English
新闻公告
More
化学进展 2020, Vol. 32 Issue (12): 2022-2033 DOI: 10.7536/PC200415 前一篇   后一篇

• 综述 •

纤维素基介电材料

史利娜1, 胡欣2,*(), 朱宁1,*(), 郭凯1   

  1. 1 南京工业大学生物与制药工程学院 材料化学工程国家重点实验室 南京 211800
    2 南京工业大学材料科学与工程学院 南京 211800
  • 收稿日期:2020-04-14 修回日期:2020-09-14 出版日期:2021-10-15 发布日期:2020-10-15
  • 通讯作者: 胡欣, 朱宁
  • 作者简介:
    * Corresponding author e-mail: (Xin Hu); (Ning Zhu)

Cellulose-Based Dielectric Composite

Lina Shi1, Xin Hu2,*(), Ning Zhu1,*(), Kai Guo1   

  1. 1 College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211800, China
    2 College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211800, China
  • Received:2020-04-14 Revised:2020-09-14 Online:2021-10-15 Published:2020-10-15
  • Contact: Xin Hu, Ning Zhu

作为电荷的高效存储设备,介电电容器受到学术界和产业界越来越多的关注,其中介电材料是介电电容器的核心。长久以来,双向拉伸聚丙烯和聚对苯二甲酸乙二醇酯等石油基聚合物作为介电材料广泛应用于商用电容器设备。然而,随着服役环境的变化(如工作温度升高等),聚合物材料的介电常数与充放电效率下降,同时介电损耗与电流漏导增加,导致储能密度大幅降低,亟待开发具有高储能密度的新型可持续聚合物介电材料。纤维素是地球上储量最丰富的天然聚合物,具有可持续、价格低廉、可生物降解等特点,是理想的候选生物基材料。近年来,通过将纤维素纳米纤维、氰乙基纤维素、再生纤维素及醋酸纤维素分别与不同填料进行复合,显著提高了介电常数、击穿场强与充放电效率,获得了一系列具有高储能密度的生物基介电材料。本文总结了上述纤维素基介电材料的研究进展,并对该领域面临的挑战与发展前景进行了探讨与展望。

As an electric charge storage device, dielectric capacitor has attracted growing research interest from both academy and industry. The dielectric material is the key component for the capacitor. Fossil based commercial polymers, such as biaxially oriented polypropylene (BOPP) and polyethylene terephthalate (PET), have been widely used as the dielectric materials in the capacitors. However, the change of service condition (e.g. increasing the temperature) will resulted in the low energy storage density of the fossil based polymer dielectric materials because of the reduced dielectric constant and discharge-charge efficiency, and the increased dielectric loss and current leakage. Therefore, novel sustainable polymer dielectric materials with high energy storage density are highly desirable. As the most abundant natural polymer on the earth, cellulose is considered as the candidate for the potential dielectric materials due to the renewable feedstock, low price and biodegradability, etc. Recently, cellulose-based dielectric composites with high energy storage density have been developed, which show improved dielectric constant, breakdown strength and discharge-charge efficiency. This article focuses on the advances in cellulose-based dielectric composites mentioned above. Moreover, the challenges and opportunities are discussed for the further development in the related topics.

Contents

1 Introduction

2 Cellulose nanofiber dielectric composite

2.1 Cellulose nanofiber/conductive filler dielectric composite

2.2 Cellulose nanofiber/ceramic (rare earth ion) dielectric composite

3 Cyanoethyl cellulose dielectric composite

3.1 Cyanoethyl cellulose/ceramic dielectric composite

3.2 Cyanoethyl cellulose/montmorillonite dielectric composite

3.3 Porous cyanoethyl cellulose dielectric composite

4 Regenerated cellulose dielectric composite

4.1 Regenerated cellulose/organic filler dielectric composite

4.2 Regenerated cellulose/ceramic dielectric composite

5 Cellulose acetate dielectric composite

6 Conclusion

()
表 1 纤维素基复合材料的介电性能
Table 1 Dielectric properties of cellulose-based composites
图1 CNF/CNT纸的制备[36]
Fig.1 Preparation of the CNF/CNT papers[36]
图2 不同CNT负载量的CNF/CNT纸的介电常数随频率变化[36]
Fig.2 Frequency dependence of dielectric constant of the CNF/CNT papers with different CNT loadings[36]
图3 RGO/CNF气体干燥(干凝胶)与定向冷冻(冻凝胶)干燥复合材料的制造示意图[38]
Fig.3 RGO/CNF gas drying (xerogel) and directional freezing (cryogel) drying composite material manufacturing schematic[38]
图4 (a)纤维素及其纳米复合材料的介电常数和(b)介电损耗与频率关系[39]
Fig.4 Variation of (a) dielectric constant and (b) dielectric loss of cellulose and its nanocomposites with frequency (at 1.0 V, 25.0% RH and 25.0 ℃)[39]
图5 CLTOCN/BNNS薄膜的制备和结构示意图[40]
Fig.5 Schematic of the preparation and structure of the CLTOCN/BNNS film[40]
图6 不同含量BNNSs的CLTOCN/BNNS薄膜的介电常数与频率关系[40]
Fig.6 Frequency dependence of the dielectric constant for CLTOCN/BNNS films with different loadings of BNNSs[40]
图7 TOCN-Eu 1与TOCN-Na 1薄膜的介电常数(损耗)与频率关系[44]
Fig.7 Frequency dependence of dielectric constant(loss) of TOCN-Na 1 and TOCN-Eu 1 film[44]
图8 TOCN-Eu 1与TOCN-Na 1薄膜的击穿强度和放电能量密度[44]
Fig.8 Breakdown strength and discharged energy density of TOCN-Na 1 and TOCN-Eu 1 film[44]
图9 CNF/TiO 2复合膜的制备流程[45]
Fig.9 The flow diagram illustrates the preparation of CNF/TiO 2 composite film[45]
图10 CNF/BTO纳米复合膜的制备流程[46]
Fig.10 Preparation of CNF/BTO nanocomposite films[46]
图11 纤维素羟基氰基化示意图[47]
Fig.11 Schematic diagram of cellulose hydroxycyanation[47]
图12 CEC/BTO/ATO纳米复合膜制备的示意图[52]
Fig.12 The schematic illustration of the preparation of CEC/BTO/ATO nanocomposite films[52]
图13 (a) CEC/BTO和(b) CEC/BTO/ATO纳米复合薄膜的介电常数与频率关系[51,52]
Fig.13 Dependence of dielectric permittivity of (a) CEC/BTO and (b) CEC/BTO/ATO nanocomposite films on frequency [51,52]
图14 所提出的MMT和CEC分散RGO的机制[63]
Fig.14 Proposed mechanism for the dispersion of RGO with MMT and CEC[63]
图15 (a) CEC/MMT和(b)CEC/RGO/MMT纳米复合薄膜的介电常数与频率的关系[59,63]
Fig.15 Dependence of dielectric permittivity of (a) CEC/MMT and (b)CEC/RGO/MMT nanocomposite films on frequency[59,63]
图16 不同混凝浴中的CEC溶液(14 wt%、16 wt%和20 wt%)介电常数与频率关系[64]
Fig.16 The dielectric constant as a function of frequency of the CEC solutions(14 wt%, 16 wt%, and 20 wt%) by using different coagulating bath[64]
图17 RC/PPy复合膜的制备示意图[73]
Fig.17 Schematic of fabrication RC/PPy composite film[73]
图18 RC和RC/PPy介电常数(损耗)与频率关系[73]
Fig.18 Variation of dielectric constant (loss) of RC and RC/PPy with frequency[73]
图19 RC/BN纳米复合膜实现高击穿强度和热传导的层状结构示意图[76]
Fig.19 Schematic of the layered structure of the RC/BN nanocomposite film to achieve high breakdown strength and thermal conduction[76]
图20 复合材料中纤维素分子(顶部)和BN纳米板(底部)之间相互作用的模型[76]
Fig.20 Model of interaction between cellulose molecules (top) and BN nanoplate (bottom) in the composite[76]
图21 RC/BTNF制备示意图[77]
Fig.21 Schematic of RC/BTNF Preparation[77]
图22 纤维素膜循环示意图[78]
Fig.22 Schematic of the circulation of cellulose films[78]
[1]
Wei J J , Zhu L . Progress in Polymer Science, 2020, 106: 101254.
[2]
Zhang M , Zhang L , Zhu M , Wang Y G , Li N W , Zhang Z J , Chen Q , An L N , Lin Y H , Nan C W . Journal of Materials Chemistry A, 2016, 4: 4797.
[3]
Li Q , Yao F Z , Liu Y , Zhang G Z , Wang H , Wang Q . Annual Review of Materials Research, 2018, 48: 219.
[4]
Qiao Y L , Yin X D , Zhu T Y , Li H , Tang C B . Progress in Polymer Science, 2018, 80: 153.
[5]
Pan Z B , Zhai J W , Shen B . Journal of Materials Chemistry A, 2017, 5: 15217.
[6]
Pan Z B , Yao L M , Zhai J W , Shen B , Liu S H , Wang H T , Liu J H . Journal of Materials Chemistry A, 2016, 4: 13259.
[7]
Liu F H , Li Q , Cui J , Li Z Y , Yang G , Liu Y , Dong L J , Xiong C X , Wang H , Wang Q . Advanced Functional Materials, 2017, 27: 1606292.
[8]
Lei X F , Chen Y H , Qiao M T , Tian L D , Zhang Q Y . Journal of Materials Chemistry C, 2016, 4: 2134.
[9]
Zapsas G , Patil Y , Gnanou Y , Ameduri B , Hadjichristi-dis N . Progress in Polymer Science, 2020, 104: 101231.
[10]
Peng X W , Xu W H , Chen L L , Ding Y C , Chen S L , Wang X Y , Hou H Q . Journal of Materials Chemistry C, 2016, 4: 6452.
[11]
Mohammad S A , Shingdilwar S , Banerjee S , Ameduri Bruno . Progress in Polymer Science, 2020, 106: 101255.
[12]
Hu X , Zhu N , Guo K . Advances in Polymer Technology, 2019, 2019: 7971683.
[13]
Huang W J , Zhai J L , Hu X , Duan J D , Fang Z , Zhu N , Guo K . European Polymer Journal, 2020, 126: 109565.
[14]
Hu X , Zhu N , Fang Z , Li Z J , Guo K . European Polymer Journal, 2016, 80: 117.
[15]
Zhu N , Hu X , Fang Z , Guo K . ChemPhotoChem, 2018, 2: 831.
[16]
Zhu N , Hu X , Zhang Y J , Zhang K , Guo K . Polymer Chemistry, 2016, 2: 474.
[17]
Hu X , Zhang Y J , Cui G P , Zhu N , Guo K . Macromolecular Rapid Communications, 2017, 38: 1700399.
[18]
Hu X , Zhang Y J , Cui G P , Zhu N , Guo K . European Polymer Journal, 2018, 100: 228.
[19]
Hu X , Cui G P , Zhu N , Zhai J L , Guo K . Polymers, 2018, 10: 68.
[20]
Fan B H , Zhou M Y , Zhang C , He D L , Bai J B . Progress in Polymer Science, 2019, 97: 101143.
[21]
Rol F , Belgacem M N , Gandini A , Bras J . Progress in Polymer Science, 2019, 88: 241.
[22]
Takechi S , Teramoto Y , Nishio Y . Cellulose, 2016, 23: 765.
[23]
Wang S , Lue A , Zhang L . Progress in Polymer Science, 2016, 53: 169.
[24]
Yang Q L , Shi Z Q , Qi Z D , Yang J W , Lao J P , Saito T , Xiong C X , Isogai A . Journal Controlled Release, 2017, 259: e115.
[25]
Calvino C , Macke N , Kato R , Rowan S J . Progress in Polymer Science, 2020, 103: 101221.
[26]
Ghosh S K , Mandal D . ACS Sustainable Chemistry & Engineering, 2017, 5: 8836.
[27]
Jung Y H , Chang T H , Zhang H , Yao C , Zheng Q , Yang V , W, Mi H, Kim M, Sang J C, Park D W. Nature Communication, 2015, 6: 7170.
[28]
Cheng H , Li L J , Wang B J , Feng X L , Mao Z P , Vancso G J , Sui X F . Progress in Polymer Science, 2020, 106: 101253.
[29]
Klemm D , Kramer F , Moritz S , Lindstrom T , Anker-fors M , Gray D , Dorris A . Angewandte Chemie-International Edition, 2011, 50: 5438.
[30]
Wicklein B , Kocjan A , Salazar-Alvarez G , Carosio F , Camino G , Antonietti M , Bergstrom L . Nature Nanotechnology, 2015, 10: 277.
[31]
Kargarzadeh H , Huang J , Lin N , Ahmad I , Mariano M , Dufresne A , Thomas S , Galeski A . Progress in Polymer Science, 2018, 87: 197.
[32]
Inui T , Koga H , Nogi M , Komoda N , Suganuma K . Advanced Materials, 2015, 27: 1112.
[33]
Wang Y , Heim L Q , Xu Y , Buntkowsky G , Zhang K . Advanced Functional Materials, 2015, 25: 1434.
[34]
Tang H , Butchosa N , Zhou Q . Advanced Materials, 2015, 27: 2070.
[35]
Sun X M , Sun H , Li H P , Peng H S . Advanced Materials, 2013, 25: 5153.
[36]
Zeng X L , Deng L B , Yao Y M , Sun R , Xu J B , Wong C P . Journal of Materials Chemistry C, 2016, 4: 6037.
[37]
Tong W S , Zhang Y H , Zhang Q , Luan X L , Duan Y , Pan S F , Lv F Z , An Q . Carbon, 2015, 94: 590.
[38]
Pottathara Y B , Bobnar v , Finsgar M , Grohens Y , Thomas S , Kokol V . Polymer, 2018, 147: 260.
[39]
Kafy A , Sadasivuni K K , Kim H , Akther A , Kim J . Physical Chemistry Chemical Physics, 2015, 17: 5923.
[40]
Yang J W , Xie H A , Chen H , Shi Z Q , Wu T , Yang Q L , Xiong C X . Journal of Materials Chemistry A, 2018, 6: 1403.
[41]
Eliseeva S V , Bünzli C G . Chemical Society Reviews, 2010, 39: 189.
[42]
Wang Y H , Zhu G , Xin S Y , Wang Q , Li Y Y , Wu Q S , Wang C , Wang X C , Ding X , Geng W Y . Journal of Rare Earths, 2015, 33: 1.
[43]
Li S , Toprak M S , Jo Y S , Dobson J , Kim D K , Mu-hammed M . Advanced Materials, 2007, 19: 4347.
[44]
Yang Q L , Zhang C G , Shi Z Q , Wang J Y , Xiong C X , Saito T , Isogai A . ACS Applied Nano Materials, 2018, 1: 4972.
[45]
Tao J , Cao S A , Liu W , Deng Y L . Cellulose, 2019, 26: 6087.
[46]
Tao J , Cao S A , Feng R , Deng Y L . RSC Advances, 2020, 10: 5758.
[47]
Bonardd S , Robles E , Barandiaran I , Saldías C , Leiva Á , Kortaberria G . Carbohydrate Polymers, 2018, 199: 20.
[48]
邵自强( Shao Z Q ), 王飞俊( Wang F J ). 纤维素醚(Cellulose Ether). 北京(Beijing):化学工业出版社(Chemical Industry Press), 2007. 10.
[49]
Pan Z B , Yao L M , Zhai J W , Yang K , Shen B , Wang H T . ACS Sustainable Chemistry & Engineering, 2017, 5: 4707.
[50]
Xie L Y , Huang X Y , Huang Y H , Yang K , Jiang P K . Journal of Physical Chemistry C, 2013, 117: 22525.
[51]
Jia C , Shao Z Q , Fan H Y , Wang J Q . RSC Advances, 2015, 5: 15283.
[52]
Jia C , Shao Z Q , Fan H Y , Feng R , Wang F J , Wang W J , Wang J Q , Zhang D L , Lv Y Y . Composites: Part A, 2016, 86: 1.
[53]
Wei S Y , Mavinakuli P , Wang Q , Chen D , Asapu R , Mao Y B , Haldolaarachchige N , Young D P , Guo Z H . Journal of the Electrochemical Society, 2011, 11: 158.
[54]
Abushammala H , Hashaikeh R , Biomass and Bioenergy, 2011, 35: 3970.
[55]
Madusanka N , Shivareddy S G , Hiralal P , Eddleston M D , Choi Y , Oliver R A , Amaratunga G A J . Nanotechnology, 2016, 27: 195402.
[56]
Martin B , Harald G , Andreas F , Klaus W B , Gamal T , Andreas S , Bernhard S . Macromolecules, 2005, 38: 2764.
[57]
Kanapitsas A , Pissis P , Kotsilkova R . Journal of Non-crystalline Solids, 2002, 305: 204.
[58]
Jeon I , Baek J B . Materials, 2010, 3: 3654.
[59]
Madusanka N , Shivareddy S G , Eddleston M D , Hi-ralal P , Oliver R A , Amaratunga G A J . Carbohydrate Polymers, 2017, 172: 315.
[60]
Zhang Z L , Luo H J , Jiang X , Jiang Z L , Jiang Z J , Yang C . RSC Advances, 2015, 5: 47408.
[61]
Capkova P , Matejka V , Tokarsky J , Peikertova P , Neuwirthova L , Kulhankova L , Beno J , Styskala V . Journal of the European Ceramic Society, 2014, 34: 3111.
[62]
Li C P , Li Y Z , She X D , Vongsvivut J , Li J H , She F H , Gao W M , Kong L X . Composites Science and Technology, 2015, 118: 1.
[63]
Wang F J , Wang M H , Shao Z Q . Cellulose, 2018, 25: 7143.
[64]
Wang B , Kang H L , Yang H G , Xie J J , Liu R G . Cellulose, 2019, 26: 1261.
[65]
Swatloski R P , Spear S K , Holbrey J D , Rogers R D . Journal of the American Chemical Society, 2002, 124: 4974.
[66]
Cai J , Zhang L N . Macromolecular Bioscience, 2005, 5: 539.
[67]
Yang Q L , Fujisawa S , Saito T , Isogai A . Cellulose, 2012, 19: 695.
[68]
Yang Q L , Fukuzumi H , Saito T , Isogai A , Zhang L N . Biomacromolecules, 2011, 12: 2766.
[69]
Yang Q L , Saito T , Berglund L A , Isogai A . Nanoscale, 2015, 7: 17957.
[70]
Nystrom G , Mihranyan A , Razaq A , Lindstrom T , Nyholm L , Strømme M . Journal of Physical Chemistry B, 2010, 114: 4178.
[71]
Liu S , He K , Wu X , Luo X , Li B . RSC Advances, 2015, 5: 87266.
[72]
Srivastav S , Tammela P , Brandell D , Sjödin M . Electrochimica Acta, 2015, 182: 1145.
[73]
Raghunathan S P , Narayanan S , Poulose A C , Jo-seph. R. Carbohydrate Polymers, 2017, 157: 1024.
[74]
Golberg D , Bando Y , Huang Y , Terao T , Mitome M , Tang C C , Zhi C Y . ACS Nano, 2010, 4: 2979.
[75]
Huang X Y , Jiang P K , Tanaka T . IEEE Electrical Insulation Magazine, 2011: 27: 8.
[76]
Lao J P , Xie H A , Shi Z Q , Li G , Li B , Hu G H , Yang Q L , Xiong C X . ACS Sustainable Chemistry & Engineering, 2018, 6: 7151.
[77]
Zhang C G , Yin Y A , Yang Q L , Shi Z Q , Hu G H , Xiong C X . ACS Sustainable Chemistry & Engineering, 2019, 7: 10641.
[78]
Yin Y A , Zhang C G , Yu W C , Kang G H , Yang Q L , Shi Z Q , Xiong C X . Energy Storage Materials, 2020, 26: 105.
[79]
Edgar C M , Buchanan J S , Debenham P A , Rund-quist B D , Seiler M C , Shelton D , Tindall. Progress in Polymer Science, 2001, 26: 1605.
[80]
Kung F C , Chou W L , Yang M C . Polymers for Advanced in Technologies, 2006, 17: 453.
[81]
Hoenich N. BioResources, 2006, 1: 270.
[82]
Romero R B , Leite C A P , Goncalves M D C . Polymer, 2009, 50: 161.
[83]
Abedini R , Mousavi S M , Aminizadeh R . Desalination, 2011, 277: 40.
[84]
Anita S , Brabu B , Thiruvadigal D J , Gopalkrishnan C , Natarajan T S . Carbohydrate Polymers, 2012, 87: 1065.
[85]
Figueiriedo A S , Sanchez-Loredo M G , Mauricio A , Pereira M F C , Minhalma M , DePinho M N . Journal of Applied Polymer Science, 2015, 132: 41796.
[86]
Li M , Kim I M , Jeong Y G . Journal of Applied Polymer Science, 118: 2475.
[87]
Liu L , Shen Z G , Liang S S , Yi M , Zhang X J , Ma S L . Journal of Materials Science, 2014, 49: 321.
[88]
Deshmukh K , Ahamed M B , Deshmukh R R , Pasha S K K , Sadasivuni K K , Polu A R , Ponnamma D , AlMaa-deed M A A , Chidambaram K . Journal of Materials Science-Materials in Electronics, 2016, 28: 973.
[1] 李婧, 朱伟钢, 胡文平. 基于有机复合材料的近红外和短波红外光探测器[J]. 化学进展, 2023, 35(1): 119-134.
[2] 王琦桐, 丁嘉乐, 赵丹莹, 张云鹤, 姜振华. 储能薄膜电容器介电高分子材料[J]. 化学进展, 2023, 35(1): 168-176.
[3] 蒋峰景, 宋涵晨. 石墨基液流电池复合双极板[J]. 化学进展, 2022, 34(6): 1290-1297.
[4] 乔瑶雨, 张学辉, 赵晓竹, 李超, 何乃普. 石墨烯/金属-有机框架复合材料制备及其应用[J]. 化学进展, 2022, 34(5): 1181-1190.
[5] 李晓微, 张雷, 邢其鑫, 昝金宇, 周晋, 禚淑萍. 磁性NiFe2O4基复合材料的构筑及光催化应用[J]. 化学进展, 2022, 34(4): 950-962.
[6] 徐妍, 苑春刚. 纳米零价铁复合材料制备、稳定方法及其水处理应用[J]. 化学进展, 2022, 34(3): 717-742.
[7] 庞欣, 薛世翔, 周彤, 袁蝴蝶, 刘冲, 雷琬莹. 二维黑磷基纳米材料在光催化中的应用[J]. 化学进展, 2022, 34(3): 630-642.
[8] 吴巧妹, 杨启悦, 曾宪海, 邓佳慧, 张良清, 邱佳容. 纤维素基生物质催化转化制备二醇[J]. 化学进展, 2022, 34(10): 2173-2189.
[9] 李金召, 李政, 庄旭品, 巩继贤, 李秋瑾, 张健飞. 纤维素纳米晶体的制备及其在复合材料中的应用[J]. 化学进展, 2021, 33(8): 1293-1310.
[10] 张天永, 吴畏, 朱剑, 李彬, 姜爽. 基于纳米碳填料可拉伸导电聚合物复合材料的制备[J]. 化学进展, 2021, 33(3): 417-425.
[11] 程丽丽, 章赟, 朱烨坤, 吴瑛. 选择性氧化HMF[J]. 化学进展, 2021, 33(2): 318-330.
[12] 李超, 乔瑶雨, 李禹红, 闻静, 何乃普, 黎白钰. MOFs/水凝胶复合材料的制备及其应用研究[J]. 化学进展, 2021, 33(11): 1964-1971.
[13] 冯业娜, 刘书河, 张书博, 薛彤, 庄鸿麟, 冯岸超. 基于聚合诱导自组装制备二氧化硅/聚合物纳米复合材料[J]. 化学进展, 2021, 33(11): 1953-1963.
[14] 肖晶晶, 王牧, 张伟杰, 赵秀英, 冯岸超, 张立群. 铅卤钙钛矿-聚合物复合材料的制备及应用[J]. 化学进展, 2021, 33(10): 1731-1740.
[15] 康美荣, 金福祥, 李臻, 宋河远, 陈静. 离子液体固载化及应用研究[J]. 化学进展, 2020, 32(9): 1274-1293.
阅读次数
全文


摘要

纤维素基介电材料