumya M S, Madhavan A A, Praveen P, Balakrishnan A, Subramanian K R V, Reddy M V, Nair S V, Nair A S, Sivakumar N. J. Mater. Chem. A, 2013, 1(38):11698.

doi: 10.1039/c3ta12352a     URL    
[121]
Wang W, Guo S R, Lee I, Ahmed K, Zhong J B, Favors Z, Zaera F, Ozkan M, Ozkan C S. Sci. Rep., 2014, 4(1):1.
[122]
Pico F, Ibañez J, Lillo-Rodenas M A, Linares-Solano A, Rojas R M, Amarilla J M, Rojo J M. J. Power Sources, 2008, 176(1):417.

doi: 10.1016/j.jpowsour.2007.11.001     URL    
[123]
Sieben J M, Morallón E, Cazorla-Amorós D. Energy, 2013, 58:519.

doi: 10.1016/j.energy.2013.04.077     URL    
[124]
Zheng J P, Cygan P J, Jow T R. Cheminform, 1995, 142:2699.
[125]
An G H, Ahn H J. J. Electroanal. Chem., 2015, 744:32.

doi: 10.1016/j.jelechem.2015.03.009     URL    
[126]
Jun Y R, Kim B H. Bull. Korean Chem. Soc., 2016, 37(11):1820.

doi: 10.1002/bkcs.10981     URL    
[127]
Kim B H, Kim C H, Lee D G. J. Electroanal. Chem., 2016, 760:64.

doi: 10.1016/j.jelechem.2015.12.001     URL    
[128]
Li M L, Sun G Y, Yin P P, Ruan C P, Ai K L. ACS Appl. Mater. Interfaces, 2013, 5(21):11462.

doi: 10.1021/am403739g     URL    
[129]
Boukhalfa S, Evanoff K, Yushin G. Energy Environ. Sci., 2012, 5(5):6872.

doi: 10.1039/c2ee21110f     URL    
[130]
Noerochim L, Wang J Z, Wexler D, Rahman M M, Chen J, Liu H K. J. Mater. Chem., 2012, 22(22):11159.

doi: 10.1039/c2jm16470a     URL    
[131]
Li L, Peng S, Hao B W, Le Y, Madhavi S, Xiong W L. Adv. Energy Mater., 2015, 5:1.
[132]
Zhao L, Yu J, Li W J, Wang S G, Dai C L, Wu J W, Bai X D, Zhi C Y. Nano Energy, 2014, 4:39.

doi: 10.1016/j.nanoen.2013.12.008     URL    
[133]
Jiang H, Zhao T, Ma J, Yan C, Li C. Chem. Commun., 2011, 47:1264.

doi: 10.1039/C0CC04134C     URL    
[134]
Guo C Y, Ma H T, Zhang Q T, Li M F, Jiang H R, Chen C Z, Wang S F, Min D Y. Nanomaterials, 2020, 10(3):594.

doi: 10.3390/nano10030594     URL    
[135]
Jeong J H, Kim B H. J. Electroanal. Chem., 2018, 809:130.

doi: 10.1016/j.jelechem.2017.12.063     URL    
[136]
Youe W J, Kim S J, Lee S M, Chun S J, Kang J, Kim Y S. Int. J. Biol. Macromol., 2018, 112:943.

doi: 10.1016/j.ijbiomac.2018.02.048     URL    
[137]
Kim S G, Jun J, Kim Y K, Kim J, Lee J S, Jang J. ACS Appl. Mater. Interfaces, 2020, 12(18):20613.
[138]
Zhao J S, Tian Y, Liu A F, Song L, Zhao Z S. Mater. Sci. Semicond. Process., 2019, 96:78.
[139]
Kebabsa L, Kim J, Lee D, Lee B. Appl. Surf. Sci., 2020, 511:145313.

doi: 10.1016/j.apsusc.2020.145313     URL    
[140]
Abouali S, Akbari Garakani M, Zhang B, Xu Z L, Kamali Heidari E, Huang J Q, Huang J Q, Kim J K. ACS Appl. Mater. Interfaces, 2015, 7(24):13503.

doi: 10.1021/acsami.5b02787     URL    
[141]
Hao C, Zhou S S, Wang J J, Wang X H, Gao H W, Ge C W. Ind. Eng. Chem. Res., 2018, 57(7):2517.

doi: 10.1021/acs.iecr.7b04412     URL    
[142]
Talha A, Ahmed A, Hou B, Chavan H, Cheol Y. Small, 2018, 14:28.
[143]
Tao K, Han X, Yang Y J, Zhou J J, Ma Q X. Chemistry, 2018. 24:18106.
[144]
Chen H Y, Wang J P, Han X R, Liao F, Zhang Y F, Gao L, Xu C J. Ceram. Int., 2019, 45(7):8577.
[145]
Xu J S, Sun Y D, Lu M J, Wang L, Zhang J, Tao E, Qian J H, Liu X Y. Acta Mater., 2018, 152:162.

doi: 10.1016/j.actamat.2018.04.025     URL    
[146]
Liao F, Han X R, Zhang Y F, Han X H, Xu C J, Chen H Y. Ceram. Int., 2019, 45(6):7244.

doi: 10.1016/j.ceramint.2019.01.005    
[147]
Yu H Q, Zhao H Y, Wu Y B, Chen B J, Sun J S. J. Phys. Chem. Solids, 2020, 140:109385.

doi: 10.1016/j.jpcs.2020.109385     URL    
[148]
Dubal D P, Lee S H, Kim J G, Kim W B, Lokhande C D. J. Mater. Chem., 2012, 22(7):3044.

doi: 10.1039/c2jm14470k     URL    
[149]
Jaymand M, Massoumi B, Davtalab S, Entezami A A. RSC Advances, 2015, 5:36715.

doi: 10.1039/C5RA02926K     URL    
[150]
Bhattacharya S, Roy I, Tice A, Chapman C, Udangawa R, Chakrapani V, Plawsky J L, Linhardt R J. ACS Appl. Mater. Interfaces, 2020, 12(17):19369.

doi: 10.1021/acsami.9b21696     URL    
[151]
Silas K, Simotwo, Christopher DelRe, Vibha Kalra. ACS Appl. Mater. Interfaces., 2020, 8:22261.

doi: 10.1021/acsami.6b07607     URL    
[152]
Sun H J, Li S Y, Shen Y L, Miao F J, Zhang P, Shao G S. Appl. Surf. Sci., 2020, 501:144001.

doi: 10.1016/j.apsusc.2019.144001     URL    
[153]
Simotwo S K, Kalra V. Electrochimica Acta, 2018, 268:131.

doi: 10.1016/j.electacta.2018.01.157     URL    
[154]
Chen L, Li D P, Chen L N, Si P C, Feng J K, Zhang L, Li Y H, Lou J, Ci L J. Carbon, 2018, 138:264.

doi: 10.1016/j.carbon.2018.06.022     URL    
[155]
Tao R Q, Ning H L, Fang Z Q, Chen J Q, Cai W, Zhou Y C, Zhu Z N, Yao R H, Peng J B. J. Phys. Chem. C, 2017, 121(16):8992.

doi: 10.1021/acs.jpcc.6b12793     URL    
[156]
Kim M, Lee C, Jang J. Adv. Funct. Mater., 2014, 24:2489.

doi: 10.1002/adfm.201303282     URL    
[157]
Yang C, Shen J, Wang C, Fei H, Bao H, Wang G. J. Mater. Chem. A, 2014, 2:1458.

doi: 10.1039/C3TA13953K     URL    
[1] 于小燕, 李萌, 魏磊, 邱景义, 曹高萍, 文越华. 聚丙烯腈在锂金属电池电解质中的应用[J]. 化学进展, 2023, 35(3): 390-406.
[2] 王龙, 周庆萍, 吴钊峰, 张延铭, 叶小我, 陈长鑫. 基于碳纳米管的光伏电池[J]. 化学进展, 2023, 35(3): 421-432.
[3] 张晓菲, 李燊昊, 汪震, 闫健, 刘家琴, 吴玉程. 第一性原理计算应用于锂硫电池研究的评述[J]. 化学进展, 2023, 35(3): 375-389.
[4] 李芳远, 李俊豪, 吴钰洁, 石凯祥, 刘全兵, 彭翃杰. “蛋黄蛋壳”结构纳米电极材料设计及在锂/钠离子/锂硫电池中的应用[J]. 化学进展, 2022, 34(6): 1369-1383.
[5] 柳凤琦, 姜勇刚, 彭飞, 冯军宗, 李良军, 冯坚. 超轻纳米纤维气凝胶的制备及其应用[J]. 化学进展, 2022, 34(6): 1384-1401.
[6] 孙浩, 王超鹏, 尹君, 朱剑. 用于电催化析氧反应电极的制备策略[J]. 化学进展, 2022, 34(3): 519-532.
[7] 牛小连, 刘柯君, 廖子明, 徐慧伦, 陈维毅, 黄棣. 基于骨组织工程的静电纺纳米纤维[J]. 化学进展, 2022, 34(2): 342-355.
[8] 王才威, 杨东杰, 邱学青, 张文礼. 木质素多孔碳材料在电化学储能中的应用[J]. 化学进展, 2022, 34(2): 285-300.
[9] 陈向娟, 王欢, 安伟佳, 刘利, 崔文权. 有机碳材料在光电催化系统中的作用[J]. 化学进展, 2022, 34(11): 2361-2372.
[10] 黄祺, 邢震宇. 锂硒电池研究进展[J]. 化学进展, 2022, 34(11): 2517-2539.
[11] 占兴, 熊巍, 梁国熙. 从废水到新能源:光催化燃料电池的优化与应用[J]. 化学进展, 2022, 34(11): 2503-2516.
[12] 刘新叶, 梁智超, 王山星, 邓远富, 陈国华. 碳基材料修饰聚烯烃隔膜提高锂硫电池性能研究[J]. 化学进展, 2021, 33(9): 1665-1678.
[13] 郭林莉, 张新, 肖敏, 王拴紧, 韩东梅, 孟跃中. 二维材料修饰隔膜抑制锂硫电池穿梭效应策略[J]. 化学进展, 2021, 33(7): 1212-1220.
[14] 刘小琳, 杨西亚, 王海龙, 王康, 姜建壮. 用于可充电器件的有机电极材料[J]. 化学进展, 2021, 33(5): 818-837.
[15] 吴磊, 刘利会, 陈淑芬. 基于碳基透明电极的柔性有机电致发光二极管[J]. 化学进展, 2021, 33(5): 802-817.
阅读次数
全文


摘要

电纺纤维在超级电容器中的应用