English
新闻公告
More
化学进展 2020, Vol. 32 Issue (12): 2034-2048 DOI: 10.7536/PC200424 前一篇   后一篇

• 综述 •

低共熔溶剂预处理木质纤维素生产生物丁醇

黄秉乾1, 王立艳1,**(), 韦漩2, 徐伟超1,2, 孙振1, 李庭刚2,3,**()   

  1. 1 中国矿业大学(北京)化学与环境工程学院 北京 100083
    2 中国科学院绿色过程制造创新研究院 中国科学院绿色过程与工程重点实验室 北京市过程污染控制工程技术研究中心 中国科学院过程工程研究所 北京 100190
    3 中国科学院大学 北京 100049
  • 收稿日期:2020-04-20 修回日期:2020-08-16 出版日期:2021-10-15 发布日期:2020-10-15
  • 通讯作者: 王立艳, 李庭刚
  • 作者简介:
    ** Corresponding author e-mail: (Liyan Wang); (Tinggang Li)
  • 基金资助:
    国家自然科学基金项目(No. 50978246); 水体污染控制与治理国家科技重大专项(No. 2017ZX07402001); 稀土产业基金项目(No. IAGM2020DB06)

Lignocellulose Pretreatment by Deep Eutectic Solvents for Biobutanol production

Bingqian Huang1, Liyan Wang1,**(), Xuan Wei2, Weichao Xu1,2, Zhen Sun1, Tinggang Li2,3,**()   

  1. 1 School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing 100083, China
    2 Innovation Academy for Green Manufacture, CAS Key Laboratory of Green Process and Engineering, Beijing Engineering Research Center of Process Pollution Control, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
    3 University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2020-04-20 Revised:2020-08-16 Online:2021-10-15 Published:2020-10-15
  • Contact: Liyan Wang, Tinggang Li
  • Supported by:
    the National Natural Science Foundation of China(No. 50978246); the Research Fund of Major Science and Technology Program for Water Pollution Control and Treatment(No. 2017ZX07402001); and Rare Earth Industry Fund(No. IAGM2020DB06)

生物丁醇被认为是一种能够直接代替汽油的生物燃料,可满足经济发展对可持续液体燃料的需求。木质纤维素可再生,来源广泛且廉价,是生产生物丁醇的理想原料。但木质纤维素结构复杂,难以直接水解利用,高效的预处理方式是其商业化应用的关键。低共熔溶剂(DES)是一种环境友好的新型溶剂,具有成本低、绿色低毒、溶解能力强、良好的选择性和生物相容性等优点,有着较高的生物质预处理潜力。本文首先介绍了DES的种类和性质;其次,综述了木质纤维素中各组分在DES中的溶解效率,讨论了DES预处理木质纤维素对酶水解和丁醇发酵过程的影响;再次,通过对各种生物加工过程的梳理,对整合生物过程在生产生物丁醇领域的应用潜力进行了评述;最后,对DES预处理木质纤维素生产生物丁醇领域今后的工作做出了展望。

Biobutanol is acknowledged as a direct alternative of gasoline, which can meet the demand of sustainable economic development for renewable liquid fuel. Lignocellulosic biomass is an ideal raw material for the biobutanol production due to its merits of being renewable, cheap and easily accessible. However, the complex structure of lignocellulose hinders its direct hydrolysis, and efficient pretreatment is essential for its commercial application. As a novel and environmentally friendly solvent, deep eutectic solvents(DESs) have high potential for biomass pretreatment due to its advantages of low cost, low toxicity, strong solubility, excellent selectivity and biocompatibility. This article mainly focuses on the application of DES in lignocellulose pretreatment for biobutanol production. Firstly, the types and properties of DESs are introduced. Secondly, the dissolution efficiency of components in lignocellulose in DESs is summarized, and the effects of DESs pretreatment on enzymatic hydrolysis and butanol fermentation process are discussed. Thirdly, the application potential of consolidated bioprocessing in the production of biobutanol is reviewed by combing various bioprocessing processes. Finally, the prospects of DESs pretreatment lignocellulose for producing biobutanol are proposed.

Contents

1 Introduction

2 DESs and their physicochemical properties

2.1 Classification of DESs

2.2 Properties of DESs

3 Lignocellulose pretreatment by DESs

3.1 Reducing recalcitrance of the lignocellulose by DESs

3.2 Analysis on Solubility of Lignocellulose Components in DESs

4 Effect of DES pretreatment on the production process of biobutanol

4.1 Effect of DES pretreatment on enzymatic hydrolysis

4.2 Effect of DES pretreatment on butanol fermentation

5 Consolidated bioprocessing of biobutanol

5.1 Continuous consolidation of production processes

5.2 Continuous exploration of consolidated bioprocessing

6 Recovery of lignin and recycling of DESs

6.1 Recovery of lignin

6.2 Recycling of DESs

7 Conclusion and prospectives

()
图1 HBD与季铵盐氯化胆碱的相互作用[32]
Fig.1 Interaction of a HBD with the quaternary ammonium salt choline chloride[32]
图2 用于DES合成的氢键供体(HBDs)和氢键受体(HBAs)的典型结构[34]
Fig.2 Typical structures of hydrogen bond donors(HBDs) and bond acceptors(HBAs) for DES synthesis[34]
表1 一些常见的DES的熔点和黏度
Table 1 Freezing points and viscosity of some common DESs
图3 DES对木质纤维素的预处理[52]
Fig.3 Pretreatment of lignocellulose by DES[52]
表2 木质素和纤维素在各种DES中的溶解度
Table 2 Solubility of lignin and cellulose in various DESs
Biomass HBA HBD Molar ratio Pretreatment conditions Lignin removal
(%)
Cellulose reservation(%) ref
Rice straw betaine Lactic acid 1∶2 60 ℃, 12 h 52 - 51
Rice straw betaine Lactic acid 1∶5 60 ℃, 12 h 56 - 51
Rice straw ChCl Lactic acid 1∶2 60 ℃, 12 h 51 - 51
Rice straw ChCl Lactic acid 1∶5 60 ℃, 12 h 60 - 51
Wheat straw ChCl Lactic acid 1∶2 90 ℃, 12 h 49 57.8 18
Wheat straw ChCl Citric acid 1∶1 90 ℃, 12 h 40.6 59.1 18
Wheat straw ChCl Acetic acid 1∶2 90 ℃, 12 h 32.1 63.2 18
Wheat straw ChCl Ethanolamine 1∶6 90 ℃, 12 h 81 90.8 18
Wheat straw ChCl Diethanolamine 1∶8 90 ℃, 12 h 73.5 98.0 18
Wheat straw ChCl Methyldiethanolamine 1∶10 90 ℃, 12 h 44.6 98.6 18
Wheat straw ChCl Urea 1∶2 90 ℃, 12 h 27.7 95.9 18
Wheat straw ChCl Glycerol 1∶2 90 ℃, 12 h 24.7 97.8 18
Wheat straw ChCl Ethylene glycol 1∶2 90 ℃, 12 h 12.2 95.7 18
Corncob ChCl 1,4-butanediol 1∶9 180 ℃, 4 h 95.02 98.59 20
Corncob ChCl Lactic acid 1∶2 70 ℃, 24 h 18.1 - 20
Corncob ChCl Lactic acid 1∶2 80 ℃, 24 h 31.1 - 20
Corncob ChCl Lactic acid 1∶2 90 ℃, 24 h 42.7 - 20
Corncob ChCl Lactic acid 1∶2 100 ℃, 24 h 65.8 - 20
Corncob ChCl Lactic acid 1∶2 110 ℃, 24 h 95.5 - 20
Corncob ChCl Lactic acid 1∶5 90 ℃, 24 h 77.9 - 20
Corncob ChCl Lactic acid 1∶10 90 ℃, 24 h 86.1 - 20
Corncob ChCl Lactic acid 1∶15 90 ℃, 24 h 93.1 - 20
Corncob ChCl Malonic acid 1∶1 90 ℃, 24 h 56.5 - 20
Corncob ChCl Glutaric acid 1∶1 90 ℃, 24 h 34.3 - 20
Corncob ChCl Malic acid 1∶1 90 ℃, 24 h 22.4 - 20
Corncob ChCl Ethylene glycol 2∶1 90 ℃, 24 h 87.6 - 20
Corncob ChCl Glycerol 2∶1 90 ℃, 24 h 71.3 - 20
Switchgrass ChCl 4-hydroxybenzyl alcohol 1∶1 160 ℃, 33 h 0.4 - 67
Switchgrass ChCl Catechol 1∶1 160 ℃, 33 h 49.0 - 67
Switchgrass ChCl Vanillin 1∶2 160 ℃, 33 h 52.5 - 67
Switchgrass ChCl P-coumaric 1∶1 160 ℃, 33 h 60.8 - 67
图4 DES预处理木质纤维素生产生物丁醇流程图
Fig.4 Flow chart of biobutanol production by lignocellulose pretreatment with DESs
表3 不同预处理条件下纤维素和木聚糖的转化率以及葡萄糖的产率
Table 3 Conversion rates of cellulose and xylan and yield of glucose under different pretreatment conditions
Biomass DES Pretreatment conditions Cellulose conversion(%) Xylan conversion(%) Glucose yield
(%)
ref
Rice straw Untreated 120 ℃, 6 h 23.9 6.6 - 57
Rice straw Lac∶Ethylene glycol(1∶1) 120 ℃, 6 h 58.2 50.2 - 57
Rice straw Lac∶Glycerol(1∶1) 120 ℃, 6 h 56.4 26.0 - 57
Rice straw Lac∶Xylitol(1∶1) 120 ℃, 6 h 47.0 22.0 - 57
Rice straw Lac∶Formamide(1∶1) 120 ℃, 6 h 50.1 30.8 - 57
Rice straw Lac∶Urea(1∶1) 120 ℃, 6 h 23.4 6.5 - 57
Rice straw Lac∶Guanidine·HCl(1∶1) 120 ℃, 6 h 80.3 79.3 - 57
Rice straw ChCl∶Ethylene glycol(1∶1) 120 ℃, 6 h 33.9 10.1 - 57
Rice straw ChCl∶Glycerol(1∶1) 120 ℃, 6 h 30.2 8.7 - 57
Rice straw ChCl∶Xylitol(1∶1) 120 ℃, 6 h 27.8 6.6 - 57
Rice straw ChCl∶Formamide(1∶1) 120 ℃, 6 h 41.4 18.0 - 57
Rice straw ChCl∶Urea(1∶1) 120 ℃, 6 h 41.0 16.9 - 57
Rice straw ChCl∶Guanidine·HCl(1∶1) 120 ℃, 6 h 37.4 9.7 - 57
Rice straw ChCl∶Lac(1∶1) 80 ℃, 6 h 47.3 22.0 - 57
Rice straw ChCl∶2-Chloropropionic acid(1∶1) 80 ℃, 6 h 73.0 36.3 - 57
Rice straw ChCl∶Oxalic acid (1∶1) 80 ℃, 6 h 68.3 37.1 - 57
Wheat straw Untreated 90 ℃, 12 h 20.6 8.6 - 18
Wheat straw ChCl∶Lac(1∶2) 90 ℃, 12 h 93.9 69 - 18
Wheat straw ChCl∶Citric acid(1∶1) 90 ℃, 12 h 63.9 39.2 - 18
Wheat straw ChCl∶Acetic acid(1∶2) 90 ℃, 12 h 37.8 32.3 - 18
Wheat straw ChCl∶Ethanolamine(1∶6) 90 ℃, 12 h 92.4 75.8 - 18
Wheat straw ChCl∶Diethanolamine(1∶8) 90 ℃, 12 h ~75 ~51 - 18
Wheat straw ChCl∶Methyldiethanolamine(1∶10) 90 ℃, 12 h 51.6 38.0 - 18
Corncob Untreated 90 ℃, 24 h - - 22.1 20
Corncob ChCl∶Lac(1∶2) 90 ℃, 24 h - - 81.6 20
Corncob ChCl∶Lac(1∶5) 90 ℃, 24 h - - 83.5 20
Corncob ChCl∶Lac(1∶10) 90 ℃, 24 h - - 83.2 20
Corncob ChCl∶Lac(1∶15) 90 ℃, 24 h - - 79.1 20
Corncob ChCl∶Lac(1∶2) 70 ℃, 24 h - - 44.9 20
Corncob ChCl∶Lac(1∶2) 80 ℃,24 h - - 73.6 20
Corncob ChCl∶Lac(1∶2) 90 ℃, 24 h - - 79.7 20
Corncob ChCl∶Lac(1∶2) 100 ℃, 24 h - - 78.0 20
Corncob ChCl∶Lac(1∶2) 110 ℃, 24 h - - 77.8 20
Corncob Untreated - 32.8 15.5 - 75
Corncob ChCl∶Glycerol(1∶2) 80 ℃, 15 h 39.9 17.7 - 75
Corncob ChCl∶Glycerol(1∶2) 115 ℃, 15 h 79.1 61.3 - 75
Corncob ChCl∶Glycerol(1∶2) 150 ℃, 15 h 91.5 95.5 - 75
Corncob ChCl∶Imidazole(3∶7) 80 ℃, 15 h 92.3 59.5 - 75
Corncob ChCl∶Imidazole(3∶7) 115 ℃, 15 h 94.0 84.0 - 75
Corncob ChCl∶Imidazole(3∶7) 150 ℃, 15 h 94.6 84.8 - 75
表4 不同预处理条件下丁醇产量
Table 4 Butanol yield under different pretreatment conditions
图5 木质纤维素转化为增值产品的各种生物加工选择[59]
Fig.5 Various bioprocessing options available for the conversion of lignocellulosic biomass to useful products[59]
[1]
Amiri H , Karimi K . Bioresource Technology 2018, 270:702.
[2]
Bajpai P. Pretreatment of Lignocellulosic Biomass for Biofuel Production. Singapore: Springer, 2016.
[3]
蒋叶涛( Jiang Y T ), 宋晓强( Song X Q ), 孙勇(Sun Y),曾宪海(Ceng X H),唐兴(Tang X),林鹿(Lin L). 化学进展(Progress in Chemistry), 2017, 29(10): 1273.
[4]
Isikgor F H , Becer C R . Polym. Chem., 2015, 6:4497.
[5]
Ibrahim M F , Ramli N , Kamal Bahrin E ,, Abd-Aziz S . Renewable and Sustainable Energy Reviews, 2017, 79:1241.
[6]
Huzir N M , Aziz M M A , Ismail S B , Abdullah B , Mahmood N A N , Umor N A , Syed Muhammad S A F A. Renewable and Sustainable Energy Reviews, 2018, 94:476.
[7]
Balat M , Balat H . Applied Energy 2009, 86(11): 2273.
[8]
Jin C , Yao M , Liu H , Lee C F , Ji J . Renewable and Sustainable Energy Reviews, 2011, 15(8):4080.
[9]
Mahapatra M K , Kumar A . Journal of Clean Energy Technologies, 2017, 5(1): 27.
[10]
Visioli LJ , Enzweiler H , Kuhn RC , Schwaab M , Ma M . , Sustainable Chemical Processes 2014, 2:1.
[11]
吕阳( Lu Y ), 蒋羽佳( Jiang Y J ), 陆家声(Lu J S),章文明(Zhang W M),周杰(Zhou J),董维亮(Dong W L),信丰学(Xin F X),姜岷(Jiang M). 生物工程学报(Chinese Journal of Biotechnology), 2020, 36(12): 2755.
[12]
Lee S Y , Park J H , Jang S H , Nielsen L K , Kim J , Jung K S . , Biotechnology and bioengineering 2008, 101(2): 209.
[13]
肖敏( Xiao M ), 吴又多( Wu Y D ), 薛闯(Xue C). 生物加工过程(Chinese Journal of Bioprocess Engineering), 2019, 17(01): 60.
[14]
Kumar M , Gayen K . Applied Energy 2011, 88(6):1999.
[15]
Jang Y , Malaviya A , Cho C , Lee J , Lee S Y . Bioresource Technology 2012, 123:653.
[16]
Potts T , Du J , Paul M , May P , Beitle R , Hestekin J . Environ. Prog. Sustain. Energy, 2012, 31:29.
[17]
Agrawal R , Satlewal A , Gaur R , Mathur A , Kumar R , Gupta R P , Tuli D K . , Biochemical Engineering Journal 2015, 102:54.
[18]
赵峥( Zhao Z ). 北京化工大学博士论文(Doctoral Dissertation of Beijing University of Chemical Technology), 2018.
[19]
Satlewal A , Agrawal R , Bhagia S , Sangoro J , Ragauskas A J . Biotechnology Advances 2018, 36(8):2032.
[20]
张成武( Zhang C W ). 天津大学硕士论文(Master Dissertation of Tianjin University), 2016.
[21]
Datta S , Holmes B , Park J I , Chen Z , Dibble D C , Hadi M , Blanch H W , Simmons B A , Sapra R . Green Chemistry 2010, 12(2): 338.
[22]
Leonardo Da Costa Sousa , Shishir PS Chundawat , Balan V , Dale B E. Curr. Opin. Biotechnol., 2009, 20(3):339.
[23]
Akinosho H , Rydzak T , Borole A , Ragauskas A , Close D . Ecotoxicology, 2015, 24(10): 2156.
[24]
Xu G , Ding J , Han R , Dong J , Ni Y . Bioresource Technology, 2016, 203:364.
[25]
Kudłak B , Owczarek K , Namie?nik J . Environmental Science and Pollution Research, 2015, 22(16):11975.
[26]
Abbott A P , Boothby D , Capper G , Davies D L , Rasheed R K . Journal of the American Chemical Society, 2004, 126(29):9142.
[27]
Loow Y L , Wu T Y , Yang G H , Ang L Y , New E K , Siow L F , Md Jahim J . Bioresource Technology, 2018, 249:818.
[28]
Xu P , Zheng G W , Zong M H , Li N , Lou W Y . Bioresources and Bioprocessing, 2017, 4(1): 34.
[29]
Sarmad S , Xie Y , Mikkola J P , Ji X . New J. Chem., 2017, 41(1): 290.
[30]
Yiin C L , Yusup S , Quitain T A , Uemura Y . , Chemical Engineering Transactions 2015, 45:1525.
[31]
Chen Y , Zhang X , You T , Xu F . Cellulose, 2019, 26(1): 205.
[32]
Francisco M , van den Bruinhorst A , Kroon M C . Angewandte Chemie International Edition, 2013, 52(11): 3074.
[33]
Mbous Y P , Hayyan M , Hayyan A , Wong W F , Hashim M A , Looi C Y . Biotechnology Advances, 2017, 35(2): 105.
[34]
Espino M , de Losángeles Fernández M, Gomez F J V , Silva M F . Trends in Analytical Chemistry, 2016, 76:126.
[35]
Paiva A , Craveiro R , Aroso I , Martins M , Reis R L , Duarte A R C . ACS Sustainable Chemistry & Engineering, 2014, 2(5):1063.
[36]
Loow Y , New E K , Yang G H , Ang L Y , Foo L Y W , Wu T Y . Cellulose, 2017, 24(9):3591.
[37]
García G , Atilhan M , Aparicio S . Chemical Physics Letters, 2015, 634:151.
[38]
García G , Aparicio S , Ullah R , Atilhan M . Energy & Fuels, 2015, 29(4):2616.
[39]
Smith E L , Abbott A P , Ryder K S . Chemical Reviews, 2014, 114(21): 11060.
[40]
张盈盈( Zhang Y Y ), 陆小华( Lu X H ), 冯新(Feng X),史以俊(Shi Y J),吉晓燕(Ji X Y). 化学进展(Progress in Chemistry), 2013, 25(06):881.
[41]
Hou X , Feng G , Ye M , Huang C , Zhang Y . Bioresource Technology, 2017, 238:139.
[42]
TomÉ L I N , Baião V , Da Silva W , Brett C M A . Applied Materials Today, 2018, 10:30.
[43]
Zhang Q H , Vigier K D , Royer S , Jerome F . Chemical Society Reviews, 2012, 41:7018.
[44]
Chen Y , Mu T . Green Energy & Environment, 2019, 4(2): 95.
[45]
Xia S , Baker G A , Li H , Ravula S , Zhao H . RSC Advances, 2014, 4(21): 10586.
[46]
Zhang Y H P , Ding S Y , Mielenz J R , Cui J B , Elander R T , Laser M , Himmel M E , McMillan J R , Lynd L R . Biotechnology and Bioengineering, 2007, 97(2): 214.
[47]
Brandt A , Grasvik J , Halletta J P , Welton T . Green Chemistry, 2013, 15:550.
[48]
陈龙( Chen L ). 华东理工大学博士论文(Doctoral Dissertation of East China University of Science and Technology), 2014.
[49]
Melro E , Alves L , Antunes F E , Medronho B . Journal of Molecular Liquids, 2018, 265:578.
[50]
Liu Y , Chen W , Xia Q , Guo B , Wang Q , Liu S , Liu Y , Li J , Yu H . ChemSusChem, 2017, 10(8):1692.
[51]
Kumar A K , Parikh B S , Pravakar M . Environmental Science and Pollution Research, 2016, 23(10): 9265.
[52]
Liu Y , Nie Y , Lu X , Zhang X , He H , Pan F , Zhou L , Liu X , Ji X , Zhang S . Green Chemistry, 2019, 21(13):3499.
[53]
Dumitrache A , Tolbert A , Natzke J , Brown S D , Davison B H , Ragauskas A J . Green Chemistry, 2017, 19(9):2275.
[54]
Bhagia S , Li H J , Gao X D , Kumar R , Wyman C E . Biotechnology for Biofuels, 2016, 9(1): 245.
[55]
路瑶( Lu Y ), 魏贤勇( Wei X Y ), 宗志敏(Zong Z M),陆永超(Lu Y C),赵炜(Zhao W),曹景沛(Cao J P). 化学进展(Progress in Chemistry), 2013, 25(05):838.
[56]
Soares B , Tavares D J P , Amaral J L , Silvestre A J D , Freire C S R , Coutinho J A P . ACS Sustainable Chemistry & Engineering, 2017, 5(5):4056.
[57]
Hou X D , Li A L , Lin K P , Wang Y Y , Kuang Z Y , Cao S L . Bioresource Technology, 2018, 249:261.
[58]
陈鑫东( Chen X D ), 熊莲( Xiong L ), 黎海龙(Li H L),陈新德(Chen X D). 新能源进展(Advances in New and Renewable Energy), 2019,(05):1.
[59]
Parisutham V , Kim T H , Lee S K . Bioresource Technology, 2014, 161:431.
[60]
Trygg J , Fardim P . Cellulose, 2011, 18(4):987.
[61]
Lu B L , Xu A R , Jj W . Green Chemistry, 2014, 16:1326.
[62]
王冬梅( Wang D M ), 刘云( Liu Y ). 北京化工大学学报(自然科学版)(Journal of Beijing University of Chemical Technology(Natural Science)), 2018, 45(06):40.
[63]
邢山川( Xing S C ). 河北科技大学硕士论文(Master Dissertation of Hebei University of Science and Technology), 2018.
[64]
白有灿( Bai Y C ). 华南理工大学硕士论文(Master Dissertation of South China University of Technology), 2018.
[65]
Chen W , Tu Y , Sheen H . Applied Energy, 2011, 88(8):2726.
[66]
Fang C , Thomsen M H , Frankær C G , Brudecki G P , Schmidt J E , Alnashef I M . Industrial & Engineering Chemistry Research, 2017, 56(12): 3167.
[67]
Kim K H , Dutta T , Sun J , Simmons B , Singh S . Green Chemistry, 2018, 20:809.
[68]
Martinez A , Rodriguez M E , Wells M L , York S W , Preston J F , Ingram L O . Biotechnology Progress, 2001, 17(2): 287.
[69]
邢婉茹( Xing W R ). 江南大学硕士论文(Master Dissertation of Jiangnan University), 2018.
[70]
Ibrahim M F , Abd-Aziz S , Razak M N A , Phang L Y , Hassan M A . Applied Biochemistry and Biotechnology, 2012, 166(7): 1615.
[71]
Gorke J T , Srienc F , Kazlauskas R J . Chemical Communications, 2008,(10): 1235.
[72]
Gunny A A N , Arbain D , Nashef E M , Jamal P . Bioresource Technology, 2015, 181:297.
[73]
Lehmann C , Bocola M , Streit W R , Martinez R , Schwaneberg U . Applied Microbiology and Biotechnology, 2014, 98(12): 5775.
[74]
Wahlström R , Hiltunen J , Pitaluga De Souza Nascente Sirkka M, Vuoti S, Kruus K. RSC Advances, 2016, 6(72): 68100.
[75]
Procentese A , Johnson E , Orr V , Garruto Campanile A, Wood J A , Marzocchella A , Rehmann L . Bioresource Technology, 2015, 192:31.
[76]
丁纪财( Ding J C ). 江南大学硕士论文(Master Dissertation of Jiangnan University), 2016.
[77]
Ishola M M , Jahandideh A , Haidarian B , Brandberg T , Taherzadeh M J . Bioresource Technology, 2013, 133:68.
[78]
Salehi Jouzani G, Taherzadeh M J. Biofuel Research Journal, 2015, 2(1): 152.
[79]
Bhalla A , Bansal N , Kumar S , Bischoff K M , Sani R K . Bioresource Technology, 2013, 128:751.
[80]
张瑶( Zhang Y ). 华东理工大学硕士论文(Master Dissertation of East China University of Science and Technology), 2013.
[81]
Olson D G , McBride J E , Shaw J A , Lynd L R . Current Opinion in Biotechnology, 2012, 23:396.
[82]
Salimi F , Mahadevan R . BMC biotechnology, 2013, 13(1): 95.
[83]
Rajagopalan G , He J , Yang K L . Bioresource Technology, 2014, 154:38.
[84]
Li T G , Zhang C , Yang K , He J . Science Advances, 2018, 4(3):e1701475.
[85]
Liszka M J , Kang A , Konda N V S N, Tran K , Gladden J M , Singh S , Keasling J D , Scown C D , Lee T S , Simmons B A , Sale K L . Green Chemistry, 2016, 18(14):4012.
[86]
Xu F , Sun J , Konda N V S N, Shi J , Dutta T , Scown C D , Simmons B A , Singh S . Energy & Environmental Science, 2016, 9(3):1042.
[87]
Hayyan M , Hashim M A , Hayyan A , Al-Saadi M A , Alnashef I M , Mirghani M E S , Saheed O K . Chemosphere, 2013, 90(7): 2193.
[88]
Zhu S. Journal of Chemical Technology & Biotechnology, 2008, 83(6):777.
[89]
Tang X , Zuo M , Li Z , Liu H , Xiong C , Zeng X , Sun Y , Hu L , Liu S , Lei T , Lin L . ChemSusChem, 2017, 10(13):2696.
[1] 周天瑜, 王彦博, 赵翌琳, 李洪吉, 刘春波, 车广波. 水相识别分子印迹聚合物在样品预处理中的应用[J]. 化学进展, 2022, 34(5): 1124-1135.
[2] 李金涛, 张明祖, 何金林, 倪沛红. 低共熔溶剂在高分子合成中的应用[J]. 化学进展, 2022, 34(10): 2159-2172.
[3] 穆德颖, 刘铸, 金珊, 刘元龙, 田爽, 戴长松. 废旧锂离子电池正极材料及电解液的全过程回收及再利用[J]. 化学进展, 2020, 32(7): 950-965.
[4] 白蕾, 王艳凤, 霍淑慧, 卢小泉. 金属-有机骨架及其功能材料在食品和水有害物质预处理中的应用[J]. 化学进展, 2019, 31(1): 191-200.
[5] 蒋叶涛, 宋晓强, 孙勇*, 曾宪海, 唐兴, 林鹿*. 基于木质生物质分级利用的组分优先分离策略[J]. 化学进展, 2017, 29(10): 1273-1284.
[6] 袁正求, 龙金星, 张兴华, 夏莹, 王铁军, 马隆龙. 木质纤维素催化转化制备能源平台化合物[J]. 化学进展, 2016, 28(1): 103-110.
[7] 王瑞莹, 张超艳, 王淑萍, 周友亚. 磁性金属-有机骨架材料的合成及其应用[J]. 化学进展, 2015, 27(7): 945-952.
[8] 周妍, 赵雪冰, 刘德华. 非离子型表面活性剂对木质纤维素酶催化水解的影响及机理[J]. 化学进展, 2015, 27(11): 1555-1565.
[9] 周素坤, 毛健贞, 许凤. 微纤化纤维素的制备及应用[J]. 化学进展, 2014, 26(10): 1752-1762.
[10] 刘华敏, 马明国, 刘玉兰. 预处理技术在生物质热化学转化中的应用[J]. 化学进展, 2014, 26(01): 203-213.
[11] 张家仁, 邓甜音, 刘海超*. 油脂和木质纤维素催化转化制备生物液体燃料[J]. 化学进展, 2013, 25(0203): 192-208.
[12] 袁同琦 何静 许凤 孙润仓. 生物质资源研究的新视野——木质纤维素全溶体系*[J]. 化学进展, 2010, 22(0203): 472-481.
[13] 郑勇,轩小朋,许爱荣,郭蒙,王键吉. 室温离子液体溶解和分离木质纤维素*[J]. 化学进展, 2009, 21(09): 1807-1812.
[14] 张名佳,苏荣欣,齐崴,何志敏. 木质纤维素酶解糖化* [J]. 化学进展, 2009, 21(05): 1070-1074.
[15] 赵岩,王洪涛,陆文静,李冬. 秸秆超(亚)临界水预处理与水解技术*[J]. 化学进展, 2007, 19(11): 1832-1838.