English
新闻公告
More
化学进展 2022, Vol. 34 Issue (10): 2173-2189 DOI: 10.7536/PC220236 前一篇   后一篇

• 综述与评论 •

纤维素基生物质催化转化制备二醇

吴巧妹1, 杨启悦1, 曾宪海2, 邓佳慧1, 张良清1,*(), 邱佳容1,*()   

  1. 1 福州大学先进制造学院 晋江 362251
    2 厦门大学能源学院 厦门 361102
  • 收稿日期:2022-02-28 修回日期:2022-04-25 出版日期:2022-10-24 发布日期:2022-06-25
  • 通讯作者: 张良清, 邱佳容
  • 作者简介:

    张良清 2019年毕业于厦门大学能源化工专业,获工学博士学位,2020年就职于福州大学。长期以来一直从事绿色化学和绿色精细化工材料等方面研究。2021年在生物质催化转化领域获批国家自然科学基金青年项目;在化学和催化等领域以第一作者发表中国科学院JCR 1区论文2篇,JCR 2区论文2篇,并授权4项发明专利。参与并完成多项催化转化和分离纯化等领域相关的国家自然科学基金项目、福建省发展改革委重大产业化投投资项目和企业重大合作项目。

  • 基金资助:
    国家自然科学基金项目(22108038); 国家自然科学基金项目(21978248); 天津大学-福州大学自主创新基金合作项目(TF2022-10); 自然资源部海洋生物遗传资源重点实验室开放课题基金(HY202201); 自然资源部海洋生物遗传资源重点实验室开放课题基金(HY202202); 福州大学贵重仪器设备开放测试基金(2022T032); 福州大学贵重仪器设备开放测试基金(2022T037); 福州大学博士科研基金(511084); 国家重点研发计划(2021YFC2101604); 广东省重点领域研发计划(2020B0101070001); 福建省自然科学基金项目(2019J06005)

Catalytic Conversion of Cellulose-Based Biomass to Diols

Wu Qiaomei1, Yang Qiyue1, Zeng Xianhai2, Deng Jiahui1, Zhang Liangqing1(), Qiu Jiarong1()   

  1. 1 School of Advanced Manufacturing, Fuzhou University,Jinjiang 362251, China
    2 College of Energy, Xiamen University,Xiamen 361102, China
  • Received:2022-02-28 Revised:2022-04-25 Online:2022-10-24 Published:2022-06-25
  • Contact: Zhang Liangqing, Qiu Jiarong
  • Supported by:
    National Natural Science Foundation of China(22108038); National Natural Science Foundation of China(21978248); Tianjin University-Fuzhou University Independent Innovation Fund Cooperation Project(TF2022-10); Open Project Fund of Key Laboratory of Marine Biological Resources of Ministry of Natural Resources(HY202201); Open Project Fund of Key Laboratory of Marine Biological Resources of Ministry of Natural Resources(HY202202); Fuzhou University Testing Fund of Precious Apparatus(2022T032); Fuzhou University Testing Fund of Precious Apparatus(2022T037); Doctoral Scientific Research Foundation of Fuzhou University(511084); National Key R&D Program of China(2021YFC2101604); Guangdong Provincial Key Research and Development Program(2020B0101070001); Natural Science Foundation of Fujian Province of China(2019J06005)

生物质作为最有潜力替代化石能源的可再生资源之一,受到日益广泛的重视。纤维素基生物质是催化转化为各种燃料和化学品的重要原料。近年来,二醇(包括乙二醇、丙二醇和丁二醇等)作为燃料和化学品广泛应用于各个领域,市场需求很大。传统制备二醇是以化石能源为原料,存在原料不可再生和环境污染大等缺点。因此采用非化石原料途径制备二醇受到越来越多的关注,其中以纤维素基生物质催化制备二醇是克服化石燃料短缺和减少环境污染的重要途径之一。本文系统总结了近年来以纤维素基生物质(纤维素、葡萄糖、果糖和山梨醇)为原料催化转化制备二醇的研究现状,对反应途径、反应机理、催化剂稳定性和反应溶剂类型等进行了详细介绍,在此基础上对利用纤维素基生物质原料催化制备二醇的发展趋势进行展望,以期为相关研究者提供参考。

As one of the most potential renewable resources to replace fossil energy, biomass has received increasing attention. Cellulose-based biomass is important feedstocks for catalytic conversion into various fuels and chemicals. In recent years, glycols (including ethylene glycol, propylene glycol, and butanediol, etc.) have been widely used in various fields as fuels and chemicals, which is huge market demand. The traditional method to produce diols was using fossil fuels as raw materials, and there are disadvantages such as non-renewable and large environmental pollution. Therefore, the production of diols by non-fossil feedstocks has attracted great attention. Among them, catalysis conversion of cellulose-based biomass to diols is one of the important approaches to overcome the shortage of fossil fuels and reduce environmental pollution. This review comprehensively summarizes the recent advances of cellulose-based biomass (cellulose, glucose, fructose, and sorbitol) as feedstocks for catalytic conversion of diols, and the reaction pathways, reaction mechanisms, catalytic stability, and reaction solvent categories are in-depth discussed. Based on the above discussion, a future research direction for catalysis conversion of cellulose-based biomass to diols is prospected, which might be helpful for researchers.

()
表1 不同催化剂催化纤维素制备二醇
Table 1 Preparation of diols from cellulose by various catalysts
图1 纤维素基生物质为原料催化转化制备二醇的反应路径[29,63,64]
Fig. 1 Reaction pathways for the conversion of cellulose-based biomass to diols[29,63,64]
表2 不同催化剂催化葡萄糖/果糖制备二醇
Table 2 Preparation of diols from glucose/fructose by various catalysts
图2 山梨醇制备二醇的反应路径[95,101,108]
Fig. 2 Reaction pathways for the conversion of sorbitol to diols[95,101,108]
表3 不同催化剂催化山梨醇制备二醇
Table 3 Preparation of diols from sorbitol by various catalysts
[1]
Zangoei S, Salehnia N, Mashhadi M K. Environ. Sci. Pollut.Res., 2021, 28: 19799.
[2]
Zuo M, Jia W L, Feng Y C, Zeng X H, Tang X, Sun Y, Lin L. Renew. Enegy, 2021, 164: 23.
[3]
Cao X C, Long F, Wang F, Zhao J P, Xu J M, Jiang J C. Renew. Enegy, 2021, 180: 1.
[4]
Gu Y, Zhang J, Wang Y Z, Li D N, Huang H Y, Yuan H R, Chen Y. Ind. Crops Prod., 2020, 145: 112133.

doi: 10.1016/j.indcrop.2020.112133     URL    
[5]
Zhang L Q, Qiu J R, Tang X, Sun Y, Zeng X H, Lin L. Chin. J. Chem., 2021, 39: 2467.

doi: 10.1002/cjoc.202100140     URL    
[6]
Feng Y C, Long S S, Tang X, Sun Y, Luque R, Zeng X H, Lin L. Chem. Soc. Rev., 2021, 50: 6042.

doi: 10.1039/D0CS01601B     URL    
[7]
Feng Y C, Long S S, Yan G H, Jia W L, Sun Y, Tang X, Zhang Z H, Zeng X H, Lin L. J. Catal., 2021, 397: 148.

doi: 10.1016/j.jcat.2021.03.031     URL    
[8]
Jimenez-Morales I, Moreno-Recio M, Santa maria - Gonzalez J, Maireles-Torres P, Jimenez-Lopez A. Appl. Catal. B Environ., 2015, 164: 70.

doi: 10.1016/j.apcatb.2014.09.002     URL    
[9]
Zhang L Q, Zeng X H, Qiu J R, Du J, Cao X J, Tang X, Sun Y, Li S R, Lei T Z, Liu S J, Lin L. Ind. Crops Prod., 2019, 135: 330.

doi: 10.1016/j.indcrop.2019.04.045     URL    
[10]
Zhang L Q, Zeng X H, Fu N, Tang X, Sun Y, Lin L. Food Res. Int., 2018, 106:383.

doi: 10.1016/j.foodres.2018.01.004     URL    
[11]
Araujo M L, Correia G A, Carvalho W A, Shul’pina L S, Kozlov Y N, Shul’pina G B, Mandelli D. Mol. Catal., 2021, 500: 111307.
[12]
Kumar M, Oyedun A O, Kumar A. Renew. Sust. Energ. Rev., 2018, 81(2): 1742.

doi: 10.1016/j.rser.2017.05.270     URL    
[13]
Jiang Y T, Song X Q, Sun Y, Zeng X H, Tang X, Lin L. Progress in Chemistry, 2017, 29(10): 1273.
蒋叶涛, 宋晓强, 孙勇, 曾宪海, 唐兴, 林鹿. 化学进展, 2017, 29(10): 1273.).

doi: 10.7536/PC170403    
[14]
Tang X, Hu L, Sun Y, Zeng X H, Lin L. Progress in Chemistry, 2013, 25(11): 1907.
唐兴, 胡磊, 孙勇, 曾宪海, 林鹿. 化学进展, 2013, 25(11): 1907.).
[15]
Lin L, He B H, Sun R C, Hu R F. Progress in Chemistry, 2007, 19(7/8): 1206.
林鹿, 何北海, 孙润仓, 胡若飞. 化学进展, 2007, 19(7/8): 1206.).
[16]
Nzediegwu E, Dumont M J. Waste Biomass Valorization, 2021, 12: 2825.

doi: 10.1007/s12649-020-01179-y     URL    
[17]
Feng Y C, Yan G H, Wang T, Jia W L, Zeng X H, Sperry J, Sun Y, Tang X, Lei T Z, Lin L. Green Chem., 2019, 21: 4319.

doi: 10.1039/C9GC01331H     URL    
[18]
Long S S, Feng Y C, He F L, Zhao J Z, Bai T, Lin H B, Cai W L, Mao C W, Chen Y H, Gan L H, Liu J, Ye M D, Zeng X H, Long M N. Nano Energy, 2021, 85: 105973.

doi: 10.1016/j.nanoen.2021.105973     URL    
[19]
Wang H Q, Li J C, Ding N, Zeng X H, Tang X, Sun Y, Lei T Z, Lin L. Chem. Eng. J., 2020, 386: 124021.

doi: 10.1016/j.cej.2020.124021     URL    
[20]
Peng L C, Wang M M, Li H, Wang J, Zhang J H, He L. Green Chem., 2020, 22: 5656.

doi: 10.1039/D0GC02001J     URL    
[21]
Wang H Y, Hu X H, Liu S W, Cai C L, Zhu C H, Xin H S, Xiu Z X, Wang C G, Liu Q Y, Zhang Q, Zhang X H, Ma L L. Cellulose, 2020, 27: 7591.

doi: 10.1007/s10570-020-03340-1     URL    
[22]
Tinco D, Borschiver S, Coutinho P L, Freire D M G, Freire. Biofuels Bioprod. Biorefin., 2020, 15(2): 357.
[23]
Li X S, Pang J F, Zhang J C, Li X Q, Jiang Y, Su Y, Li W Z, Zheng M Y. Catalysts, 2021, 11: 415.

doi: 10.3390/catal11040415     URL    
[24]
Auneau F, Berchu M, Aubert G, Pinel C, Besson M, Todaro D, Bernardi M, Ponsetti T, Felice R D. Catal. Today, 2014, 234: 100.

doi: 10.1016/j.cattod.2013.12.039     URL    
[25]
Derosa C A, Xiang Q K, Bates F S, Hillmyer M A. Ind. Eng. Chem. Res., 2020, 59: 15598.

doi: 10.1021/acs.iecr.0c03009     URL    
[26]
Li Y F, Wu X M. Shanghai Chemical Industry, 2015, 40(03): 27.
李玉芳, 伍小明. 上海化工, 2015, 40(03): 27.).
[27]
Liu G L. Master Thesis of Jilin University, 2018.
刘桂兰. 吉林大学硕士论文, 2018.).
[28]
Kuang B F, Jiang T, Yu Y L, Chou S B, Qin Y L, Fang Y X, Wang T J. Fine Chemicals, 2019, 36(5): 781.
匡碧锋, 江婷, 余雅玲, 仇松柏, 秦延林, 方岩雄, 王铁军. 精细化工, 2019, 36(5): 781.).
[29]
Zheng M Y, Pang J F, Sun R Y, Wang A Q, Zhang T. ACS Catal., 2017, 7: 1939.

doi: 10.1021/acscatal.6b03469     URL    
[30]
Kambo H S, Dutta A. Renew. Sust. Energ. Rev., 2015, 45: 359.

doi: 10.1016/j.rser.2015.01.050     URL    
[31]
Ji N, Zhang T, Zheng M Y, Wang A, Wang H, Wang X D, Chen J G. Angew. Chem. Int. Ed., 2008, 120(44): 8638.

doi: 10.1002/ange.200803233     URL    
[32]
Yan J Q, Ji D X, Yang G H, Luo S Y, Zhang K, Chen J C. China Pulp & Paper Industry, 2021, 42(10).
颜家强, 戢德贤, 杨桂花, 罗士余, 张凯, 陈嘉川. 中华纸业, 2021, 42(10).).
[33]
Li M Q. Master Thesis of Ningxia University, 2018.
李梦晴. 宁夏大学硕士论文, 2018.).
[34]
Liang T. Popular Science & Technology, 2013, 15(09).
梁涛. 大众科技, 2013, 15(09).).
[35]
Li Z L, Zhang J Y, Hou B L, Wang A Q. AIChE J., 2019, 65(6): 16585.
[36]
Zheng M Y, Wang A Q, Ji N, Pang J F, Wang X D, Zhang T. ChemSusChem, 2010, 3(1): 63.

doi: 10.1002/cssc.200900197     URL    
[37]
Cao Y L, Wang J W, Kang M Q, Zhu Y L. J. Mol. Catal. A Chem., 2014, 381: 46.

doi: 10.1016/j.molcata.2013.10.002     URL    
[38]
Li M Q, Ma Y L, Ma X X, Sun Y G, Song Z. RSC Adv., 2018, 8: 10907.

doi: 10.1039/C8RA00584B     URL    
[39]
Xiao Z Q, Xu Y D, Fan Y, Zhang Q, Mao J W, Ji J B. Asia Pac. J. Chem. Eng., 2018, 13: 2153.
[40]
Xiao Z Q, Fan Y, Cheng Y J, Zhang Q, Ge Q, Sha R Y, Ji J B, Mao J W. Fuel, 2018, 215: 406.

doi: 10.1016/j.fuel.2017.11.086     URL    
[41]
Xiao Z Q, Zhang Q, Chen T T, Wang X N, Fan Y, Ge Q, Zhai R, Sun R, Ji J B, Mao J W. Fuel, 2018, 230: 332.

doi: 10.1016/j.fuel.2018.04.115     URL    
[42]
Chu D W, Zhao C. Catal. Today, 2020, 351: 125.

doi: 10.1016/j.cattod.2018.10.006     URL    
[43]
Li N X, Liu X, Zhou J C, Ma Q H, Liu M C, Chen W S. ACS Sustainable Chem. Eng., 2020, 8: 9650.

doi: 10.1021/acssuschemeng.0c00836     URL    
[44]
Wang H Y, Hu X H, Liu S W, Cai C L, L., Zhu C H, Xin H S, Xiu Z X, Wang C G, Liu Q Y, Zhang Q, Zhang X H, Ma L L. Cellulose, 2020, 27: 7591.

doi: 10.1007/s10570-020-03340-1     URL    
[45]
Xiao Z Q, Wang X L, Yang Q Q, Xing C, Ge Q, Gai X K, Mao J W, Ji J B. J. Energy Chem., 2020, 50: 25.
[46]
Hamdy M S, Eissa M A, Keshk S M A S. Green Chem., 2017, 19: 5144.

doi: 10.1039/C7GC02122D     URL    
[47]
Sreekantan S, Kirali A A, Marimuthu B. New J. Chem., 2021, 45: 19244.

doi: 10.1039/D1NJ03257G     URL    
[48]
Yu J, Liang J Z, Chen X P, Wang L L, Wei X J, Li Y Q, Qin Y M. ACS Omega, 2021, 6: 11650.

doi: 10.1021/acsomega.1c00979     URL    
[49]
Gu M Y, Shen Z, Yang L, Dong W J, Kong L, Zhang W, Peng B Y, Zhang Y L. Sci. Rep., 2019, 9: 11938.

doi: 10.1038/s41598-019-48103-6     URL    
[50]
Deng T, Liu H C. Green Chem., 2013, 15: 116.

doi: 10.1039/C2GC36088H     URL    
[51]
Sun R Y, Zheng M Y, Pang J F, Liu X, Wang J H, Pan X L, Wang A Q, J H, Wang X D, Zhang T. ACS Catal., 2016, 6: 191.

doi: 10.1021/acscatal.5b01807     URL    
[52]
Xiao Z Q, Mao J W, Jiang C J, Xing C, Ji J B, Cheng Y J. J. Renew. Sustain. Energy, 2017, 9: 24703.
[53]
Sun R, Wang T T, Zheng M Y, Deng W Q, Pang J F, Wang A Q, Wang X D, Tao Z. ACS Catal., 2015, 5: 874.

doi: 10.1021/cs501372m     URL    
[54]
Xiao Z H, Jin S H, Pang M, Liang C H. Green Chem., 2013, 15: 891.

doi: 10.1039/c3gc40134k     URL    
[55]
Li C, Xu G Y, Li K, Wang C G, Zhang Y, Fu Y. Chem. Commun., 2019, 55: 7663.

doi: 10.1039/C9CC04020J     URL    
[56]
Zhang K, Wu S B, Yang H, Yin H M, Li G. RSC Adv., 2016, 6: 77499.

doi: 10.1039/C6RA10183F     URL    
[57]
Ribeiro L S, Orfao J, Melo Orfao J J, Pereira M F R. Cellulose, 2018, 25: 2259.

doi: 10.1007/s10570-018-1721-7     URL    
[58]
Ribeiro L S, Melo Orfao J J,. Pereira M F R. Bioresource Technol., 2018, 263: 402.

doi: 10.1016/j.biortech.2018.05.034     URL    
[59]
Ribeiro L S, Rey-Raap N, Figueiredo J L, Melo Orfao J J, Pereira M F R. Cellulose, 2019, 26: 7337.

doi: 10.1007/s10570-019-02583-x     URL    
[60]
Yang Z Z, Huang R L, Qi W, Tong L P, Su R X, He Z M. Chem. Eng. J., 2015, 280: 90.

doi: 10.1016/j.cej.2015.05.091     URL    
[61]
Zhang K, Yang G H, Lyu G J, Jia Z X, Lucai L A, Chen J C. ACS Sustainable Chem. Eng., 2019, 7: 11110.

doi: 10.1021/acssuschemeng.9b00006     URL    
[62]
Li C, Xu G Y, Wang C G, Ma L L, Qiao Y, Zhang Y, Fu Y. Green Chem., 2019, 21:2234.

doi: 10.1039/C9GC00719A     URL    
[63]
Wiesfeld J J, Perolja P, Rollier F A, Elemans-Mehring A M, Hensen E J M. Mol. Catal., 2019, 473: 110400.
[64]
Lv M X, Xin Q H, Yin D F, Jia Z, Yu C Y, Wang T, Yu S T, Liu S W, Li L, Liu Y. ACS Sustainable Chem. Eng., 2020, 8: 3617.

doi: 10.1021/acssuschemeng.9b06264     URL    
[65]
Xu S Q, Yan X P, Bu Q, Xia H A. Cellulose, 2017, 24: 2403.

doi: 10.1007/s10570-017-1275-0     URL    
[66]
Xin Q H, Jiang L, Yu S T, Liu S W, Yin D F, Li L, Xie C X, Wu Q, Yu H L, Liu Y X, Liu Y. J. Phys. Chem. C, 2021, 125: 18170.

doi: 10.1021/acs.jpcc.1c04446     URL    
[67]
Yu S T, Cao X C, Liu S W, Li L, Wu Q. RSC Adv., 2018, 8: 24857.

doi: 10.1039/C8RA03806F     URL    
[68]
Mankar A R, Modak A, Pant K K. Fuel Process. Technol., 2021, 218:106847.

doi: 10.1016/j.fuproc.2021.106847     URL    
[69]
Cabiac A, Delcroix D, Girard E. Catal. Sci. Technol., 2016, 6: 5534.

doi: 10.1039/C5CY01782C     URL    
[70]
Esposito S, Silvestri B, Russo V, Bonelli B, Manzoli M, Deorsola F A, Vergara A, Aronne A, Serio M D. ACS Catal., 2019, 9: 3426.

doi: 10.1021/acscatal.8b04710    
[71]
Climent M J, Corma A, Iborra S. Green Chem., 2011, 13: 520.

doi: 10.1039/c0gc00639d     URL    
[72]
Li N X, Zheng Y, Wei L F, Teng H C, Zhou J C. Green Chem., 2017, 19: 682.

doi: 10.1039/C6GC01327A     URL    
[73]
Olson N, Deshpande N, G., Seval, Ozkan U S, Brunelli N A. Catal. Today, 2019, 323: 69.

doi: 10.1016/j.cattod.2018.07.059     URL    
[74]
Liu L J, Wang Z M, Fu S, Si Z B, Huang Z, Liu T H, Yang H Q, Hu C W. Catal. Sci. Technol., 2021, 11: 1537.

doi: 10.1039/D0CY01984D     URL    
[75]
Ishaq M, Sultan S, Ahmad I, Ullah H, Yaseen M, Amir A. J. Saudi Chem. Soc., 2017, 21: 143.
[76]
Cao Y L, Wang J W, Kang M Q, Zhu Y L. J. Fuel Chem. Technol., 2016, 44: 845.
[77]
Tan Z C, Shi L, Zan Y F, Miao G, Li S L, Kong L Z, Li S G, Sun Y H. Appl. Catal. A Gen., 2018, 560: 28.

doi: 10.1016/j.apcata.2018.04.026     URL    
[78]
Kirali A A, Sreekantan S, Marimuthu B. New J. of Chem., 2020, 44:15958.

doi: 10.1039/D0NJ03196H     URL    
[79]
Xiao Z W, Jin S H, Sha G Y, Williams C T, Liang C H. Ind. Eng. Chem. Res., 2014, 53: 8735.

doi: 10.1021/ie5012189     URL    
[80]
Yazdani P, Wang B, Du Y, Kawi S, Borgna A. Catal. Sci. Technol., 2017, 7: 4680.

doi: 10.1039/C7CY01571B     URL    
[81]
Liu C W, Shang Y N, Wang S, Liu X, Wang X Z, Gui J Z, Zhang C H, Zhu Y L, Li Y W. Mol. Catal., 2020, 485: 110514.
[82]
Zhao G H, Zheng M Y, Zhang J Y, Wang A, Zhang T. Ind. Eng. Chem. Res., 2013, 52: 9566.

doi: 10.1021/ie400989a     URL    
[83]
Liu Y, Liu Y L, Zhang Y. Appl. Catal. B Environ., 2019, 242: 100.

doi: 10.1016/j.apcatb.2018.09.085     URL    
[84]
Liu Y, Liu Y L, Wu Q, Zhang Y. Catal. Commun., 2019, 129: 105731.

doi: 10.1016/j.catcom.2019.105731     URL    
[85]
Liu C W, Zhang C H, Sun S K, Liu K K, Hao S L, Xu J, Zhu Y L, Li Y W. ACS Catal., 2015, 5: 4612.

doi: 10.1021/acscatal.5b00800     URL    
[86]
Lv M X, Zhang Y W, Xin Q H, Yin D F, Yu S T, Liu S W, Li L, Xie C X, Wu Q, Yu H L, Liu Y. Chem. Eng. J., 2020, 396: 125274.

doi: 10.1016/j.cej.2020.125274     URL    
[87]
Pang J F, Zheng M Y, Li X S, Jiang y, Zhao Y, Wang A Q, Wang J H, Wang X D, Zhang T. Appl. Catal. B Environ., 2018, 239: 300.

doi: 10.1016/j.apcatb.2018.08.022     URL    
[88]
Gu M Y, Shen Z, Zhang W, Xia M, Jiang J K, Dong W J, Zhou X F, Zhang Y L. ChemCatchem, 2020, 12: 3447.

doi: 10.1002/cctc.202000408     URL    
[89]
Ji J C, Xu Y, Liu Y, Zhang Y. Catal. Commun., 2020, 144: 106074.

doi: 10.1016/j.catcom.2020.106074     URL    
[90]
Liu Y, Luo C, Liu H C. Angewandte Chemie, 2012, 124: 3303.

doi: 10.1002/ange.201200351     URL    
[91]
Li C, Xu G Y, Zhang X, Fu Y. Chin. J. of Chem., 2020, 38: 453.

doi: 10.1002/cjoc.201900431     URL    
[92]
Zada B, Chen M Y, Chen C B, Yan L, Xu Q, Li W Z, Guo Q X, Fu Y. Sci. China Chem., 2017, 60: 853.

doi: 10.1007/s11426-017-9067-1     URL    
[93]
Banu M, Venuvanalingam P, Shanmugam R, Viswanathan B, Sivasanker. Top. Catal., 2012, 55: 897.
[94]
Ye L M, Duan X P, Lin H Q, Yuan Y Z. Catal. Today, 2012, 183: 65.

doi: 10.1016/j.cattod.2011.08.006     URL    
[95]
Jia Y Q, Liu H C. Catal. Sci. Technol., 2016, 6: 7042.

doi: 10.1039/C6CY00928J     URL    
[96]
Zhao L, Zhou J H, Sui Z J, Zhou X G. Chem. Eng. Sci., 2010, 65: 30.

doi: 10.1016/j.ces.2009.03.026     URL    
[97]
Guo X C, Guan J, Li B, Wang X C, Mu X D, Liu H Z. Sci. Rep., 2015, 5: 16451.
[98]
Guo X C, Dong H H, Li B, Dong L L, Mu X D, Chen X F. J. mol. Catal. A Chem., 2017, 426: 79.

doi: 10.1016/j.molcata.2016.11.003     URL    
[99]
Jia Y Q, Liu H C. Chin. J. Catal., 2015, 36: 1552.

doi: 10.1016/S1872-2067(15)60892-0     URL    
[100]
Wang X D, Beine A K, Hausoul P J C, Palkovits R. ChemCatChem, 2019, 11: 4123.

doi: 10.1002/cctc.201900299     URL    
[101]
Jia Y Q, Sun Q H, Liu H C. Appl.Catal. A Gen., 2020, 603: 117770.
[102]
Chen X G, Wang X C, Yao S X, Mu X D. Catal. Commun., 2013, 39: 86.

doi: 10.1016/j.catcom.2013.05.012     URL    
[103]
Jin X, Shen J, Yan W J, Zhao M, Thapa P S, Subramaniam B, Chaudhari R V. ACS Catal., 2015, 5:6564.
[104]
Leo I M, Granados M L, Fierro J L G, Mariscal R. Appl. Catal. B Environ., 2016, 185: 141.

doi: 10.1016/j.apcatb.2015.12.005     URL    
[105]
Du W C, Zheng L P, Li X W, Fu J, Lu X Y, Z., Hou Z Y. Appl. Clay. Sci., 2016, 123: 166.

doi: 10.1016/j.clay.2016.01.032     URL    
[106]
Shanthi R V, Mahalakshmy R, Thitunavukkarasu K, Sivasanker S. Mol. Catal., 2018, 451: 170.
[107]
Cai C L, Wang H Y, Xin H S, Zhu C H, Zhang Q, Zhang X H, Wang C G, Liu Q Y, Ma L L. RSC Adv., 2020, 10: 3993.

doi: 10.1039/C9RA10394E     URL    
[108]
Liu Q Y, Liao Y H, Shi N, Wang T J, Ma L L, Zhang Q. Chemical Industry and Engineering Progress, 2013, 32(05).
刘琪英, 廖玉河, 石宁, 王铁军, 马隆龙, 张琦. 化工进展, 2013, 32(05).).
[109]
Liu X Y, Lan G J, Li Z Q, Qian L H, Liu J, Li Y. Chinese Journal of Catalysis, 2021, 42 (05): 694.

doi: 10.1016/S1872-2067(20)63699-3     URL    
刘晓艳, 蓝国钧, 李振清, 钱丽华, 刘健, 李瑛. 催化学报, 2021, 42 (05): 694.).
[1] 李佳烨, 张鹏, 潘原. 在大电流密度电催化二氧化碳还原反应中的单原子催化剂[J]. 化学进展, 2023, 35(4): 643-654.
[2] 邵月文, 李清扬, 董欣怡, 范梦娇, 张丽君, 胡勋. 多相双功能催化剂催化乙酰丙酸制备γ-戊内酯[J]. 化学进展, 2023, 35(4): 593-605.
[3] 徐怡雪, 李诗诗, 马晓双, 刘小金, 丁建军, 王育乔. 表界面调制增强铋基催化剂的光生载流子分离和传输[J]. 化学进展, 2023, 35(4): 509-518.
[4] 杨越, 续可, 马雪璐. 金属氧化物中氧空位缺陷的催化作用机制[J]. 化学进展, 2023, 35(4): 543-559.
[5] 叶淳懿, 杨洋, 邬学贤, 丁萍, 骆静利, 符显珠. 钯铜纳米电催化剂的制备方法及应用[J]. 化学进展, 2022, 34(9): 1896-1910.
[6] 王乐壹, 李牛. 从铜离子、酸中心与铝分布的关系分析不同模板剂制备Cu-SSZ-13的NH3-SCR性能[J]. 化学进展, 2022, 34(8): 1688-1705.
[7] 杨启悦, 吴巧妹, 邱佳容, 曾宪海, 唐兴, 张良清. 生物基平台化合物催化转化制备糠醇[J]. 化学进展, 2022, 34(8): 1748-1759.
[8] 贾斌, 刘晓磊, 刘志明. 贵金属催化剂上氢气选择性催化还原NOx[J]. 化学进展, 2022, 34(8): 1678-1687.
[9] 张明珏, 凡长坡, 王龙, 吴雪静, 周瑜, 王军. 以双氧水或氧气为氧化剂的苯羟基化制苯酚的催化反应机理[J]. 化学进展, 2022, 34(5): 1026-1041.
[10] 乔瑶雨, 张学辉, 赵晓竹, 李超, 何乃普. 石墨烯/金属-有机框架复合材料制备及其应用[J]. 化学进展, 2022, 34(5): 1181-1190.
[11] 刘洋洋, 赵子刚, 孙浩, 孟祥辉, 邵光杰, 王振波. 后处理技术提升燃料电池催化剂稳定性[J]. 化学进展, 2022, 34(4): 973-982.
[12] 沈树进, 韩成, 王兵, 王应德. 过渡金属单原子电催化剂还原CO2制CO[J]. 化学进展, 2022, 34(3): 533-546.
[13] 楚弘宇, 王天予, 王崇臣. MOFs基材料高级氧化除菌[J]. 化学进展, 2022, 34(12): 2700-2714.
[14] 景远聚, 康淳, 林延欣, 高杰, 王新波. MXene基单原子催化剂的制备及其在电催化中的应用[J]. 化学进展, 2022, 34(11): 2373-2385.
[15] 孟鹏飞, 张笑容, 廖世军, 邓怡杰. 金属/非金属元素掺杂提升原子级分散碳基催化剂的氧还原性能[J]. 化学进展, 2022, 34(10): 2190-2201.