English
新闻公告
More
化学进展 2021, Vol. 33 Issue (8): 1293-1310 DOI: 10.7536/PC200759 前一篇   后一篇

• 综述 •

纤维素纳米晶体的制备及其在复合材料中的应用

李金召1, 李政1,2,*(), 庄旭品1, 巩继贤1, 李秋瑾1, 张健飞1,3   

  1. 1 天津工业大学纺织科学与工程学院 先进纺织复合材料教育部重点实验室 天津 300387
    2 宁夏中宁枸杞产业创新研究院有限公司 中宁 755199
    3 山东省生态纺织协同创新中心 青岛 266071
  • 收稿日期:2020-07-28 修回日期:2020-09-30 出版日期:2021-08-20 发布日期:2020-12-28
  • 通讯作者: 李政
  • 基金资助:
    国家重点研发计划(2017YFB0309800); 国家重点研发计划(2016YFC0400503-02); 天津市重点研发计划科技支撑重点项目(20YFZCSN00130); 新疆自治区重大专项(2016A03006-3); 天津自然科学基金项目(18JCYBJC89600); 中国纺织工业联合会科技指导性项目(2017011); 宁夏中宁枸杞产业创新研究院一般项目(ZNGQCX-B-2019006)

Preparation of Cellulose Nanocrystallines and Their Applications in CompositeMaterials

Jinzhao Li1, Zheng Li1,2(), Xupin Zhuang1, Jixian Gong1, Qiujin Li1, Jianfei Zhang1,3   

  1. 1 Key Laboratory of Advanced Textile Composites of Ministry of Education, School of Textiles Science and Engineering, Tiangong University,Tianjin 300387, China
    2 Innovation Research Institute of Wolfberry Industry Co. LTD,Zhongning 755199, China
    3 Collaborative Innovation Center for Eco-Textiles of Shandong Province,Qingdao 266071, China
  • Received:2020-07-28 Revised:2020-09-30 Online:2021-08-20 Published:2020-12-28
  • Contact: Zheng Li
  • Supported by:
    National Key Research and Development Project Foundation of China(2017YFB0309800); National Key Research and Development Project Foundation of China(2016YFC0400503-02); Tianjin Key Research and Development Project(20YFZCSN00130); Xinjiang Autonomous Region Major Significant Project Foundation(2016A03006-3); Tianjin Natural Science Foundation(18JCYBJC89600); Science and Technology Guidance Project of China National Textile and Apparel Council(2017011); Innovation Research Institute of Wolfberry Industry Co. LTD(ZNGQCX-B-2019006)

纤维素纳米晶体是纤维素原料经加工而得到的纳米级棒状或球状晶体。由于其具有高强度、大比表面积、生物相容性、可再生性和可降解性等优良性能,可应用于复合材料、生物医药和环境等多个领域。本文详细综述了近年来制备纤维素纳米晶体的常用方法,包括酸水解法、氧化法、酶水解法、机械法、溶剂法以及组合法。同时,讨论了各种制备方法的优缺点。在应用研究方面,本文总结了其在增强复合材料、膜过滤复合材料、导电复合材料和无机纳米复合材料等热门领域的研究情况。最后,对纤维素纳米晶体的未来发展方向进行了展望。

Cellulose nanocrystal(CNC) is a nano-scaled rod-like or spherical crystal isolated from cellulosic materials. CNC has shown many advantages of, for example, high strength, high specific surface area, biocompatibility, renewability and degradability. Therefore, it can be applied to the composite materials, biomedicine and environment fields. The preparation methods of CNC are detailedly summarized in this review such as acid hydrolysis, oxidation method, enzymatic hydrolysis, mechanical method, solvent methods and combined processes. Meanwhile, the advantages and shortcomings of the preparation methods are discussed. In the field of applied research, this review summarizes the research status of CNC in some popular fields such as reinforced composite materials, membrane filtration composite materials, conductive composite materials and inorganic nanocomposites. Finally, the future prospective of CNC is presented.

Contents

1 Introduction

2 Physicochemical characteristics of CNC

2.1 Size distribution and morphology

2.2 Thermal performance

2.3 Rheological properties

3 Methods to prepare CNC

3.1 Acid hydrolysis

3.2 Oxidation methods

3.3 Enzymatic hydrolysis

3.4 Mechanical methods

3.5 Solvent methods

3.6 Combined processes

4 Application of CNC in the field of composite materials

4.1 Reinforced composite materials

4.2 Membrane filtration composite materials

4.3 Conductive composite materials

4.4 Inorganic nanocomposites

5 Conclusion and outlook

()
图1 (a)理想的纤维素微原纤的示意图,显示了结晶和非晶区,(b)酸水解纤维素无序区后的纤维素纳米晶体[3]
Fig. 1 (a) Schematics of idealized cellulose microfibril showing one of the suggested configurations of the crystalline and amorphous regions, and(b) cellulose nanocrystals after acid hydrolysis dissolved the disordered regions[3]
表1 不同长度和宽度的CNC
Table 1 Examples of length(L) and diameter(d) of CNC from various sources obtained via different methods
图2 不同原料制备的纳米纤维素晶体透射电镜图:(a)被囊动物,(b)细菌,(c)苎麻,(d)剑麻[5]
Fig. 2 TEM images of cellulose nanocrystals derived from(a) tunicate,(b) bacteria,(c) ramie,(d) sisal[5]
图3 纤维素纳米晶制备过程中的表面化学[3]
Fig. 3 Surface chemistry in the preparation of cellulose nanocrystallines[3]
表2 不同原料来源通过不同制备方法获得的CNC的长度、直径和收率
Table 2 Length, diameter and yield of different preparation methods for producing CNC
Main method Raw source Length(nm) Diameter(nm) Yield(%) ref
mineral acid hydrolysis bleached hardwood pulp 600~800 15~40 60.0% 24
mineral acid hydrolysis spent mushroom substrate 10~30 42.8% 25
mineral acid hydrolysis bacterial cellulose 100~300 5~20 >80.0% 10
mineral acid hydrolysis surgical cotton 297.7 ± 98.9 18.4±7.2 56.0% 26
organic acid hydrolysis corncob residue 421 ± 112 6.5 ± 2.0 66.3% 11
organic acid hydrolysis bleached birch kraft pulp 200~1200 8~15 85.0% 27
organic acid hydrolysis unbleached hardwood kraft pulp ca. 230 25 <6.0% 28
organic acid hydrolysis bleached eucalyptus kraft pulp 150~400 5~20 >70.0% 29
oxidation method jute fibers 100~200 3~10 >80.0% 30
oxidation method oil palm empty fruit bunch 122 6 93.0% 31
oxidation method hemp flax triticale ca.150 3~6 28.0%~36.0% 12
oxidation method cotton linters 136 ± 90 10 ± 5 95.8% 32
enzymatic hydrolysis MCC 120 ± 36.25 40.74 ± 7.59 22.0% 33
mechanical method MCC 50~250 10~20 ≤10.0% 34
mechanical method wood flour <500 1~9 22.4% 13
mechanical method microcrystalline cellulose 280 11 72.2% 35
mechanical method cotton cellulose powder 60~320 4~14 80.0% 36
ionic liquid MCC 146.8 ± 62 3.6 ± 1.8 48.0% 37
ionic liquid cotton fiber 150~350 ca. 20 38
ionic liquid MCC 70~80 15~20 14
deep eutectic solvent cotton fiber 100~350 3~25 74.2% 16
deep eutectic solvent bleached eucalyptus kraft pulp 50~300 5~20 73.0% 39
deep eutectic solvent cotton fiber 500~800 50~100 40
combined process bamboo pulp 200~300 25~50 88.4% 41
图4 CCNC提取过程示意图[49]
Fig. 4 Illustration of the extraction process of CCNC[49]
图5 有机酸水解法综合制备 CNC 和 CNF 以及有机酸回收的实验流程图[51]
Fig. 5 Schematic flow diagram of experiments for integrated CNC and CNF production with recovery of organic acid[51]
图6 TEMPO介导对纤维素进行区域选择性氧化[57]
Fig. 6 Regioselective oxidation of cellulose by TEMPO-mediated oxidation[57]
图7 APS溶胀然后氧化制备CNC示意图[32]
Fig. 7 Schematic representation of the preparation of CNC by APS swelling followed by oxidation[32]
图8 通过复合酶水解进行形态控制的CNC的示意图[66]
Fig. 8 Schematic diagram of morphology-controlled CNC via compound enzymatic hydrolysis[66]
图9 超声处理MCC过程示意图[34]
Fig. 9 Schematic diagram of the MCC ultrasonication process[34]
图10 球磨过程的工作原理[68]
Fig. 10 Working principle of ball milling process[68]
图11 单链纤维素重复单元与[BMIM]HSO4反应示意图[14]
Fig. 11 Schematic diagram showing reaction of single cellulose chain repeating unit with [BMIM]HSO4[14]
图12 TBAA/DMAc和乙酸酐一锅法制备疏水性CNC(上)和传统制备方法(下)[75]
Fig. 12 One-pot preparation of hydrophobic CNCs in TBAA/DMAc with acetic hydride(upper), and the more typical route(lower)[75]
图13 原位化学聚合制备PPy/CNC示意图[105]
Fig. 13 Schematic illustration of in situ chemical polymerization in the synthesis of PPy/CNC nanostructures[105]
[1]
Sticklen M B. Nat. Rev. Genet., 2008, 9(6): 433.

doi: 10.1038/nrg2336     pmid: 18487988
[2]
Klemm D, Kramer F, Moritz S, Lindström T, Ankerfors M, Gray D, Dorris A. Angew. Chem. Int. Ed., 2011, 50(24): 5438.

doi: 10.1002/anie.201001273     URL    
[3]
Moon R J, Martini A, Nairn J, Simonsen J, Youngblood J. Chem. Soc. Rev., 2011, 40(7): 3941.

doi: 10.1039/c0cs00108b     URL    
[4]
Trache D, Hussin M H, Haafiz M K M, Thakur V K. Nanoscale, 2017, 9(5): 1763.

doi: 10.1039/C6NR09494E     URL    
[5]
Habibi Y, Lucia L A, Rojas O J. Chem. Rev., 2010, 110(6): 3479.

doi: 10.1021/cr900339w     URL    
[6]
Miller A F, Donald A M. Biomacromolecules, 2003, 4(3): 510.

pmid: 12741764
[7]
Terech P, Chazeau L, Cavaille J Y. Macromolecules, 1999, 32(6): 1872.

doi: 10.1021/ma9810621     URL    
[8]
de Souza Lima M M, Wong J T, Paillet M, Borsali R, Pecora R. Langmuir, 2003, 19(1): 24.

doi: 10.1021/la020475z     URL    
[9]
Li W, Wang R, Liu S X, Prog. Chem., 2010, 22(10):2060.
(李伟, 王锐, 刘守新. 化学进展, 2010, 22(10): 2060.)
[10]
Pääkkönen T, Spiliopoulos P, Nonappa , Kontturi K S, Penttilä P, Viljanen M, Svedström K, Kontturi E. ACS Sustainable Chem. Eng., 2019, 7(17): 14384.
[11]
Liu C, Li B, Du H S, Lv D, Zhang Y D, Yu G, Mu X D, Peng H. Carbohydr. Polym., 2016, 151: 716.

doi: 10.1016/j.carbpol.2016.06.025     URL    
[12]
Leung A C W, Hrapovic S, Lam E, Liu Y L, Male K B, Mahmoud K A, Luong J H T. Small, 2011, 7(3): 302.

doi: 10.1002/smll.201001715     URL    
[13]
Li Y N, Liu Y Z, Chen W S, Wang Q W, Liu Y X, Li J, Yu H P. Green Chem., 2016, 18(4): 1010.

doi: 10.1039/C5GC02576A     URL    
[14]
Tan X Y, Abd Hamid S B, Lai C W. Biomass Bioenergy, 2015, 81: 584.

doi: 10.1016/j.biombioe.2015.08.016     URL    
[15]
Beck-Candanedo S, Roman M, Gray D G. Biomacromolecules, 2005, 6(2): 1048.

pmid: 15762677
[16]
Liu Y Z, Guo B T, Xia Q Q, Meng J, Chen W S, Liu S X, Wang Q W, Liu Y X, Li J, Yu H P. ACS Sustainable Chem. Eng., 2017, 5(9): 7623.

doi: 10.1021/acssuschemeng.7b00954     URL    
[17]
Elazzouzi-Hafraoui S, Nishiyama Y, Putaux J L, Heux L, Dubreuil F, Rochas C. Biomacromolecules, 2008, 9(1): 57.

pmid: 18052127
[18]
Brinchi L, Cotana F, Fortunati E, Kenny J M. Carbohydr. Polym., 2013, 94(1): 154.

doi: 10.1016/j.carbpol.2013.01.033     URL    
[19]
Camarero Espinosa S, Kuhnt T, Foster E J, Weder C. Biomacromolecules, 2013, 14(4): 1223.

doi: 10.1021/bm400219u     pmid: 23458473
[20]
Voronova M I, Surov O V, Guseinov S S, Zakharov A G. Compos. Commun., 2016, 2: 15.

doi: 10.1016/j.coco.2016.09.002     URL    
[21]
Li X F, Ding E Y, Li G K. J. Cellul. Sci. Technol., 2001, 9(2): 29.
(李小芳, 丁恩勇, 黎国康. 纤维素科学与技术, 2001, 9(2): 29.)
[22]
Ye D Y, Zhou L J. J. South China Univ. Technol. Nat. Sci. Ed., 2010, 38(9): 63.
(叶代勇, 周刘佳. 华南理工大学学报(自然科学版), 2010, 38(9): 63.)
[23]
Li X W. Master Dissertation of Zhejiang Agricultural & Forestry University, 2018.
(李秀雯. 浙江农林大学硕士论文, 2018.).
[24]
Liu Y F, Wang H S, Yu G, Yu Q X, Li B, Mu X D. Carbohydr. Polym., 2014, 110: 415.

doi: 10.1016/j.carbpol.2014.04.040     URL    
[25]
Zhuang S Y, Tang L R, Lu Q L, Lin F C, Ni P Z, Huang B. Chem. Ind. Eng. Prog., 2016, 35(03):866.
(庄森炀, 唐丽荣, 卢麒麟, 林凤采, 倪沛钟, 黄彪. 化工进展, 2016, 35(03):866.)
[26]
Ramakrishnan A, Ravishankar K, Dhamodharan R. Cellulose, 2019, 26(5): 3127.

doi: 10.1007/s10570-019-02312-4    
[27]
Xu W Y, GrÉnman H, Liu J, Kronlund D, Li B, Backman P, Peltonen J, Willför S, Sundberg A, Xu C L. ChemNanoMat, 2017, 3(2): 109.

doi: 10.1002/cnma.201600347     URL    
[28]
Bian H Y, Chen L H, Dai H Q, Zhu J Y. Carbohydr. Polym., 2017, 167: 167.

doi: 10.1016/j.carbpol.2017.03.050     URL    
[29]
Xie H X, Zou Z F, Du H S, Zhang X Y, Wang X M, Yang X H, Wang H, Li G B, Li L, Si C L. Carbohydr. Polym., 2019, 223: 115116.
[30]
Cao X W, Ding B, Yu J Y, Al-Deyab S S. Carbohydr. Polym., 2012, 90(2): 1075.

doi: 10.1016/j.carbpol.2012.06.046     URL    
[31]
Rohaizu R, Wanrosli W D. Ultrason. Sonochemistry, 2017, 34: 631.

doi: 10.1016/j.ultsonch.2016.06.040     URL    
[32]
Wang H, Pudukudy M, Ni Y H, Zhi Y F, Zhang H, Wang Z Q, Jia Q M, Shan S Y. Cellulose, 2020, 27(2): 657.

doi: 10.1007/s10570-019-02789-z     URL    
[33]
Satyamurthy P, Jain P, Balasubramanya R H, Vigneshwaran N. Carbohydr. Polym., 2011, 83(1): 122.

doi: 10.1016/j.carbpol.2010.07.029     URL    
[34]
Li W, Yue J Q, Liu S X. Ultrason. Sonochemistry, 2012, 19(3): 479.

doi: 10.1016/j.ultsonch.2011.11.007     URL    
[35]
Gao A Q, Chen H H, Hou A Q, Xie K L. Cellulose, 2019, 26(10): 5937.

doi: 10.1007/s10570-019-02507-9     URL    
[36]
Park N M, Choi S, Oh J E, Hwang D Y. Carbohydr. Polym., 2019, 223: 115114.
[37]
Mao J, Osorio-Madrazo A, Laborie M P. Cellulose, 2013, 20(4): 1829.

doi: 10.1007/s10570-013-9942-2     URL    
[38]
Lazko J, SÉnÉchal T, Landercy N, Dangreau L, Raquez J M, Dubois P. Cellulose, 2014, 21(6): 4195.

doi: 10.1007/s10570-014-0417-x     URL    
[39]
Yang X H, Xie H X, Du H S, Zhang X Y, Zou Z F, Zou Y, Liu W, Lan H Y, Zhang X X, Si C L. ACS Sustainable Chem. Eng., 2019, 7(7): 7200.

doi: 10.1021/acssuschemeng.9b00209     URL    
[40]
Wang H Q, Li J C, Zeng X H, Tang X, Sun Y, Lei T Z, Lin L. Cellulose, 2020, 27(3): 1301.

doi: 10.1007/s10570-019-02867-2     URL    
[41]
Lu Q L, Cai Z H, Lin F C, Tang L R, Wang S Q, Huang B. ACS Sustainable Chem. Eng., 2016, 4(4): 2165.

doi: 10.1021/acssuschemeng.5b01620     URL    
[42]
Wang W X, Sun N X, Dong J H, Cai Z S, Gu F. Biol. Chem. Eng., 2020, 6(02):133.
(王旺霞, 孙楠勋, 董继红, 蔡照胜, 谷峰. 生物化工, 2020, 6(02):133.)
[43]
Zianor Azrina Z A, Beg M D H, Rosli M Y, Ramli R, Junadi N, Alam A K M M. Carbohydr. Polym., 2017, 162: 115.

doi: 10.1016/j.carbpol.2017.01.035     URL    
[44]
Li Z, Wang L F, Hua J C, Jia S R, Zhang J F, Liu H. Carbohydr. Polym., 2015, 120: 115.

doi: 10.1016/j.carbpol.2014.11.061     URL    
[45]
Wang L F, Li Z, Jia S R, Zhung J F. Microbiol. Chin., 2014, 41(08):1675.
(汪丽粉, 李政, 贾士儒, 张健飞. 微生物学通报, 2014, 41(08):1675.)
[46]
Xia W, Li Z, Hua J C, Gong J X, Jia S R, Zhang J F. New Chem. Mater., 2016, 44(11): 20.
(夏文, 李政, 华嘉川, 巩继贤, 贾士儒, 张健飞. 化工新型材料, 2016, 44(11): 20.)
[47]
Salari M, Sowti Khiabani M, Rezaei Mokarram R, Ghanbarzadeh B, Samadi Kafil H. Int. J. Biol. Macromol., 2019, 122: 280.

doi: 10.1016/j.ijbiomac.2018.10.136     URL    
[48]
Tuerxun D, Pulingam T, Nordin N I, Chen Y W, Kamaldin J B, Julkapli N B M, Lee H V, Leo B F, Johan M R B. Eur. Polym. J., 2019, 116: 352.

doi: 10.1016/j.eurpolymj.2019.04.021     URL    
[49]
Cheng M, Qin Z Y, Hu J, Liu Q Q, Wei T, Li W F, Ling Y, Liu B. Carbohydr. Polym., 2020, 231: 115701.
[50]
Zhang Y Q, Xu Y J, Yue X P, Dai L, Gao M L, Zhi Y. Tappi J., 2020, 19(1):21.

doi: 10.32964/TJournal     URL    
[51]
Chen L H, Zhu J Y, Baez C, Kitin P, Elder T. Green Chem., 2016, 18(13): 3835.

doi: 10.1039/C6GC00687F     URL    
[52]
Du H S, Liu C, Mu X D, Gong W B, Lv D, Hong Y M, Si C L, Li B. Cellulose, 2016, 23(4): 2389.

doi: 10.1007/s10570-016-0963-5     URL    
[53]
Poletto M, Zattera A J, Forte M M C, Santana R M C. Bioresour. Technol., 2012, 109: 148.

doi: 10.1016/j.biortech.2011.11.122     URL    
[54]
Spence K L, Venditti R A, Rojas O J, Habibi Y, Pawlak J J. Cellulose, 2010, 17(4): 835.

doi: 10.1007/s10570-010-9424-8     URL    
[55]
Du H S, Liu C, Zhang M M, Kong Q S, Li B, Xian M. Prog. Chem., 2018, 30(4): 448.
(杜海顺, 刘超, 张苗苗, 孔庆山, 李滨, 咸漠. 化学进展, 2018, 30(4): 448.)

doi: 10.7536/PC170830    
[56]
Guo H X, Chen Y H, Zhuo L, Zhang C Y, Zhu W R, Zhou Z X, Liu Y, Gu J Y. Chem. Adhesion, 2019, 41(6): 467.
(郭翰祥, 陈宇豪, 卓琳, 张晨雨, 朱文睿, 周梓轩, 刘旸, 顾继友. 化学与粘合, 2019, 41(6): 467.)
[57]
Isogai A, Saito T, Fukuzumi H. Nanoscale, 2011, 3(1): 71.

doi: 10.1039/c0nr00583e     pmid: 20957280
[58]
Qin Z Y, Tong G L, Chin Y, Zhou J C. Bioresources, 2011, 6(2):1136.
[59]
Yang H, Alam M N, Ven T G M. Cellulose, 2013, 20(4): 1865.

doi: 10.1007/s10570-013-9966-7     URL    
[60]
Liu P W, Pang B, Dechert S, Zhang X C, Andreas L B, Fischer S, Meyer F, Zhang K. Angew. Chem. Int. Ed., 2020, 59(8): 3218.

doi: 10.1002/anie.v59.8     URL    
[61]
Fu J J, Tian Y, Tao J S. Pap. Sci. Technol., 2018, 37(2): 19.
(付俊俊, 田彦, 陶劲松. 造纸科学与技术, 2018, 37(2): 19.)
[62]
Rao Z T, Liu W, Zhang X Y, Liu D, Liu Y, Li Z J, Zhang J, Li W, Si C L. Tianjin Pap. Mak., 2018, 40(4): 2.
(饶泽通, 刘慰, 张筱仪, 刘丹, 刘莹, 李子江, 张洁, 李婉, 司传领. 天津造纸, 2018, 40(4): 2.)
[63]
Chen X Q, Deng X Y, Shen W H, Jiang L L. Bioresources, 2012, 7.
[64]
Chen X Q, Deng X Y, Shen W H, Jia M Y. Carbohydr. Polym., 2018, 181: 879.

doi: 10.1016/j.carbpol.2017.11.064     URL    
[65]
Fattahi Meyabadi T, Dadashian F, Mir Mohamad Sadeghi G, Ebrahimi Zanjani Asl H. Powder Technol., 2014, 261: 232.

doi: 10.1016/j.powtec.2014.04.039     URL    
[66]
Tong X, Shen W H, Chen X Q, Jia M Y, Roux J C. J. Appl. Polym. Sci., 2020, 137(9): 48407.
[67]
Yan M L, Li S J, Dong F, Han S Y, Li J, Xing L. Polym. Polym. Compos., 2014, 22(8): 675.
[68]
Baheti V, Abbasi R, Militky J. World J. Eng., 2012, 9(1): 45.

doi: 10.1260/1708-5284.9.1.45     URL    
[69]
Mohd Amin K N, Annamalai P K, Morrow I C, Martin D. RSC Adv., 2015, 5(70): 57133.
[70]
Lee M, Heo M H, Lee H, Lee H H, Jeong H, Kim Y W, Shin J. Green Chem., 2018, 20(11): 2596.

doi: 10.1039/C8GC00577J     URL    
[71]
Shi J H, Sun X, Yang C H, Gao Q Y, Li Y F. Chemistry, 2002,(04): 243.
(石家华, 孙逊, 杨春和, 高青雨, 李永舫. 化学通报, 2002,(04): 243.)
[72]
Man Z, Muhammad N, Sarwono A, Bustam M A, Vignesh Kumar M, Rafiq S. J. Polym. Environ., 2011, 19(3): 726.

doi: 10.1007/s10924-011-0323-3     URL    
[73]
Mao J, Heck B, Reiter G, Laborie M P. Carbohydr. Polym., 2015, 117: 443.

doi: 10.1016/j.carbpol.2014.10.001     URL    
[74]
Abushammala H, Krossing I, Laborie M P. Carbohydr. Polym., 2015, 134: 609.

doi: 10.1016/j.carbpol.2015.07.079     URL    
[75]
Miao J J, Yu Y Q, Jiang Z M, Zhang L P. Cellulose, 2016, 23(2): 1209.

doi: 10.1007/s10570-016-0864-7     URL    
[76]
Abbott A P, Capper G, Davies D L, Rasheed R K, Tambyrajah V. Chem. Commun., 2003(1): 70.
[77]
Dai Y T, Witkamp G J, Verpoorte R, Choi Y H. Food Chem., 2015, 187: 14.

doi: 10.1016/j.foodchem.2015.03.123     URL    
[78]
Xie Y J, Dong H F, Zhang S J, Lu X H, Ji X Y. J. Chem. Eng. Data, 2014, 59(11): 3344.

doi: 10.1021/je500320c     URL    
[79]
Ma Y, Xia Q Q, Liu Y Z, Chen W S, Liu S X, Wang Q W, Liu Y X, Li J, Yu H P. ACS Omega, 2019, 4(5): 8539.

doi: 10.1021/acsomega.9b00519     URL    
[80]
Cui S N, Zhang S L, Ge S J, Xiong L, Sun Q J. Ind. Crops Prod., 2016, 83: 346.

doi: 10.1016/j.indcrop.2016.01.019     URL    
[81]
Beltramino F, Roncero M B, Vidal T, Torres A L, Valls C. Bioresour. Technol., 2015, 192: 574.

doi: 10.1016/j.biortech.2015.06.007     URL    
[82]
Beltramino F, Roncero M B, Torres A L, Vidal T, Valls C. Cellulose, 2016, 23(3): 1777.

doi: 10.1007/s10570-016-0897-y     URL    
[83]
Beltramino F, Blanca Roncero M, Vidal T, Valls C. Carbohydr. Polym., 2018, 189: 39.

doi: 10.1016/j.carbpol.2018.02.015     URL    
[84]
Lu Q L, Lu L N, Li Y G, Huang B. Cellulose, 2019, 26(13/14): 7741.

doi: 10.1007/s10570-019-02647-y     URL    
[85]
Seta F T, An X Y, Liu L Q, Zhang H, Yang J, Zhang W, Nie S X, Yao S Q, Cao H B, Xu Q L, Bu Y F, Liu H B. Carbohydr. Polym., 2020, 234: 115942.
[86]
Zhang Z, Wu Q L, Song K L, Ren S X, Lei T Z, Zhang Q G. ACS Sustainable Chem. Eng., 2015, 3(4): 574.

doi: 10.1021/sc500792c     URL    
[87]
Ye D Y. Prog. Chem., 2007,(10):1568.
(叶代勇. 化学进展, 2007,(10):1568.)
[88]
Bai P X, Deng Z Y, Wang S X, He Y F, Lin Y, Zheng Q K, Chen S. China Plast. Ind., 2015, 43(12): 37.
(白盼星, 邓子悦, 王师霞, 何永峰, 林义, 郑庆康, 陈胜. 塑料工业, 2015, 43(12): 37.)
[89]
Liu H, Luo B H, Chen R P, Zhou S Y, Huang Y J, Zhou C R. Acta Mater. Compos. Sin., 2015, 32(6): 1703.
(刘桦, 罗丙红, 陈睿鹏, 周世裕, 黄耀基, 周长忍. 复合材料学报, 2015, 32(6): 1703.)
[90]
Zhang J, Ding C K, Duan J Y, Li Q, Cheng B W. Chin. Plastic., 2018, 32(03):22.
(张静, 丁长坤, 段镜月, 李倩, 程博闻. 中国塑料, 2018, 32(03):22.)
[91]
Huan S Q, Cheng W L, Bai L, Liu G X, Han G P. Polym. Mater. Sci. Eng., 2016, 32(03):141.
(宦思琪, 程万里, 白龙, 刘国相, 韩广萍. 高分子材料科学与工程, 2016, 32(03):141.)
[92]
Ma X M, Li R, Zhao X H, Ji Q, Xing Y C, Sunarso J, Xia Y Z. Compos A: Appl. Sci. Manu., 2017, 96: 155.

doi: 10.1016/j.compositesa.2017.02.021     URL    
[93]
Yang S S, Li H C, Sun H Z. Iran. Polym. J., 2018, 27(9): 645.

doi: 10.1007/s13726-018-0641-6     URL    
[94]
Akhavan-Kharazian N, Izadi-Vasafi H. Int. J. Biol. Macromol., 2019, 133: 881.

doi: S0141-8130(19)30243-0     pmid: 31028810
[95]
Jiang S J, Zhang T, Song Y, Qian F, Tuo Y F, Mu G Q. Int. J. Biol. Macromol., 2019, 126: 1266.

doi: 10.1016/j.ijbiomac.2018.12.254     URL    
[96]
Peres B U, Vidotti H A, De Carvalho L D, Manso A P, Ko F, Carvalho R M. Journal of Oral Biosciences, 2019, 61(1):37.

doi: 10.1016/j.job.2018.09.002     URL    
Peres B U, Vidotti H A, de Carvalho L D, Manso A P, Ko F, Carvalho R M. J. Oral Biosci., 2019, 61(1): 37.

doi: 10.1016/j.job.2018.09.002     URL    
[97]
Moeinzadeh R, Jadval Ghadam A G, Lau W J, Emadzadeh D. Carbohydr. Polym., 2019, 225: 115212.
[98]
Bai L M, Liang H, Jia R B, Qu F S, Ding A, Li G B. Water Wastewater Eng., 2016, 52(12): 30.
(白朗明, 梁恒, 贾瑞宝, 瞿芳术, 丁安, 李圭白. 给水排水, 2016, 52(12): 30.)
[99]
Wu H Y. Master Dissertation of Harbin Institute of Technology, 2019.
(武虹妤. 哈尔滨工业大学硕士论文, 2019.).
[100]
Lv J L. Doctoral Dissertation of Dalian University of Technology, 2018.
(吕金玲. 大连理工大学博士论文, 2018.).
[101]
Dong L P, Li Z, Xia W, Gong J X, Jia S R, Zhang J F. Mater. Sci. Technol., 2018, 26(1): 88.
(董丽攀, 李政, 夏文, 巩继贤, 贾士儒, 张健飞. 材料科学与工艺, 2018, 26(1): 88.)
[102]
Fabra M J, LÓpez-Rubio A, Ambrosio-Martín J, Lagaron J M. Food Hydrocoll., 2016, 61: 261.

doi: 10.1016/j.foodhyd.2016.05.025     URL    
[103]
Zhang S H, Fu R F, Dong L Q, Gu Y C, Chen S. China Pulp Pap., 2017, 36(1): 67.
(张思航, 付润芳, 董立琴, 顾迎春, 陈胜. 中国造纸, 2017, 36(1): 67.)
[104]
Liu Y, Liu Y J, Meng F H, Liu J L. Modern Chem. Ind., 2019, 39(04):58.
(刘莹, 刘钰娇, 孟凡浩, 刘井来. 现代化工, 2019, 39(04):58.)
[105]
Wu X Y, Chabot V L, Kim B K, Yu A P, Berry R M, Tam K C. Electrochimica Acta, 2014, 138: 139.

doi: 10.1016/j.electacta.2014.06.089     URL    
[106]
Ravit R, Abdullah J, Ahmad I, Sulaiman Y. Carbohydr. Polym., 2019, 203: 128.

doi: 10.1016/j.carbpol.2018.09.043     URL    
[107]
Mukhopadhyay A, Cheng Z, Natan A, Ma Y, Yang Y, Cao D X, Wang W, Zhu H L. Nano Lett., 2019, 19(12): 8979.

doi: 10.1021/acs.nanolett.9b03964     pmid: 31702931
[108]
Xu X L, Zhao G D, Wang H, Li X J, Feng X, Cheng B W, Shi L, Kang W M, Zhuang X P, Yin Y. J. Power Sources, 2019, 409: 123.

doi: 10.1016/j.jpowsour.2018.11.003     URL    
[109]
Shi Z Q, Tang J T, Chen L, Yan C R, Tanvir S, Anderson W A, Berry R M, Tam K C. J. Mater. Chem. B, 2015, 3(4): 603.

doi: 10.1039/C4TB01647E     URL    
[110]
Fan L. Master Dissertation of Tianjin University of Science & Technology, 2019.
(樊丽. 天津科技大学硕士论文, 2019.).
[111]
Azizi S, Ahmad M, Mahdavi M, Abdolmohammadi S. BioResources, 2013, 8(2): 1841.
[112]
Zhan Y H, Meng Y Y, Li W Z, Chen Z M, Yan N, Li Y C, Teng M Y. Ind. Crops Prod., 2018, 122: 422.

doi: 10.1016/j.indcrop.2018.06.043     URL    
[113]
Wu X D, Lu C H, Zhang W, Yuan G P, Xiong R, Zhang X X. J. Mater. Chem. A, 2013, 1(30): 8645.

doi: 10.1039/c3ta11236e     URL    
[114]
Eisa W H, Abdelgawad A M, Rojas O J. ACS Sustainable Chem. Eng., 2018, 6(3): 3974.

doi: 10.1021/acssuschemeng.7b04333     URL    
[115]
Kafy A, Akther A, Shishir M I R, Kim H C, Yun Y, Kim J. Sens. Actuat. A: Phys., 2016, 247: 221.

doi: 10.1016/j.sna.2016.05.045     URL    
[116]
Mun S, Chen Y, Kim J. Sens. Actuat. B: Chem., 2012, 171-172: 1186.
[117]
Sadasivuni K K, Ponnamma D, Ko H U, Kim H C, Zhai L D, Kim J. Sens. Actuat. B: Chem., 2016, 233: 633.

doi: 10.1016/j.snb.2016.04.134     URL    
[118]
Xu G Y, Liang S P, Fan J S, Sheng G, Luo X L. Microchimica Acta, 2016, 183(6): 2031.

doi: 10.1007/s00604-016-1842-3     URL    
[1] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[2] 廖子萱, 王宇辉, 郑建萍. 碳点基水相室温磷光复合材料研究进展[J]. 化学进展, 2023, 35(2): 263-373.
[3] 李婧, 朱伟钢, 胡文平. 基于有机复合材料的近红外和短波红外光探测器[J]. 化学进展, 2023, 35(1): 119-134.
[4] 李璇, 黄炯鹏, 张一帆, 石磊. 二维材料的一维纳米带[J]. 化学进展, 2023, 35(1): 88-104.
[5] 王琦桐, 丁嘉乐, 赵丹莹, 张云鹤, 姜振华. 储能薄膜电容器介电高分子材料[J]. 化学进展, 2023, 35(1): 168-176.
[6] 蒋峰景, 宋涵晨. 石墨基液流电池复合双极板[J]. 化学进展, 2022, 34(6): 1290-1297.
[7] 朱月香, 赵伟悦, 李朝忠, 廖世军. Pt基金属间化合物及其在质子交换膜燃料电池阴极氧还原反应中的应用[J]. 化学进展, 2022, 34(6): 1337-1347.
[8] 李芳远, 李俊豪, 吴钰洁, 石凯祥, 刘全兵, 彭翃杰. “蛋黄蛋壳”结构纳米电极材料设计及在锂/钠离子/锂硫电池中的应用[J]. 化学进展, 2022, 34(6): 1369-1383.
[9] 乔瑶雨, 张学辉, 赵晓竹, 李超, 何乃普. 石墨烯/金属-有机框架复合材料制备及其应用[J]. 化学进展, 2022, 34(5): 1181-1190.
[10] 李晓微, 张雷, 邢其鑫, 昝金宇, 周晋, 禚淑萍. 磁性NiFe2O4基复合材料的构筑及光催化应用[J]. 化学进展, 2022, 34(4): 950-962.
[11] 徐妍, 苑春刚. 纳米零价铁复合材料制备、稳定方法及其水处理应用[J]. 化学进展, 2022, 34(3): 717-742.
[12] 孙浩, 王超鹏, 尹君, 朱剑. 用于电催化析氧反应电极的制备策略[J]. 化学进展, 2022, 34(3): 519-532.
[13] 庞欣, 薛世翔, 周彤, 袁蝴蝶, 刘冲, 雷琬莹. 二维黑磷基纳米材料在光催化中的应用[J]. 化学进展, 2022, 34(3): 630-642.
[14] 王才威, 杨东杰, 邱学青, 张文礼. 木质素多孔碳材料在电化学储能中的应用[J]. 化学进展, 2022, 34(2): 285-300.
[15] 吴巧妹, 杨启悦, 曾宪海, 邓佳慧, 张良清, 邱佳容. 纤维素基生物质催化转化制备二醇[J]. 化学进展, 2022, 34(10): 2173-2189.