English
新闻公告
More
化学进展 2018, Vol. 30 Issue (9): 1415-1423 DOI: 10.7536/PC180126 前一篇   后一篇

• 综述 •

化学法催化纤维素高效水解成糖

乔颖1,2, 腾娜1, 翟承凯1,3, 那海宁1*, 朱锦1*   

  1. 1. 中国科学院宁波材料技术与工程研究所 浙江省生物基高分子材料技术与应用重点实验室 宁波 315201;
    2. 上海大学材料科学与工程学院高分子系 上海 200444;
    3. 中国科学技术大学纳米科学技术研究所 合肥 230026
  • 收稿日期:2018-01-26 修回日期:2018-03-02 出版日期:2018-09-15 发布日期:2018-05-16
  • 通讯作者: 那海宁, 朱锦 E-mail:nahaining@nimte.ac.cn;jzhu@nimte.ac.cn
  • 基金资助:
    国家自然科学基金项目(No.51773217)、中国科学院青年创新促进会项目(No.2017339)和宁波市创新团队项目(No.2015B11003)资助

High Efficient Hydrolysis of Cellulose into Sugar by Chemical Catalytic Method

Ying Qiao1,2, Na Teng1, Chengkai Zhai1,3, Haining Na1*, Jin Zhu1*   

  1. 1. Key Laboratory of Bio-Based Polymeric Materials of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China;
    2. Department of Polymer, College of Material Science and Engineering, Shanghai University, Shanghai 200444, China;
    3. Nano Science and Technology Institute, University of Science and Technology of China, Hefei 230026, China
  • Received:2018-01-26 Revised:2018-03-02 Online:2018-09-15 Published:2018-05-16
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(No.51773217), the Youth Innovation Promotion Association of CAS(No.2017339), and the Ningbo Innovation Project(No.2015B11003).
利用化学法实施纤维素高效水解成糖是将可再生非粮生物质转化为能源与材料的关键支撑技术,对维系未来资源与环境的可持续发展具有重要意义。近年来,随着纤维素水解研究的不断深入,研究重点已从探索水解可行性发展到构建高效(即高转化率、高选择性、高转化速度)水解成糖技术。本文通过系统综述纤维素高效水解成糖的原理与方法,围绕纤维素结晶结构转变与水解成糖效率间的关系,详细探讨了各类技术方法在实施高效水解成糖方面的优势与不足。最后,结合最新的研究进展,为未来成功实现纤维素的高效水解成糖提供思路与建议。
Using chemical method to efficiently hydrolyze cellulose into sugar is a key support technology for converting renewable non-food biomass into energy and materials, which has great significance to maintain the sustainable development of resources and the environment in the future. In recent years, with the development of the research on the hydrolysis of cellulose, the research content has been shifted from exploring the feasibility of hydrolysis into building a technology of highly efficient (i.e., high conversion rate, high selectivity and high conversion speed) hydrolysis of cellulose into sugar. The principle and method of highly efficient hydrolysis of cellulose into sugar are systematically reviewed. On basis of the relationship between the crystalline structure of cellulose and the high efficiency of hydrolysis, the advantages and disadvantages of various technical methods are discussed in detail. Combining with the latest progress of hydrolysis research, some ideas and suggestions are also provided with the aim to successfully achieve highly efficient hydrolysis of cellulose into sugar in the future.
Contents
1 Introduction
2 Mechanism of highly efficient hydrolysis of cellulose into sugar by chemical catalytic method
2.1 Dissociation of glycosidic bond
2.2 Inhibition of highly crystalline structure
2.3 Recrystallization in hydrolysis
3 Technology and methods to hydrolyze cellulose into sugar
3.1 Catalyst
3.2 System of hydrolysis
3.3 Hydrolytic and driving methods
4 Conclusion and outlook

中图分类号: 

()
[1] Gallezot P. Chem. Soc. Rev., 2012, 41:1538.
[2] Dodds D R, Gross R A. Science, 2007, 318:1250.
[3] Liu S, Amidon T E, Francis R C, Ramarao B V, Lai Y Z, Scott G M. Ind. Biotechnol., 2006, 2:113.
[4] Klemm D, Heublein B, Fink H P, Bohn A. Angew. Chem. Int. Ed., 2005, 44:3358.
[5] Zhang Y H, Wang A Q, Zhang T. Chem. Commun., 2010, 46:862.
[6] Kobayashi H, Komanoya T, Guha S K, Hara K, Fukuoka A. Appl. Catal. A-Gen., 2011, 409:13.
[7] Rinaldi R, Schuth F. ChemSusChem, 2009, 2:1096.
[8] Krassig H A. PA:Gordon and Breach Science, 1993. 376.
[9] Bak J S, Ko J K, Han Y H, Lee B C, Choi I G, Kim K H. Bioresour. Technol., 2009, 100:1285.
[10] Harmer M A, Fan A, Liauw A, Kumar R K. Chem. Commun., 2009, 43:6610.
[11] Da Silva A S, Inoue H, Endo T, Yano S, Bon E P S. Bioresour. Technol., 2010, 101:7402.
[12] Ni J P, Wang H L, Chen Y Y, She Z, Na H N, Zhu J. Bioresour. Technol., 2013, 137:106.
[13] Ni J P, Na H N, She Z, Wang J G, Xue W W, Zhu J. Bioresour. Technol., 2014, 167:69.
[14] Ni J P, Teng N, Chen H Z, Wang J G, Zhu J, Na H N. Bioresour. Technol., 2015, 191:229.
[15] Kocherbitov V, Ulvenlund S, Kober M, Jarring K, Arnebrant T. J. Phys. Chem. B, 2008, 112:3728.
[16] Camacho F, GonzalezTello P, Jurado E, Robles A. J. Chem. Technol. Biotechnol., 1996, 67:350.
[17] Hermans P H, Weidinger A. J. Am. Chem. Soc., 1946, 68:2547.
[18] Wadehra I L, Manley R S J. J. Appl. Polym. Sci., 1965, 9:2627.
[19] Teng N, Ni J P, Chen H Z, Ren Q H, Na H N, Liu X Q, Zhang R Y, Zhu J. ACS Sustain. Chem. Eng., 2016, 4:1507.
[20] Wang J J, Xi J X, Wang Y Q. Green. Chem., 2015, 17:737.
[21] Chang V S, Holtzapple M T. Appl. Biochem. Biotech., 2000, 84:5.
[22] Laureano-Perez L, Teymouri F, Alizadeh H, Dale B E. Appl. Biochem. Biotech., 2005, 121:1081.
[23] Shaikh H M, Adsul M G, Gokhale D V, Varma A J. Carbohyd. Polym., 2011, 86:962.
[24] Abdullah R, Saka S. Cellulose, 2014, 21:4049.
[25] Sun Y, Zhuang J P, Lin L, Ouyang P K. Biotechnol. Adv., 2009, 27:625.
[26] Kupiainen L, Ahola J, Tanskanen J. Bioresour. Technol., 2012, 116:29.
[27] Kootstra A M J, Beeftink H H, Scott E L, Sanders J P M. Biochem. Eng. J., 2009, 46:126.
[28] Kootstra A M J, Beeftink H H, Scott E L, Sanders J P M. Biotechnol. Biofuels, 2009, 2:14.
[29] Vom Stein T, Grande P, Sibilla F, Commandeur U, Fischer R, Leitner W, de Maria P D. Green Chem., 2010, 12:1844.
[30] Yang H, Wang L Q, Jia L S, Qiu C C, Pang Q, Pan X W. Ind. Eng. Chem. Res., 2014, 53:6562.
[31] Shaveta, Bansal N, Singh P. Tetrahedron. Lett., 2014, 55:2467.
[32] Kang K E, Park D H, Jeong G T. Carbohyd. Polym., 2013, 92:1321.
[33] Zhou N, Zhang Y M, Wu X B, Gong X W, Wang Q H. Bioresour. Technol., 2011, 102:10158.
[34] Amarasekara A S, Wiredu B. Bioresour. Technol., 2012, 417:259.
[35] Onda A, Ochi T, Yanagisawa K. Green Chem., 2008, 10:1033.
[36] Onda A, Ochi T, Yanagisawa K. Top. Catal., 2009, 52:801.
[37] Suganuma S, Nakajima K, Kitano M, Yamaguchi D, Kato H, Hayashi S, Hara M. J. Am. Chem. Soc., 2008, 130:12787.
[38] Kitano M, Yamaguchi D, Suganuma S, Nakajima K, Kato H, Hayashi S, Hara M. Langmuir, 2009, 25:5068.
[39] Yamaguchi D, Kitano M, Suganuma S, Nakajima K, Kato H, Hara M. J. Phys. Chem.C, 2009, 113:3181.
[40] Pang J F, Wang A Q, Zheng M Y, Zhang T. Chem. Commun., 2010, 46:6935.
[41] van de Vyver S, Peng L, Geboers J, Schepers H, de Clippel F, Gommes C J, Goderis B, Jacobs P A, Sels B F. Green Chem., 2010, 12:1560.
[42] Lai D M, Deng L, Li J A, Liao B, Guo Q X, Fu Y. ChemSusChem, 2011, 4:55.
[43] Zhou L P, Liu Z, Shi M T, Du S S, Su Y L, Yang X M, Xu J. Carbohyd. Polym., 2013, 98:146.
[44] Yang J, Janik M J, Ma D, Zheng A M, Zhang M J, Neurock M, Davis R J, Ye C H, Deng F. J. Am. Chem. Soc., 2005, 127:18274.
[45] Shimizu K, Furukawa H, Kobayashi N, Itaya Y, Satsuma A. Green Chem., 2009, 11:1627.
[46] Tian J, Wang J H, Zhao S, Jiang C Y, Zhang X, Wang X H. Cellulose, 2010, 17:587.
[47] Bian J, Peng F, Peng X P, Xiao X, Peng P, Xu F, Sun R C. Carbohyd. Polym., 2014, 100:211.
[48] Shafiei M, Zilouei H, Zamani A, Taherzadeh M J, Karimi K. Appl. Energ., 2013, 102:163.
[49] Li C, Wang Q, Zhao Z K. Green Chem., 2008, 10:177.
[50] Sasaki M, Adschiri T, Arai K. AICHE J., 2004, 50:192.
[51] Ehara K, Saka S. J. Wood. Sci., 2005, 51:148.
[52] Zhao Y, Lu W J, Wang H T. Chem. Eng. J., 2009, 150:411.
[53] Luterbacher J S, Rand J M, Alonso D M, Han J, Youngquist J T, Maravelias, C T, Pfleger B F, Dumesic J A. Science, 2014, 343:277.
[54] Carr R T, Neurock M, Iglesia E. J. Catal., 2011, 278:78.
[55] Mellmer M A, Sener C, Gallo J M R, Luterbacher J S, Alonso D M, Dumesic J A. Angew. Chem. Int. Ed., 2014, 53:11872.
[56] Gallo J M R, Alonso D M, Mellmer M A, Dumesic J A. Green Chem., 2013, 15:85.
[57] Selig M J, Viamajala S, Decker S R, Tucker M P, Himmel M E, Vinzant T B. Biotechnol. Prog., 2007, 23:1333.
[58] Zhang Z H, Zhao Z B K. Carbohydr. Res., 2009, 344:2069.
[59] Luque R, Menendez J A, Arenillas A, Cot J. Energ. Environ. Sci., 2012, 5:5481.
[60] Fan J J, de Bruyn M, Budarin V L, Gronnow M J, Shuttleworth P S, Breeden S, Macquarrie D J, Clark J H. J. Am. Chem. Soc., 2013, 135:11728.
[1] 赵自通, 张真真, 梁志宏. 催化水解反应的肽基模拟酶的活性来源、催化机理及应用[J]. 化学进展, 2022, 34(11): 2386-2404.
[2] 景远聚, 康淳, 林延欣, 高杰, 王新波. MXene基单原子催化剂的制备及其在电催化中的应用[J]. 化学进展, 2022, 34(11): 2373-2385.
[3] 吴巧妹, 杨启悦, 曾宪海, 邓佳慧, 张良清, 邱佳容. 纤维素基生物质催化转化制备二醇[J]. 化学进展, 2022, 34(10): 2173-2189.
[4] 李金召, 李政, 庄旭品, 巩继贤, 李秋瑾, 张健飞. 纤维素纳米晶体的制备及其在复合材料中的应用[J]. 化学进展, 2021, 33(8): 1293-1310.
[5] 程丽丽, 章赟, 朱烨坤, 吴瑛. 选择性氧化HMF[J]. 化学进展, 2021, 33(2): 318-330.
[6] 刘毅强, 裘依梅, 唐兴, 孙勇, 曾宪海, 林鹿. 化学催化葡萄糖异构化果糖[J]. 化学进展, 2021, 33(11): 2128-2137.
[7] 姚淇露, 杜红霞, 卢章辉. 氨硼烷催化水解制氢[J]. 化学进展, 2020, 32(12): 1930-1951.
[8] 史利娜, 胡欣, 朱宁, 郭凯. 纤维素基介电材料[J]. 化学进展, 2020, 32(12): 2022-2033.
[9] 黄秉乾, 王立艳, 韦漩, 徐伟超, 孙振, 李庭刚. 低共熔溶剂预处理木质纤维素生产生物丁醇[J]. 化学进展, 2020, 32(12): 2034-2048.
[10] 易锦馨, 霍志鹏, AbdullahM.Asiri, KhalidA.Alamry, 李家星. 农林废弃生物质吸附材料在水污染治理中的应用[J]. 化学进展, 2019, 31(5): 760-772.
[11] 杜海顺, 刘超, 张苗苗, 孔庆山, 李滨*, 咸漠. 纳米纤维素的制备及产业化[J]. 化学进展, 2018, 30(4): 448-462.
[12] 朱脉勇*, 陈齐, 童文杰, 阚加瑞, 盛维琛. 四氧化三铁纳米材料的制备与应用[J]. 化学进展, 2017, 29(11): 1366-1394.
[13] 蒋叶涛, 宋晓强, 孙勇*, 曾宪海, 唐兴, 林鹿*. 基于木质生物质分级利用的组分优先分离策略[J]. 化学进展, 2017, 29(10): 1273-1284.
[14] 茹静, 耿璧垚, 童聪聪, 王海英, 吴胜春, 刘宏治. 纳米纤维素基吸附材料[J]. 化学进展, 2017, 29(10): 1228-1251.
[15] 高玉荣, 黄培, 孙佩佩, 吴敏, 黄勇. 石墨烯/纤维素复合材料的制备及应用[J]. 化学进展, 2016, 28(5): 647-656.
阅读次数
全文


摘要

化学法催化纤维素高效水解成糖