English
新闻公告
More
化学进展 2022, Vol. 34 Issue (6): 1384-1401 DOI: 10.7536/PC210805 前一篇   后一篇

• 综述与评论 •

超轻纳米纤维气凝胶的制备及其应用

柳凤琦, 姜勇刚*(), 彭飞, 冯军宗, 李良军, 冯坚*()   

  1. 国防科技大学 长沙 410073
  • 收稿日期:2021-08-06 修回日期:2021-11-08 出版日期:2022-04-01 发布日期:2022-04-01
  • 通讯作者: 姜勇刚, 冯坚
  • 基金资助:
    湖南省自然科学基金项目(2018JJ2469)

Preparation and Application of Ultralight Nanofiber Aerogels

Fengqi Liu, Yonggang Jiang(), Fei Peng, Junzong Feng, Liangjun Li, Jian Feng()   

  1. National University of Defense Technology, Changsha 410073, China
  • Received:2021-08-06 Revised:2021-11-08 Online:2022-04-01 Published:2022-04-01
  • Contact: Yonggang Jiang, Jian Feng
  • Supported by:
    Natural Science Foundation of Hunan Province(2018JJ2469)

超轻纳米纤维气凝胶是一种以一维纳米纤维为基本构筑单元的新型气凝胶材料,相比于传统气凝胶,其不仅具有更高的孔隙率和更低的密度,还拥有更优异的机械性能和理化性质,因此该材料的先进制备技术和在新兴领域的创新性应用是近年来超轻气凝胶领域的研究热点。本文结合国内外研究现状,按照材料体系分类系统综述了超轻纤维气凝胶的制备方法、结构特点以及在隔热、吸附、电化学、传感和生物医学等领域的重要应用,提出了现阶段该材料面临的一些挑战,并展望了其在未来的发展方向。

Ultralight nanofiber aerogel is a new type of aerogel material with one-dimensional nanofibers as the basic building unit. Compared with traditional aerogels, it not only has a higher porosity and lower density but also with more excellent mechanical properties and physical and chemical properties thus the advanced preparation technology of this material and its innovative applications in emerging fields have become a research hotspot in the field of ultralight aerogels. Based on the research status, this paper systematically reviewed the preparation methods and structural characteristics of ultralight fiber aerogels and their important applications in the fields of thermal insulation, adsorption, electrode, sensing and biomedicine according to different materials systems. Moreover, some challenges faced by the material at this stage are put forward, and its future development direction has prospected.

Contents

1 Introduction

2 Preparation of ultralight nanofiber aerogels

2.1 Ultralight inorganic nanofiber aerogels

2.2 Ultralight carbon nanofiber aerogels

2.3 Ultralight organic nanofiber aerogels

3 Application of ultralight nanofiber aerogels

3.1 Thermal insulation materials

3.2 Adsorption materials

3.3 Electrode materials

3.4 Sensing materials

3.5 Biomedicine materials

4 Conclusion and outlook

()
图1 超轻SiO2/PAN纳米纤维气凝胶制备流程示意图[28]
Fig. 1 Schematic diagram of the preparation process of ultralight SiO2/PAN nanofiber aerogel[28]. Copyright 2014, Wiley
图2 CVD法制备SiC纳米纤维气凝胶流程示意图[33]
Fig. 2 Schematic diagram of the process of preparing SiC nanofiber aerogel by CVD method[33]. Copyright 2018, American Chemical Society
图3 以面包为模板原位合成超轻SiC纳米纤维气凝胶的流程示意图[38]
Fig. 3 Schematic diagram of the in-situ synthesis of ultralight SiC nanofiber aerogel using bread as the template[38]. Copyright 2021, Elsevier
图4 当烧结温度为1500 ℃时,莫来石纤维气凝胶的SEM图片(a)及典型纤维节点SEM图片(b)[42]
Fig. 4 (a) The SEM image of the fibrous ceramics sintered at 1500 ℃; (b) the typical fiber node in the fiber block sintered at 1500 ℃[42]. Copyright 2016, Elsevier
图5 超轻ZrO2-Al3O3纤维气凝胶制备流程示意图[46]
Fig. 5 Schematic diagram of the preparation process of ultralight ZrO2-Al3O3 nanofiber aerogels[46]. Copyright 2020, American Chemical Society
图6 GCA气凝胶制备流程示意图[49]
Fig. 6 Schematic diagram of GCA aerogel preparation process[49]. Copyright 2016, Nature
图7 (a) 碳纤维气凝胶的压应力、塑性变形和能量损失系数随压缩循环次数增加的变化曲线(ε=80%);(b) 在不同温度下,碳纤维气凝胶的储能模量和损耗模量随压缩循环次数增加的变化曲线(ε=80%)[57]
Fig. 7 (a) The change curve of the compressive stress, plastic deformation and energy loss coefficient of carbon nanofiber aerogel with the compression cycles (ε=80%); (b) the change curve of loss modulus and storage modulus with the compression cycles at different temperatures (ε=80%)[57]. Copyright 2019, Wiley
图8 (a) 改性前纤维素气凝胶的TEM图片; (b) 邻苯二甲酰亚胺改性后的纤维素气凝胶的SEM图片[61]
Fig. 8 (a) TEM image of cellulose aerogel before modification; (b) SEM image of cellulose aerogel after phthalimide modification[61]. Copyright 2020, Elsevier
图9 (a) PI纤维气凝胶光学照片和(b, c)在不同放大倍数下的SEM图片[68]
Fig. 9 (a) The photograph of PI nanofiber aerogels; (b, c) the SEM images of PI nanofiber aerogels[68]. Copyright 2017, American Chemical Society
图10 TISA法制备PCL纤维气凝胶的流程图示意图[71]
Fig. 10 Schematic diagram of the process of preparing PCL nanofiber aerogel by TISA method[71]. Copyright 2015, Wiley
图11 (a) 在不同压缩应变下PI纤维气凝胶的热导率和热扩散系数曲线;(b~d) PI纤维气凝胶在不同环境下隔热效果的红外相机图片[68]
Fig. 11 (a) Thermal conductivity and thermal diffusivity curves of PI nanofiber aerogel under different compressive strains; (b~d) infrared camera pictures of the heat insulation ability of PI nanofiber aerogel in different environments[68]. Copyright 2017, American Chemical Society
图12 ZrO2-Al2O3纤维气凝胶在正丁烷喷灯火焰中的压缩-回弹过程图片[46]
Fig. 12 Compression-rebound process picture of ZrO2-Al2O3 nanonfiber aerogels in the flame of n-butane blowtorch[46]. Copyright 2020, American Chemical Society
图13 (a) 油膜乳剂在分离之前和之后的微观图像; (b) 气凝胶的分离通量和分离饱和程度随SiO2 NPs浓度增加的变化曲线[29]
Fig. 13 (a) Microscopic images of the oil film emulsion before and after separation; (b) the change curve of the separation flux and saturated extent of separation for aerogel with the increase of SiO2 NPs concentration[29]. Copyright 2018, Wiley
图14 MHPCA气凝胶在磁驱动下去除水表面油污的过程[84]
Fig. 14 Photographs of removal of oil from the water surface by MHPCA and an external magnetic field[84]. Copyright 2018, Springer
图15 (a) GCA气凝胶在不同电流密度下的比电容;(b) GCA气凝胶在100 mV·s-1下进行2000次循环的循环曲线[49]
Fig. 15 (a) Specific capacitance at different current densities; (b) cycling test of 2000 cycles at 100 mV/s[49] Copyright 2016, Nature
图16 (a, b) 负载Co3O4后杂化纤维气凝胶的SEM图片及HRTEM图片;(c, d) 不同Co3O4负载量杂化碳气凝胶的比电容曲线和奈奎斯特图[102]
Fig. 16 (a, b) SEM image and HRTEM image of hybrid fiber aerogel after loading Co3O4; (c, d) specific capacitances and Nyquist plots of hybrid carbon aerogels with different Co3O4 loadings[102]. Copyright 2020, Elsevier
图17 (a) CA/PDMS压力传感器拉伸应变与ΔR/R0的变化曲线;(b) CA/PDMS压力传感器的抗疲劳性能曲线[60]
Fig. 17 (a) ΔR/R0 of the CA/PDMS conductor during the stretching process; (b) fatigue resistance of the CA/PDMS composite conductor[60]. Copyright 2018, Wiley
图18 生长了Jurkat细胞(MTT染色)后纤维气凝胶的(a)光学照片和(b)SEM照片,(c~e) 细胞孵育13、20和30 d后,气凝胶中活(绿色)和死(红色) Jurkat细胞的3D共聚焦显微镜照片[86]
Fig. 18 (a) Photography and (b) SEM photo of fibrous aerogel after growing Jurkat cells (MTT staining); (c-e) 3D confocal microscopy of live (green) and dead (red) Jurkat cells in aerogels after cells are incubated for 13, 20 and 30 d[86]. Copyright 2015, Wiley
表1 超轻纳米纤维气凝胶的制备参数、性质和应用
Table 1 Fabrication parameters, properties and applications of ultralight nanofiber aerogels
Fiber materials Diameter
(nm)
Binding agents Methods Density
(mg·
cm-3)
Porosity
(%)
SBET
(m2·g-1)
Thermal
conductivity
(W·m-1·K-1)
Applications ref
SiO2/PAN N/A Benzoxazine Electrospinning/Freeze drying 0.12~9.6 99.36~99.992 N/A 0.026 Thermal insulation/Sound absorption/Oil-water
separation
28
SiO2 ~206 AlBSi Electrospinning/Freeze drying 0.15~5 99.993 N/A 0.025~0.032 Thermal insulation 29
SiO2 162 SiO2 sol Freeze drying 0.25~12 99.989 N/A 0.025 Thermal insulation 30
SiC 20~50 N/A CVD 5 99.8 78 0.026
(RT in N2)
Oil absorption 33
SiC/SiOx 20~50 SiOx shell CVD 23 99.3 142 N/A Air filters/
Oil absorption
34
SiC/SiO2 80~100 SiO2 layer Carbon template/
CVD
23~37 99 N/A 0.03
(RT in He)
0.23
(900 ℃ in He)
Thermal insulating 35
SiC/Graphene 20~30 Graphene CVI N/A N/A N/A N/A Electromagnetic wave absorption 36
SiC 40~150 N/A Template method/In-situ synthesis 50~60 N/A N/A 0.038
(200 ℃ in air)
0.067
(600 ℃ in air)
Thermal insulation 38
Al2O3 26~30 N/A Hydrothermal 22~31 N/A 52~161 0.041~0.069 N/A 39
Al2O3 0.8~10 N/A Hydrothermal 1.2~19 99.8 385 N/A Catalysis
Thermal insulation/
Optical devices
40
Mullite 10~15
(μm)
Silicon resin Molding 425~441 81.6~82.3 N/A 0.083~0.089 Thermal insulation 42
Fiber materials Diameter
(nm)
Binding agents Methods Density
(mg·
cm-3)
Porosity
(%)
SBET
(m2·g-1)
Thermal
conductivity
(W·m-1·K-1)
Applications ref
Mullite ~450 Agar/SiO2 sol Electrospinning/Freeze drying 34.64~
48.89
98.9 N/A 0.032~0.043
0.073
(1000 ℃ in air)
Thermal insulation 43
Al2O3-
ZrO2
280~740 Al(H2PO4)3 Electrospinning/Freeze drying N/A >98 N/A 0.032 Thermal insulation 46
C ~200 Graphene Electrospinning/Freeze drying 4.8 N/A N/A N/A Supercapacitors 49
C 20 N/A HTC 3.3 >99 >300 N/A Oil absorption. 56
C N/A N/A Freeze drying 3~18.3 >99 485~
715
N/A Mechanical cushioning/Pressure
Sensors/Energy damping
57
C 50~80 N/A CVD N/A N/A 185 N/A Na-ion storage 59
C 20~200 N/A Templates/Solvothermal 5.8 N/A 967~
1514
N/A Pressure sensors 60
Cellulose 20~50 N/A Freeze drying 10.5~
16.4
98.9~
99.4
272~335 N/A CO2 adsorption 61
Cellulose 22~54 N/A Freeze drying 4 99.68 300 N/A Wastewater
treatment
63
Cellulose N/A N/A Ambient pressure
drying
55 96.5 1.5~5 0.0417 Oil/water
separation
64
Cellulose <100 PAANa Freeze drying 1.5~15.2 99.88 N/A N/A Water absorption 65
PI 328~774 Self-gluing Electrospinning/Freeze drying 7.6~10.1 99.28~
99.46
N/A 0.026 Thermal insulation 68
PI 364±75 DCM vapour, Electrospinning/Freeze drying 4.81 99.66 N/A N/A Air filters 69
PI 235 Self-gluing Electrospinning/Freeze drying 4.6~13.1 99.0~
99.6
12.4 N/A Air filters 70
PCL ~600 Self-
agglomeration
Electrospinning/
Freeze drying
41~63 96.4 N/A N/A Bone tissue
engineering
71
PCL/Gelatin 310~974 Self-
agglomeration
Electrospinning/Freeze drying/TISA N/A N/A N/A N/A Cartilage tissue engineering 72
PCL/CA ~904 Self-
agglomeration
Electrospinning/Freeze drying/TISA 66 95 N/A N/A Drug delivery/Tissue
engineering
73
PVA/Pul 208 Thermal cross-linking Electrospinning/Freeze drying 23.2~
88.5
93.91~
98.40
N/A N/A Air filters 82
PAN/PI 85 PVA Electrospinning/Freeze drying 43.4 97.9 25.0 N/A Dye adsorbent/Catalyst
support
85
PAN/Poly (MA-co-
MMA-co-MABP)
400~500 Photo cross-linking Electrospinning/Freeze drying 2.7 99.6 2.66 N/A Cell culturing 86
1.1±0.2
(μm)
Photo cross-linking Electrospinning/Freeze drying/CVD 3.5 99.5 1 N/A Drug delivery 87
BBB 700~800 PVA Electrospinning/Freeze drying/ 2.9~16.4 >99 N/A 0.028~0.038 Thermal insulation/Oil
absorption
88
[1]
Fricke J, Emmerling A. J. Sol Gel Sci. Technol., 1998, 13(1/3): 299.

doi: 10.1023/A:1008663908431     URL    
[2]
Novak Z, Kotnik P, Knez Ž. J. Non Cryst. Solids, 2004, 350: 308.

doi: 10.1016/j.jnoncrysol.2004.06.045     URL    
[3]
Kistler S S. Nature, 1931, 127(3211): 741.
[4]
Zhang X H, Zhao H L, He F, Li X, Qiu W H, Wu W J, Qu X H. J. Univ. Sci. Technol. Beijing, 2006, 28(2): 157.
( 张秀华, 赵海雷, 何方, 李雪, 仇卫华, 吴卫江, 曲选辉. 北京科技大学学报, 2006, 28(2): 157.)
[5]
Hu Z J, Zhou J J, Chen X H, Sun C C. Bull. Chin. Ceram. Soc., 2009, 28(5): 1002.
( 胡子君, 周洁洁, 陈晓红, 孙陈诚. 硅酸盐通报, 2009, 28(5): 1002.)
[6]
Zhang H X, He X D, Li Y, Hong C Q. J. Aeronaut. Mater., 2006, 26(3): 337.
( 张贺新, 赫晓东, 李垚, 洪长青. 航空材料学报, 2006, 26(3): 337.)
[7]
Xiao Y Y, Feng J, Jiang Y G, Feng J Z. Mater. Rev., 2014(13): 20.
( 肖芸芸, 冯坚, 姜勇刚, 冯军宗. 材料导报, 2014(13): 20.).
[8]
Xiao Y Y, Feng J Z, Jiang Y G, Feng J. Mater. Rev., 2018, 32(S1): 449.
( 肖芸芸, 冯军宗, 姜勇刚, 冯坚. 材料导报, 2018, 32(S1): 449.)
[9]
Song J W, Chen C J, Yang Z. ACS Nano, 2018, 12: 140.

doi: 10.1021/acsnano.7b04246     URL    
[10]
Katti A, Shimpi N, Roy S. Chem. Mater., 2006, 18: 285.

doi: 10.1021/cm0513841     URL    
[11]
Nguyen B N, Meador M A B, Tousley M E. ACS Appl. Mater. Interfaces, 2009, 1: 621.

doi: 10.1021/am8001617     URL    
[12]
Rao A V, Bhagat S D, Hirashima H J. Colloid Interface Sci., 2006, 300: 279.

doi: 10.1016/j.jcis.2006.03.044     URL    
[13]
Chen K, Bao Z, Du A J. Sol-Gel Sci. Technol., 2012, 62: 294.

doi: 10.1007/s10971-012-2722-x     URL    
[14]
Biedunkiewicz A, Figiel P M, Krawczy K J. Therm. Anal. Calorim., 2013, 113: 253.
[15]
Li C, Shi G Q. Adv. Mater., 2014, 26(24): 3992.

doi: 10.1002/adma.201306104     URL    
[16]
Feng J, Feng J Z, Jiang Y G. Aerosp. Mater. Technol., 2012, 42(2): 42.
( 冯坚, 冯军宗, 姜勇刚. 宇航材料工艺, 2012, 42(2): 42.)
[17]
Xue Y W. Master Thesis of Taiyuan University of Technology, 2018.
( 薛云伟. 太原理工大学硕士论文, 2018.).
[18]
Xiao T Q. Doctoral Dissertation of Tongji University, 2007.
( 肖铁群. 同济大学博士论文, 2007.).
[19]
Li W, Prbstle H, Fricke J J. Non-Cryst. Solids, 2003, 325: 1.

doi: 10.1016/S0022-3093(03)00325-9     URL    
[20]
Feng J Z. Master Thesis of National University of Defense Technology, 2007.
( 冯军宗. 国防科技大学硕士论文, 2007.).
[21]
Xu C, Zhou B, Xie D B. Materials Reports, 2006, 20(6): 105.
( 徐超, 周斌, 解德滨. 材料导报, 2006, 20(6): 105.)
[22]
Sun H Y, Xu Z, Gao C. Adv. Mater., 2013, 25(18): 2554.

doi: 10.1002/adma.201204576     URL    
[23]
Xu X, Zhang Q Q, Hao M L. Science, 2019, 363: 723.

doi: 10.1126/science.aav7304     URL    
[24]
Zhang Q, Xu X, Lin D. Adv. Mater., 2016, 28: 2229.

doi: 10.1002/adma.201505409     URL    
[25]
Kim Y J, Ahn C H, Lee M B, Choi M S. Mater. Chem. Phys., 2011, 127(1/2): 137.

doi: 10.1016/j.matchemphys.2011.01.046     URL    
[26]
Jiang Y, Chen Y, Liu Y J, Sui G X. Chem. Eng. J., 2018, 337: 522.

doi: 10.1016/j.cej.2017.12.131     URL    
[27]
Jan D, Morgiel J, Tatarko P. Scr. Mater., 2009, 61: 253.

doi: 10.1016/j.scriptamat.2009.03.052     URL    
[28]
Si Y, Yu J, Tang X. Nat. Commun., 2014, 5: 5802.

doi: 10.1038/ncomms6802     URL    
[29]
Si Y, Wang X Q, Dou L Y, Yu J Y, Ding B. Sci. Adv., 2018, 4(4): 1322.
[30]
Wang F, Dou L, Ding B. Angew. Chem. Int. Ed., 2020, 16: 246.

doi: 10.1002/anie.197702461     URL    
[31]
Wei G S, Liu Y S, Zhang X X, Yu F, Du X Z. Int. J. Heat Mass Transf., 2011, 54(11/12): 2355.

doi: 10.1016/j.ijheatmasstransfer.2011.02.026     URL    
[32]
Shen X D, Chin. J. Inorg. Chem., 2012, 28: 2071.
[33]
Su L, Wang H, Niu M. ACS Nano, 2018, 12: 3103.

doi: 10.1021/acsnano.7b08577     URL    
[34]
Ren B, Liu J J, Rong Y D. ACS Nano, 2019, 13: 11603.

doi: 10.1021/acsnano.9b05406     pmid: 31518116
[35]
Li B B, Yuan X S, Gao Y. Mater. Res. Express, 2019, 6: 045030.

doi: 10.1088/2053-1591/aafaef     URL    
[36]
Cheng Y H, Tan M Y, Hu P. Appl. Surf. Sci., 2018, 448: 138.

doi: 10.1016/j.apsusc.2018.04.132     URL    
[37]
Ferraro C, Garcia T E, Rocha V G. Adv. Funct. Mater., 2016, 26: 1636.

doi: 10.1002/adfm.201504051     URL    
[38]
Liang P P, Li H X, Wang G. Mater. Lett., 2021, 284: 129014.

doi: 10.1016/j.matlet.2020.129014     URL    
[39]
Zhou L. Master Thesis of Harbin Institute of Technology, 2019.
( 周粮. 哈尔滨工业大学硕士论文, 2019.).
[40]
Hayase G, Nonomura K, Hasegawa G. Chem. Mater., 2015, 27: 3.

doi: 10.1021/cm503993n     URL    
[41]
Peng F, Jiang Y G, Feng J. Int. J. Inorg. Mater., 2020, 404.
[42]
Dong X, Sui G, Yun Z. Mater. Des., 2016, 90: 942.

doi: 10.1016/j.matdes.2015.11.043     URL    
[43]
Liu R L, Dong X, Xie S T. Chem. Eng. J., 2019, 360: 464.

doi: 10.1016/j.cej.2018.12.018     URL    
[44]
Xian L, Zhang Y, Wu Y J. Ceram. Int., 2020, 46: 1869.

doi: 10.1016/j.ceramint.2019.09.163     URL    
[45]
Zhang E, Zhang W, Lv T. ACS Appl. Mater. Interfaces, 2021, 13: 20548.

doi: 10.1021/acsami.1c02501     URL    
[46]
Zhang X X, Wang F, Dou L Y. ACS Nano, 2020, 14: 15616.

doi: 10.1021/acsnano.0c06423     URL    
[47]
Biener J, Stadermann M, Suss M. Energy Environ. Sci., 2011, 4: 656.

doi: 10.1039/c0ee00627k     URL    
[48]
ElKhatat A M, Al-Muhtaseb S A. Adv. Mater., 2011, 23(26): 2887.

doi: 10.1002/adma.201100283     URL    
[49]
Huang Y, Lai F, Zhang L. Sci. Rep., 2016, 6: 31541.

doi: 10.1038/srep31541     URL    
[50]
Lai F L, Huang Y P, Zuo L Z, Gu H H, Miao Y E, Liu T X. J. Mater. Chem. A, 2016, 4(41): 15861.

doi: 10.1039/C6TA04797A     URL    
[51]
Xu T, Ding Y C, Wang Z J. Mater. Chem. C., 2017, 5: 10288.

doi: 10.1039/C7TC03456C     URL    
[52]
Wu Z Y, Liang H W, Hu B C, Yu S H. Angew. Chem. Int. Ed., 2018, 57(48): 15646.

doi: 10.1002/anie.201802663     URL    
[53]
White R J, Brun N, Budarin V L. Chemsuschem., 2014, 7: 670.

doi: 10.1002/cssc.201300961     URL    
[54]
Titirici M M, White R J, Brun N. Chem. Soc. Rev., 2014, 44: 250.

doi: 10.1039/C4CS00232F     URL    
[55]
Zhao Q, Fellinger T P, Antonietti M, Yuan J Y. J. Mater. Chem. A, 2013, 1(16): 5113.

doi: 10.1039/c3ta10291b     URL    
[56]
Liang H W, Guan Q F, Chen L F. Angew. Chem. Int. Ed., 2012, 51: 5101.

doi: 10.1002/anie.201200710     URL    
[57]
Yu Z L, Qin B, Yu S H. Adv. Mater., 2019, 21: 4331.
[58]
Meng Y, Yong T M, Liu P. Cellulose, 2015, 22: 435.

doi: 10.1007/s10570-014-0519-5     URL    
[59]
Xue Z, Xiong Q, Zou C. Mater. Res. Bull., 2021, 133: 111049.

doi: 10.1016/j.materresbull.2020.111049     URL    
[60]
Yu Z L, Qin B, Yu S H. Adv. Mater., 2019, 19: 2151.

doi: 10.1002/adma.200700237     URL    
[61]
Sepahvand S, Jonoobi M, Ashori A. Carbohydr. Polym., 2020, 230: 115571.

doi: 10.1016/j.carbpol.2019.115571     URL    
[62]
Qin H, Zhang Y, Jiang J. Adv. Funct. Mater., 2021: 2106269.
[63]
Darabitabar F, Yavari V, Hedayati A. Environ. Technol. Innovation, 2020, 18: 100786.

doi: 10.1016/j.eti.2020.100786     URL    
[64]
Ebrahimi A, Dahrazma B, Adelifard M. J. Porous Mater., 2020, 27(4): 1219.

doi: 10.1007/s10934-020-00901-4     URL    
[65]
Zhang F, Ren H, Tong G. Cellulose, 2016, 23: 1.

doi: 10.1007/s10570-015-0823-8     URL    
[66]
Guo H, Meador M A B, Mccorkle L. ACS Appl. Mater. Interfaces, 2011, 3: 546.

doi: 10.1021/am101123h     URL    
[67]
Meador M A B, Christlan R A, Hanson K. ACS Appl. Mater. Interface, 2015, 7: 1240.

doi: 10.1021/am507268c     pmid: 25564878
[68]
Jiang S H, Uch B, Agarwal S, Greiner A. ACS Appl. Mater. Interfaces, 2017, 9(37): 32308.

doi: 10.1021/acsami.7b11045     URL    
[69]
Shen Y, Li D W, Deng B Y R. Soc. Open Sci., 2019, 6: 190596.
[70]
Qian Z C, Wang Z, Chen Y, Tong S R, Ge M F, Zhao N, Xu J. J. Mater. Chem. A, 2018, 6(3): 828.

doi: 10.1039/C7TA09054D     URL    
[71]
Xu T, Miszuk J M, Zhao Y, Sun H L, Fong H. Adv. Healthcare Mater., 2015, 4(15): 2238.

doi: 10.1002/adhm.201500345     URL    
[72]
Li Y Q, Liu Y Q, Xun X W, Zhang W, Xu Y, Gu D Y. ACS Appl. Mater. Interfaces, 2019, 11(40): 36359.

doi: 10.1021/acsami.9b12206     URL    
[73]
Xu T, Liang Z, Ding B. Polymer, 2018, 151: 299.

doi: 10.1016/j.polymer.2018.07.074     URL    
[74]
Spearman S S, Irin F, Rivero I V. Polymer, 2015, 56: 476.

doi: 10.1016/j.polymer.2014.11.016     URL    
[75]
Sant S, Iyer D, Gaharwar A K. Acta Biomater., 2013, 9: 5963.

doi: 10.1016/j.actbio.2012.11.014     URL    
[76]
Chen M C, Sun Y C, Chen Y H. Acta Biomater., 2013, 9(3): 5562.

doi: 10.1016/j.actbio.2012.10.024     URL    
[77]
Ghorbani F M, Kaffashi B, Shokrollahi P A. Carbohydr. Polym., 2015, 118: 133.

doi: 10.1016/j.carbpol.2014.10.071     URL    
[78]
Ding Y, Yao Q, Li W. Colloids Surf., B., 2015, 136: 93.
[79]
Chen W M, Ma J, Zhu L. Colloids Surf., B., 2016, 142: 165.

doi: 10.1016/S0927-7757(98)00365-3     URL    
[80]
Chen W M, Chen S, Morsi Y. ACS Appl. Mater. Interface, 2016, 8: 24415.

doi: 10.1021/acsami.6b06825     URL    
[81]
Chen J, Zheng T H, Hua W K. Colloids Surf., A., 2020, 585: 124048.

doi: 10.1016/j.colsurfa.2019.124048     URL    
[82]
Deuber F, Mousavi S, Federer L, Hofer M, Adlhart C. ACS Appl. Mater. Interfaces, 2018, 10(10): 9069.

doi: 10.1021/acsami.8b00455     URL    
[83]
Deuber F, Mousavi S, Federer L, Adlhart C. Adv. Mater. Interfaces, 2017, 4(12): 1700065.

doi: 10.1002/admi.201700065     URL    
[84]
Xu Z Y, Jiang X D, Zhou H, Li J Y. Cellulose, 2018, 25(2): 1217.

doi: 10.1007/s10570-017-1619-9     URL    
[85]
Xu T, Zheng F, Chen Z. Chem. Eng. J., 2019, 360: 280.

doi: 10.1016/j.cej.2018.11.233     URL    
[86]
Duan G G, Jiang S H, Jerome V. Adv. Funct. Mater., 2015, 25: 2850.

doi: 10.1002/adfm.201500001     URL    
[87]
Duan G G, Bagheri A R, Jiang S H. Biomacromolecules, 2017, 18: 3215.

doi: 10.1021/acs.biomac.7b00852     URL    
[88]
Zhu J, Ding Y, Agarwal S. Nanoscale, 2017, 9: 18169.

doi: 10.1039/C7NR07159K     URL    
[89]
Zhu J, Jiang S, Hou H. Macromol. Mater. Eng., 2018, 303: 1700615.

doi: 10.1002/mame.201700615     URL    
[90]
Hu Z, Yan S, Li X. ACS Nano, 2021, 15: 8171.

doi: 10.1021/acsnano.1c00346     URL    
[91]
Zhou S, Apostolopoulou-Kalkavoura V, da Costa M V T. Nano-Micro Lett., 2020, 12: 1.
[92]
Huang D M, Guo C N, Zhang M Z, Shi L. Mater. Des., 2017, 129: 82.

doi: 10.1016/j.matdes.2017.05.024     URL    
[93]
Ma J, Ye F, Yang C. Mater. Des., 2017, 131: 226.

doi: 10.1016/j.matdes.2017.06.036     URL    
[94]
Dou L, Zhang X, Cheng X. ACS Appl. Mater. Interface, 2019, 11: 29056.

doi: 10.1021/acsami.9b10018     URL    
[95]
Wang B, Liang W X, Guo Z G, Liu W M. Chem. Soc. Rev., 2015, 44(1): 336.

doi: 10.1039/c4cs00220b     pmid: 25311259
[96]
Xu T, Zheng F, Chen Z J, Ding Y C, Liang Z P, Fong H. Chem. Eng. J., 2019, 360:288.
[97]
Xu T, Wang Z, Ding Y. Carbohydr. Polym., 2018, 179: 164.

doi: 10.1016/j.carbpol.2017.09.086     URL    
[98]
Chen L F, Feng Y, Liang H W, Wu Z Y, Yu S H. Adv. Energy Mater., 2017, 7(23): 1700826.

doi: 10.1002/aenm.201700826     URL    
[99]
Nardecchia S, Carriazo D, Ferrrer M L. Chem. Soc. Rev., 2013, 42: 794.

doi: 10.1039/c2cs35353a     pmid: 23160635
[100]
Chabot V, Higgins D, Yu A. Energy Environ. Sci., 2014, 7: 1564.

doi: 10.1039/c3ee43385d     URL    
[101]
Wang G P, Zhang L, Zhang J J. Chem. Soc. Rev., 2012, 41(2): 797.

doi: 10.1039/C1CS15060J     URL    
[102]
Zhang M, Yang D, Zhang S. Carbon, 2020, 158: 873.

doi: 10.1016/j.carbon.2019.11.071     URL    
[103]
He W, Li G, Zhang S. ACS Nano, 2015, 9: 4244.

doi: 10.1021/acsnano.5b00626     URL    
[104]
Hsu S H, Hung K C, Chen C W. J. Mater. Chem. B, 2016, 4(47): 7493.

doi: 10.1039/C6TB02176J     URL    
[105]
Badylak S F, Freytes D O, Gilbert T W. Acta Biomater., 2009, 5(1): 1.

doi: 10.1016/j.actbio.2008.09.013     URL    
[106]
Yao Q, Cosme J G L, Xu T. Acta Biomater., 2017, 115: 115.
[1] 牛小连, 刘柯君, 廖子明, 徐慧伦, 陈维毅, 黄棣. 基于骨组织工程的静电纺纳米纤维[J]. 化学进展, 2022, 34(2): 342-355.
[2] 李祥业, 白天娇, 翁昕, 张冰, 王珍珍, 何铁石. 电纺纤维在超级电容器中的应用[J]. 化学进展, 2021, 33(7): 1159-1174.
[3] 朱蕾, 王嘉楠, 刘建伟, 王玲, 延卫. 静电纺丝一维纳米材料在气敏传感器的应用[J]. 化学进展, 2020, 32(2/3): 344-360.
[4] 马亮, 时学娟, 张笑笑, 李莉莉. 可控核/壳结构聚合物电纺纤维的制备与应用[J]. 化学进展, 2019, 31(9): 1213-1220.
[5] 郑勰, 周一凡, 陈思远, 刘晓云, 查刘生. 刺激响应性电纺纳米纤维[J]. 化学进展, 2018, 30(7): 958-975.
[6] 李勃天, 温幸, 唐黎明. 一维聚合物-无机纳米复合材料的制备[J]. 化学进展, 2018, 30(4): 338-348.
[7] 蒋敏, 王敏, 魏仕勇, 陈志宝, 木士春. 基于静电纺丝技术的取向纳米纤维[J]. 化学进展, 2016, 28(5): 711-726.
[8] 孟德芃, 吴俊涛. 静电纺丝法制备新型吸附分离材料[J]. 化学进展, 2016, 28(5): 657-664.
[9] 高燕, 周永风, 杨青林, 郭林, 江雷. 超轻材料[J]. 化学进展, 2015, 27(12): 1714-1721.
[10] 郭世伟, 苑春刚. 电纺含银纳米粒子复合纤维的制备及应用[J]. 化学进展, 2015, 27(12): 1841-1850.
[11] 张晓敏, 张力, 贺雪英, 吴俊涛. 冷冻干燥法制备聚合物基新型材料及其应用[J]. 化学进展, 2014, 26(11): 1832-1839.
[12] 龚雪, 杨金龙, 姜玉林, 木士春. 静电纺丝技术在锂离子动力电池中的应用[J]. 化学进展, 2014, 26(01): 41-47.
[13] 侯甲子, 张万喜, 管东波, 孙晓平, 李莉莉* . 静电纺丝法在制备改性醋酸纤维素中的应用[J]. 化学进展, 2012, 24(12): 2359-2366.
[14] 刘瑞来, 刘海清*, 刘俊劭, 江慧华. 静电纺丝制备图案化无机纳米纤维[J]. 化学进展, 2012, 24(08): 1484-1496.
[15] 龚光明, 吴俊涛, 江雷. 静电纺丝法制备聚酰亚胺新型材料[J]. 化学进展, 2011, 23(4): 750-759.