English
新闻公告
More
化学进展 2022, Vol. 34 Issue (2): 328-341 DOI: 10.7536/PC201249 前一篇   后一篇

• 综述 •

新型多孔材料用作色谱手性固定相

汤波, 王微, 罗爱芹*()   

  1. 北京理工大学 生命学院,分子医学与生物诊疗重点实验室 北京 100081
  • 收稿日期:2020-12-30 修回日期:2021-01-25 出版日期:2022-02-20 发布日期:2021-03-04
  • 通讯作者: 罗爱芹
  • 基金资助:
    国家重点研发计划项目(2019YFA0904104)

New Porous Materials Used as Chiral Stationary Phase for Chromatography

Bo Tang, Wei Wang, Aiqin Luo()   

  1. Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology,Beijing 100081, China
  • Received:2020-12-30 Revised:2021-01-25 Online:2022-02-20 Published:2021-03-04
  • Contact: Aiqin Luo
  • Supported by:
    National Key R&D Program of China(2019YFA0904104)

手性固定相是色谱法分离分析手性化合物的关键。近年来,随着材料科学的迅速发展,越来越多的新型手性材料被作为色谱固定相用于手性分离分析。本文综述了近5年来液相色谱、气相色谱和毛细管电色谱领域的新型手性固定相的研究进展,重点总结了基于手性多孔材料的新型手性固定相研究,最后对手性固定相的研究进行了总结与展望。

It is well established that enantiomers often exhibit different biological and pharmacological responses. However, enantiomers remain a challenge to separate and analyze due to their identical physical and chemical properties in an achiral environment. Research on specialized separation techniques continues to be developed to obtain optically pure compounds. The separation of enantiomers by chromatographic methods, such as high-performance liquid chromatography (HPLC), gas chromatography (GC), and capillary electrochromatography (CEC), has become one of increasingly important research contents in chemistry over the past few decades due to the demand for pharmaceuticals, agrochemical, and food analysis. The chiral stationary phase (CSP) is key to separating and analyzing chiral compounds for these chromatographic resolution methods. With the rapid development of materials science, diverse types of porous materials as CSP have been studied in recent years. This review mainly focuses on investigating chiral porous materials as CSP for high-performance liquid chromatography (HPLC), gas chromatography (GC), and capillary electrochromatography (CEC) over the past five years. The chiral porous materials include chiral metal-organic frameworks (CMOFs), chiral covalent organic frameworks (CCOFs), chiral porous organic cages (CPOCs), chiral metal-organic cages (CMOCs), chiral microporous organic networks (MONs), and chiral mesoporous silicas (CMSs). Chiral recognition mechanisms of novel chiral porous materials are also discussed briefly. Finally, the related problems and prospects for CSP were briefly discussed.

Contents

1 Introduction

2 CSP of HPLC

2.1 CMOFs used as CSP

2.2 CCOFs used as CSP

2.3 Other materials used as CSP

3 CSP of GC

3.1 CMOFs used as CSP

3.2 CPOCs used as CSP

3.3 CMOCs used as CSP

3.4 Other materials used as CSP

4 CSP for CEC

4.1 CMOFs used as CSP

4.2 CCOFs used as CSP

4.3 Other materials used as CSP

5 CSP for other chromatography

6 Chiral separation mechanism

7 Conclusion and outlook

()
表1 在以手性多孔材料为CSP的HPLC柱中具有较好拆分效果的外消旋体
Table 1 Separations of racemates on HPLC with chiral porous materials as CSP
图1 D-His-ZIF-8@SiO2核-壳微球的制备示意图[56]
Fig.1 Schematic demonstration for the preparation of D-His-ZIF-8@SiO2 core-shell microspheres[56]
图2 3D手性COF材料的合成步骤[66]
Fig.2 Synthesis of the 3D chiral COFs[66]
图3 CPOCs的结构式[86⇓⇓⇓~90]
Fig.3 The structure of CPOCs[86⇓⇓⇓~90]
图4 原位生长法制备以MDI-β-CD改性COF为CSP的开管柱[120]
Figure 4 Synthesis of MDI-β-CD-modified COF through the bottom-up strategy[120]
表2 以手性多孔材料为CSP的CEC柱对外消旋体的拆分
Table 2 Separations of racemates on chiral porous materials coated column of CEC
表3 本文中各手性固定相拆分的主要手性化合物
Table 3 The CSPs and the main separation compounds introduced in this paper
Types Types of materials Name of CSPs Main separation analytes ref
HPLC CMOFs [Cd2(d-cam)3] ·2Hdma·4dma alcohol, naphthol, ketone, and base compounds 48
γ-CDMOF aromatic alcohol 49
[Zn(L-tyr)]n(L-tyrZn) alcohols, amines, ketones, ethers, organic acids 50
[Zn4(btc)2(Hbtc)(L-His)2(H2O)4]·1.5H2O
{[Zn2(L-trp)2(bpe)2(H2O)2] ·2H2O·2NO3}n
[Co2(L-Trp)(INT)2(H2O)2(ClO4)]
[Co2(sdba)((L-Trp)2]
[Co(L-Glu)(H2O)·H2O]
[Cu(H2O)2(S-TA)2]·6H2O ibuprofen, benzoin, furoin, thalidomide, trans-2,3-
Diphenyloxirane, 1-phenyl-ethan-1-ol, and flavanone
51
[Zn(BDA)(bpe)]·2DMA sulfoxides, sec-alcohols and flavanones 52
[Zn(BDA)(bpa)]·2DMA
(R)-CuMOF-2 sec-alcohols, sulfoxides, epoxides, lactone, 1,3-dioxolan-2-one, and oxazolidinone 53
[Zn[(R)-1]2(NMF)2]·NMF sulfoxides, sec-alcohols, β-lactams, benzoins, flavanones and epoxides 54
[Nd3(D-cam)8(H2O)4Cl]n alcohols, amines, ketones, α-amino acids 55
D-his-ZIF-8@SiO2 alcohol, phenol, amine, ketone, and organic acid 56
Cu2((+)-Cam)2Dabco@SiO2 carboxylic acid, ketones and phenols 57
[Zn2(bdc)(L-lac)(dmf)](DMF) (±)-methyl phenyl sulfoxide 58
CCOFs BtaMth@SiO2 nitrotoluene, nitrochlorobenzene, beta-cypermethrin,
metconazole
64
biomolecule⊂COF 1 DL-tryptophan, DL-leucine, DL-threonine, DL-lysine, DL-aspartic acid, ofloxacin, propranolol hydrochloride, metoprolol tartrate, alanyl glutamine, chlorpheniramine, benzoin 65
(R, R)-CCOF-6 1-phenyl-2-propanol, 1-phenyl-1-pentanol, 1-phenyl-1-propanol and 1-(4-bromophenyl)ethanol 66
CMSs HOCMS (C14-L-AlaA) alcohols, ketones, amines, aldehydes and organic acids 75
CMPs MP-CDPs 1-phenyl-1-propanol, 3-chloro-1-phenyl -1-propanol, mandelic acid, D/L-prolinol 76
GC CMOFs MIL-101(Al)-Xs (Xs=S-2-Ppa, R-Epo,
(+)-Ac-l-Ta, l-Pro, 1S-(+)-Cam)
alcohols, amines, nitriles, esters and aldehydes 83
CMOM-3S aromatic alcohols and nitriles 84
PSO/CCS-3S aromatic alcohols, amines, nitriles, lactones, organic acid 85
CPOCs CC3-R/CC3-S chiral alcohols and amines 86
CC3-R chiral alcohols, diols, amines, alcohol amines, esters, ketones, ethers, halohydrocarbons, organic acids, amino acid methyl esters, and sulfoxides 87
CC10 chiral alcohols, esters, ketones, ethers, halohydrocarbons, epoxides, and organic acids 88
CC9 chiral alcohols, esters, ethers and epoxides 89
CC5 derivatized amino acids, alcohols, alcohol amines, esters, ethers, ketones, and epoxides 90
POC-1 alcohols, diols, esters, lactones, halohydrocarbons, ethers, epoxides, ketones and sulfoxides 91
CC9-OH alcohols, diols, halohydrocarbons, epoxides, esters, lactones, ketones, ethers, and organic acids 92
CC3R-OH chiral alcohols 93
CMOCs [Zn3L2] alcohols, diols, epoxides, ethers, halohydrocarbons, and esters 98
aMOP-A chiral alcohols, ethers, organic acids, amino acid derivatives 99
MOC-PA ethers, organic acids, ethers, amino acid derivatives 100
CCOFs CTpPa-1 (±)-1-phenylethanol; (±)-1-phenyl-1-propanol; (±)-limonene; (±)-methyl lactate 101
CMS HOCMS (C14-L-AlaA) chiral alcohols, aldehydes, esters, organic acids, epoxides, and amino acid derivatives 102
HOCMS (C14-L-Val) chiral alcohols, epoxides and amino acid derivatives 103
CMONs MON-TGC/MON-MSA/MON-NAC chiral alcohols 104
CEC CMOFs [Zn2(D-Cam)2(4,4'-bpy)]n DL-Phenylalanine, DL-Tyrosine 114
JLU-Liu23 epinephrine, isoprenaline, synephrine, terbutaline 115
Cu-SD@PD chiral Dns-amino acids 116
BSA@ZIF-8 epicatechin/catechin and salbutamol 117
CCOFs cellulase@poly(GMA-EDMA-SNW-1) (±)-atenolol,(±)-Metoprolol, (±)-bisoprolol,(±)-propranolol, (±)-esmolol,(±)-azelastine,(±)-warfarin, (±)-labetalol 118
β-CD COF (±)-sotalol, (±)-terbutaline, (±)-propranolol, (±)-Metoprolol, (±)-salbutamol and (±)-esmolol 119
MDI-β-CD-modified COF tryptophan, tyrosine, arginine, lysine, atenolol, labetalol, sotalol, and celiprolol 120
CPOCs CC3-R furoin, benzoin, alprenlol 121
CMOCs Zn3 L 2 1 Ofloxacin, Furoin, Benzoin, Omeprazole, Bendroflumethiazide 122
Zn3 L 2 2 Warfarin sodium, Ofloxacin, Mandelic acid, Ketoprofen
[Fe4 L 6 3](ClO4)8·Solvent Ofloxacin, 1-(Naphthalen-1-yl)ethanol, Flavanone, Trans-stilbene oxide
Zn3L2@poly(IL-co-EDMA) mandelic acid, benzoin, furoin 123
[1]
Lee C J, Qiu T A, Sweedler J V. Biochim. Et Biophys. Acta BBA Proteins Proteom., 2020, 1868(11): 140482.
[2]
Engel K H. J. Agric. Food Chem., 2020, 68(38): 10265.

doi: 10.1021/acs.jafc.0c01512     URL    
[3]
Pinto M M M, Fernandes C, Tiritan M E. Molecules, 2020, 25: 1931.

doi: 10.3390/molecules25081931     URL    
[4]
Alvarez-Rivera G, Bueno M, Ballesteros-Vivas D, Cifuentes A. Trac Trends Anal. Chem., 2020, 123: 115761.

doi: 10.1016/j.trac.2019.115761     URL    
[5]
Carrão D B, Perovani I S, de Albuquerque N C P, de Oliveira A R M. Trac Trends Anal. Chem., 2020, 122: 115719.

doi: 10.1016/j.trac.2019.115719     URL    
[6]
Yao G J, Gao J, Zhang C T, Jiang W Q, Wang P, Liu X K, Liu D H, Zhou Z Q. Environ. Sci. Pollut. Res., 2019, 26(2): 1558.

doi: 10.1007/s11356-018-3594-6     URL    
[7]
Menestrina F, Ronco N R, Romero L M, Castells C B. Microchem. J., 2018, 140: 52.

doi: 10.1016/j.microc.2018.03.037     URL    
[8]
Ribeiro C, Santos C, Gonçalves V, Ramos A, Afonso C, Tiritan M. Molecules, 2018, 23(2): 262.

doi: 10.3390/molecules23020262     URL    
[9]
Gübitz G. Chromatographia, 1990, 30(9/10): 555.

doi: 10.1007/BF02269804     URL    
[10]
Liu M X, Li X J, Bai Y, Liu H W. Chinese Journal of Chromatography, 2020, 38: 317.
( 刘明霞, 李向军, 白玉, 刘虎威. 色谱, 2020, 38: 317.)

doi: 10.3724/SP.J.1123.2019.10019    
[11]
Teixeira J, Tiritan M E, Pinto M M M, Fernandes C. Molecules, 2019, 24(5): 865.

doi: 10.3390/molecules24050865     URL    
[12]
Adhikari S, Lee W. J. Pharm. Investig., 2018, 48(3): 225.

doi: 10.1007/s40005-017-0348-2     URL    
[13]
Schmarr H G, Mathes M, Wall K, Metzner F, Fraefel M. J. Chromatogr. A, 2017, 1516: 135.

doi: 10.1016/j.chroma.2017.08.010     URL    
[14]
Lubomirsky E, PadrÓ J M, di Loreto H, Castells C B. Electrophoresis, 2017, 38(15): 1948.

doi: 10.1002/elps.201600528     pmid: 28432770
[15]
Xie S M, Yuan L M. J. Sep. Sci., 2017, 40(1): 124.

doi: 10.1002/jssc.201600808     URL    
[16]
Weng X L, Bao Z B, Luo F, Su B G, Yang Y W, Ren Q L. Prog. Chem., 2014, 26: 415.
( 翁西伦, 鲍宗必, 罗飞, 苏宝根, 杨亦文, 壬其龙. 化学进展, 2014, 26: 415.)

doi: 10.7536/PC130776    
[17]
Mohamedali M, Ibrahim H, Henni A. Metal-Organic Frameworks. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2018:123/161.
[18]
Jin E, Lee S, Kang E, Kim Y, Choe W. Coord. Chem. Rev., 2020, 425: 213526.

doi: 10.1016/j.ccr.2020.213526     URL    
[19]
Lee S, Jeong H, Nam D, Lah M S, Choe W. Chem. Soc. Rev., 2021, 50(1): 528.

doi: 10.1039/D0CS00443J     URL    
[20]
Haase F, Lotsch B V. Chem. Soc. Rev., 2020, 49(23): 8469.

doi: 10.1039/D0CS01027H     URL    
[21]
Mendes R F, Figueira F, Leite J P, Gales L, Almeida Paz F A. Chem. Soc. Rev., 2020, 49(24): 9121.

doi: 10.1039/D0CS00883D     URL    
[22]
Li H Y, Zhao S N, Zang S Q, Li J. Chem. Soc. Rev., 2020, 49(17): 6364.

doi: 10.1039/C9CS00778D     URL    
[23]
Wu Q, Sun Y M, Gao J, Dong S Q, Luo G Y, Li H, Zhao L. Trac Trends Anal. Chem., 2017, 95: 140.

doi: 10.1016/j.trac.2017.08.005     URL    
[24]
Duan X L, Fu Y, Zhang J L, Li W. Prog. Chem., 2013, 25(8): 1272.
( 段小丽, 付雁, 张金利, 李韡. 化学进展, 2013, 25(8): 1272.)
[25]
Yu N, Ding H M, Wang C. Prog. Chem., 2016, 28(12): 1721.

doi: 10.7536/PC160727    
( 喻娜, 丁慧敏, 汪成. 化学进展, 2016, 28(12): 1721.)

doi: 10.7536/PC160727    
[26]
Zhang H, Zhou Y J, Song X K. Prog. Chem., 2015, 27(2/3): 174.

doi: 10.7536/PC140925    
( 张慧, 周雅静, 宋肖锴. 化学进展, 2015, 27(2/3)
[27]
Sun Z F, Hou J J, Li L S, Tang Z Y. Coord. Chem. Rev., 2020, 425: 213481.

doi: 10.1016/j.ccr.2020.213481     URL    
[28]
Wu Q, Lv H, Zhao L. Trac Trends Anal. Chem., 2020, 129: 115941.

doi: 10.1016/j.trac.2020.115941     URL    
[29]
Qian H L, Yang C X, Wang W L, Yang C, Yan X P. J. Chromatogr. A, 2018, 1542: 1.

doi: 10.1016/j.chroma.2018.02.023     URL    
[30]
Tang W Q, Xu J Y, Gu Z Y. Chem. Asian J., 2019, 14(20): 3462.

doi: 10.1002/asia.v14.20     URL    
[31]
Xie S M, Yuan L M., J. Sep. Sci., 2019, 42: 6.

doi: 10.1002/jssc.v42.1     URL    
[32]
Gus’kov V Y, Maistrenko V N. J. Anal. Chem., 2018, 73(10): 937.

doi: 10.1134/S1061934818100027     URL    
[33]
Zhang Y, Jin X N, Ma X F, Wang Y. Anal. Methods, 2021, 13(1): 8.

doi: 10.1039/D0AY01831G     URL    
[34]
Li G, Dai X, Min Y X, Yu C, Ikai T, Zhang L L, Shen J, Okamoto Y. Cellulose, 2021, 28(1): 347.

doi: 10.1007/s10570-020-03514-x     URL    
[35]
Yang Y, Hu J W, Fang H, Hou X B, Hou Z, Sang L H, Yang X Y. J. Chromatogr. A, 2020, 1632: 461598.

doi: 10.1016/j.chroma.2020.461598     URL    
[36]
Cai L Z, Xue M Y, Lun J, Li S, Yu J, Guo X J. Electrophoresis, 2020, 41(24): 2092.

doi: 10.1002/elps.v41.24     URL    
[37]
ALOthman Z A, ALanazi A G, Suhail M, Ali I. J. Chromatogr. B, 2020, 1157: 122335.

doi: 10.1016/j.jchromb.2020.122335     URL    
[38]
Merino M E D, Lancioni C, PadrÓ J M, Castells C B. J. Chromatogr. A, 2020, 1624: 461240.

doi: 10.1016/j.chroma.2020.461240     URL    
[39]
Chen X, Qiao Z W, Hou B, Jiang H, Gong W, Dong J Q, Li H Y, Cui Y, Liu Y. Nano Res., 2021, 14(2): 466.

doi: 10.1007/s12274-020-2905-7     URL    
[40]
Chang C L, Qi X Y, Zhang J W, Qiu Y M, Li X J, Wang X, Bai Y, Sun J L, Liu H W. Chem. Commun., 2015, 51(17): 3566.

doi: 10.1039/C4CC09988E     URL    
[41]
Okur S, Qin P, Chandresh A, Li C, Zhang Z J, Lemmer U, Heinke L. Angew. Chem. Int. Ed., 2021, 60(7): 3566.

doi: 10.1002/anie.v60.7     URL    
[42]
Zhang Y, Jin X, Ma X, Wang Y. Anal. Methods, 2021, 13: 8.

doi: 10.1039/D0AY01831G     URL    
[43]
Li L, Lu Z C, Chen Y L, A W W, Li G K, Hu Y L. Journal of Instrumental Analysis, 2019, 38: 618.
( 李亮, 卢梓程, 陈彦龙, 阿文伟, 李攻科, 胡玉玲. 分析测试学报, 2019, 38: 618.)
[44]
Zhang M, Pu Z J, Chen X L, Gong X L, Zhu A X, Yuan L M. Chem. Commun., 2013, 49(45): 5201.

doi: 10.1039/c3cc41966e     URL    
[45]
Kuang X, Ma Y, Su H, Zhang J N, Dong Y B, Tang B. Anal. Chem., 2014, 86(2): 1277.

doi: 10.1021/ac403674p     pmid: 24380495
[46]
Kong J, Zhang M, Duan A H, Zhang J H, Yang R, Yuan L M. J. Sep. Science, 2015, 38(4): 556.

doi: 10.1002/jssc.201401034     URL    
[47]
Zhang J, Chen Z L. J. Chromatogr. A, 2017, 1530: 1.

doi: S0021-9673(17)31587-X     pmid: 29150064
[48]
Zhang M, Chen X L, Zhang J H, Kong J, Yuan L M. Chirality, 2016, 28(4): 340.

doi: 10.1002/chir.22588     pmid: 26901397
[49]
Yang C X, Zheng Y Z, Yan X P. RSC Adv., 2017, 7(58): 36297.

doi: 10.1039/C7RA06558B     URL    
[50]
Zhang J H, Nong R Y, Xie S M, Wang B J, Ai P, Yuan L M. Electrophoresis, 2017, 38(19): 2513.

doi: 10.1002/elps.v38.19     URL    
[51]
Corella-Ochoa M N, Tapia J B, Rubin H N, Lillo V, González-Cobos J, Núñez-Rico J L, Balestra S R G, Almora-Barrios N, LledÓs M, Güell-Bara A, Cabezas-GimÉnez J, Escudero-Adán E C, Vidal-Ferran A, Calero S, Reynolds M, Martí-Gastaldo C, Galán-MascarÓs J R. J. Am. Chem. Soc., 2019, 141(36): 14306.

doi: 10.1021/jacs.9b06500     pmid: 31426632
[52]
Tanaka K, Hotta N, Nagase S, Yoza K. New J. Chem., 2016, 40(6): 4891.

doi: 10.1039/C6NJ00090H     URL    
[53]
Tanaka K, Kawakita T, Morawiak M, Urbanczyk-Lipkowska Z. CrystEngComm, 2019, 21(3): 487.

doi: 10.1039/C8CE01791C     URL    
[54]
Tanaka K, Muraoka T, Otubo Y, Takahashi H, Ohnishi A. RSC Adv., 2016, 6(26): 21293.

doi: 10.1039/C5RA26520G     URL    
[55]
Zhang P, Wang L, Zhang J H, He Y J, Li Q, Luo L, Zhang M, Yuan L M. J. Liq. Chromatogr. Relat. Technol., 2018, 41(15/16): 903.

doi: 10.1080/10826076.2018.1537978     URL    
[56]
Yu Y Y, Xu N Y, Zhang J H, Wang B J, Xie S M, Yuan L M. ACS Appl. Mater. Interfaces, 2020, 12(14): 16903.

doi: 10.1021/acsami.0c01023     URL    
[57]
Wang C J, Zhang L, Li X L, Yu A, Zhang S S. Talanta, 2020, 218: 121155.

doi: 10.1016/j.talanta.2020.121155     URL    
[58]
Wang X, Lamprou A, Svec F, Bai Y, Liu H W. J. Sep. Sci., 2016, 39(23): 4544.

doi: 10.1002/jssc.201600810     pmid: 27730732
[59]
Li X L, Cai S L, Sun B, Yang C Q, Zhang J, Liu Y. Matter, 2020, 3(5): 1507.

doi: 10.1016/j.matt.2020.09.007     URL    
[60]
Han X, Yuan C, Hou B, Liu L J, Li H Y, Liu Y, Cui Y. Chem. Soc. Rev., 2020, 49(17): 6248.

doi: 10.1039/D0CS00009D     URL    
[61]
Hou B, Yang S, Yang K W, Han X, Tang X H, Liu Y, Jiang J W, Cui Y. Angew. Chem. Int. Ed., 2021, 60(11): 6086.

doi: 10.1002/anie.v60.11     URL    
[62]
Kang X, Wu X W, Han X, Yuan C, Liu Y, Cui Y. Chem. Sci., 2020, 11(6): 1494.

doi: 10.1039/C9SC04882K     URL    
[63]
Han X, Zhang J, Huang J J, Wu X W, Yuan D Q, Liu Y, Cui Y. Nat. Commun., 2018, 9(1): 1.

doi: 10.1038/s41467-017-02088-w     URL    
[64]
Zhang K, Cai S L, Yan Y L, He Z H, Lin H M, Huang X L, Zheng S R, Fan J, Zhang W G. J. Chromatogr. A, 2017, 1519: 100.

doi: S0021-9673(17)31312-2     pmid: 28899554
[65]
Zhang S N, Zheng Y L, An H D, Aguila B, Yang C X, Dong Y Y, Xie W, Cheng P, Zhang Z J, Chen Y, Ma S Q. Angew. Chem. Int. Ed., 2018, 57(51): 16754.

doi: 10.1002/anie.v57.51     URL    
[66]
Han X, Huang J J, Yuan C, Liu Y, Cui Y. J. Am. Chem. Soc., 2018, 140(3): 892.

doi: 10.1021/jacs.7b12110     URL    
[67]
Wan Y, Zhao D Y. Chem. Rev., 2007, 107(7): 2821.

doi: 10.1021/cr068020s     URL    
[68]
Atluri R, Hedin N, Garcia-Bennett A E. J. Am. Chem. Soc., 2009, 131(9): 3189.

doi: 10.1021/ja8096477     URL    
[69]
Newham G, Mathew R K, Wurdak H, Evans S D, Ong Z Y. J. Colloid Interface Sci., 2021, 584: 669.

doi: 10.1016/j.jcis.2020.10.133     URL    
[70]
Verma P, Kuwahara Y, Mori K, Raja R, Yamashita H. Nanoscale, 2020, 12(21): 11333.

doi: 10.1039/D0NR00732C     URL    
[71]
Wu S H, Mou C Y, Lin H P. Chem. Soc. Rev., 2013, 42(9): 3862.

doi: 10.1039/c3cs35405a     URL    
[72]
Ling D S, Lee N, Hyeon T. Acc. Chem. Res., 2015, 48(5): 1276.

doi: 10.1021/acs.accounts.5b00038     URL    
[73]
Wang J, Ma Q Q, Wang Y Q, Li Z H, Li Z H, Yuan Q. Chem. Soc. Rev., 2018, 47(23): 8766.

doi: 10.1039/c8cs00658j     pmid: 30306180
[74]
Cui M S, Zhang W, Xie L Y, Chen L, Xu L. Molecules, 2020, 25(17): 3899.

doi: 10.3390/molecules25173899     URL    
[75]
Peng B, Fu S G, Li Y X, Zhang J H, Xie S M, Li L, Lyu Y, Duan A H, Chen X X, Yuan L M. Chem. Res. Chin. Univ., 2019, 35(6): 978.

doi: 10.1007/s40242-019-9162-x    
[76]
Chen Y L, Lu Z C, Li G K, Hu Y L. J. Chromatogr. A, 2020, 1626: 461341.

doi: 10.1016/j.chroma.2020.461341     URL    
[77]
Xie S M, Zhang Z J, Wang Z Y, Yuan L M. J. Am. Chem. Soc., 2011, 133(31): 11892.

doi: 10.1021/ja2044453     URL    
[78]
Xie S M, Zhang X H, Zhang Z J, Yuan L M. Anal. Lett., 2013, 46(5): 753.

doi: 10.1080/00032719.2012.735306     URL    
[79]
Yang J R, Xie S M, Liu H, Zhang J H, Yuan L M. Chromatographia, 2015, 78(7/8): 557.

doi: 10.1007/s10337-015-2863-5     URL    
[80]
Xie S M, Wang B J, Zhang X H, Zhang J H, Zhang M, Yuan L M. Chirality, 2014, 26(1): 27.

doi: 10.1002/chir.v26.1     URL    
[81]
Zhang X H, Xie S M, Duan A H, Wang B J, Yuan L M. Chromatographia, 2013, 76(13/14): 831.

doi: 10.1007/s10337-013-2484-9     URL    
[82]
Xue X, Zhang M, Xie S, Yuan L. Acta Chromatogr., 2015, 27(1): 15.

doi: 10.1556/AChrom.27.2015.1.2     URL    
[83]
Kou W T, Yang C X, Yan X P. J. Mater. Chem. A, 2018, 6(37): 17861.

doi: 10.1039/C8TA06804F     URL    
[84]
Zhang S Y, Yang C X, Shi W, Yan X P, Cheng P, Wojtas L, Zaworotko M J. Chem, 2017, 3(2): 281.

doi: 10.1016/j.chempr.2017.07.004     URL    
[85]
Wang Z M, Yang C X, Yan X P. J. Chromatogr. A, 2019, 1608: 460420.

doi: 10.1016/j.chroma.2019.460420     URL    
[86]
Kewley A, Stephenson A, Chen L J, Briggs M E, Hasell T, Cooper A I. Chem. Mater., 2015, 27(9): 3207.

doi: 10.1021/acs.chemmater.5b01112     URL    
[87]
Zhang J H, Xie S M, Chen L, Wang B J, He P G, Yuan L M. Anal. Chem., 2015, 87(15): 7817.

doi: 10.1021/acs.analchem.5b01512     URL    
[88]
Zhang J H, Xie S M, Wang B J, He P G, Yuan L M. J. Chromatogr. A, 2015, 1426: 174.

doi: 10.1016/j.chroma.2015.11.038     URL    
[89]
Xie S M, Zhang J H, Fu N, Wang B J, Chen L, Yuan L M. Anal. Chimica Acta, 2016, 903: 156.

doi: 10.1016/j.aca.2015.11.030     URL    
[90]
Zhang J H, Xie S M, Wang B J, He P G, Yuan L M. J. Sep. Sci., 2018, 41(6): 1385.

doi: 10.1002/jssc.201701095     URL    
[91]
Li H X, Xie T P, Xie S M, Wang B J, Zhang J H, Yuan L M. Chromatographia, 2020, 83(6): 703.

doi: 10.1007/s10337-020-03895-y     URL    
[92]
Li H X, Xie T P, Yan K Q, Xie S M, Wang B J, Zhang J H, Yuan L M. Microchimica Acta, 2020, 187(5): 1.

doi: 10.1007/s00604-019-3921-8     URL    
[93]
Wang Z M, Cui Y Y, Yang C X, Yan X P. ACS Appl. Nano Mater., 2020, 3(1): 479.

doi: 10.1021/acsanm.9b02053     URL    
[94]
Vardhan H, Yusubov M, Verpoort F. Coord. Chem. Rev., 2016, 306: 171.

doi: 10.1016/j.ccr.2015.05.016     URL    
[95]
Pan M, Wu K, Zhang J H, Su C Y. Coord. Chem. Rev., 2019, 378: 333.

doi: 10.1016/j.ccr.2017.10.031     URL    
[96]
Chen L J, Yang H B, Shionoya M. Chem. Soc. Rev., 2017, 46(9): 2555.

doi: 10.1039/C7CS00173H     URL    
[97]
Chen L, Chen Q H, Wu M Y, Jiang F L, Hong M C. Acc. Chem. Res., 2015, 48(2): 201.

doi: 10.1021/ar5003076     URL    
[98]
Xie S M, Fu N, Li L, Yuan B Y, Zhang J H, Li Y X, Yuan L M. Anal. Chem., 2018, 90(15): 9182.

doi: 10.1021/acs.analchem.8b01670     URL    
[99]
Tang B, Sun C Y, Wang W, Geng L N, Sun L Q, Luo A Q. Chirality, 2020, 32(9): 1178.

doi: 10.1002/chir.23263     pmid: 32623797
[100]
Tang B, Zhang X, Geng L N, Sun L Q, Luo A Q. J. Chromatogr. A, 2021, 1636: 461792.

doi: 10.1016/j.chroma.2020.461792     URL    
[101]
Qian H L, Yang C X, Yan X P. Nat. Commun., 2016, 7(1): 1.
[102]
Li Y X, Fu S G, Zhang J H, Xie S M, Li L, He Y Y, Zi M, Yuan L M. J. Chromatogr. A, 2018, 1557: 99.

doi: 10.1016/j.chroma.2018.05.005     URL    
[103]
He Y Y, Pu Q, Zhang J H, Xie S M, Chen X X, Yuan L M. Separation Science Plus, 2019, 2(12): 432.

doi: 10.1002/sscp.v2.12     URL    
[104]
Cui Y Y, Yang C X, Yan X P. ACS Appl. Mater. Interfaces, 2020, 12(4): 4954.

doi: 10.1021/acsami.9b22023     URL    
[105]
Ahmed M A, Felisilda B M B, Quirino J P. Anal. Chimica Acta, 2019, 1088: 20.

doi: 10.1016/j.aca.2019.08.016     URL    
[106]
Mangelings D, Vander Heyden Y. Electrophoresis, 2011, 32(19): 2583.

doi: 10.1002/elps.201100009     pmid: 21910129
[107]
Ding W, Ma M X, Du Y X, Chen C, Ma X F. Microchimica Acta, 2020, 187(12): 1.

doi: 10.1007/s00604-019-3921-8     URL    
[108]
Li Z T, Mao Z K, Chen Z L. Microchimica Acta, 2019, 186(7): 1.

doi: 10.1007/s00604-018-3127-5     URL    
[109]
Li Z T, Mao Z K, Hu C J, Li Q Y, Chen Z L. J. Chromatogr. A, 2020, 1625: 461269.

doi: 10.1016/j.chroma.2020.461269     URL    
[110]
Fan S T, Guan J, Yan F, Zhang D X, Shi S, Wang S L. Separation Science Plus, 2020, 3(6): 255.

doi: 10.1002/sscp.v3.6     URL    
[111]
Aydoğan c. Trac Trends Anal. Chem., 2019, 121: 115693.

doi: 10.1016/j.trac.2019.115693     URL    
[112]
Fanali C. Trac Trends Anal. Chem., 2019, 120: 115640.

doi: 10.1016/j.trac.2019.115640     URL    
[113]
Fei Z X, Zhang M, Zhang J H, Yuan L M. Anal. Chimica Acta, 2014, 830: 49.

doi: 10.1016/j.aca.2014.04.054     URL    
[114]
Ye N S, Ma J C, An J X, Li J, Cai Z M, Zong H. RSC Adv., 2016, 6(47): 41587.

doi: 10.1039/C6RA02741E     URL    
[115]
Pan C J, Lv W, Niu X Y, Wang G X, Chen H L, Chen X G. J. Chromatogr. A, 2018, 1541: 31.

doi: 10.1016/j.chroma.2018.02.015     URL    
[116]
Li Z T, Mao Z K, Zhou W, Chen Z L. Talanta, 2020, 218: 121160.

doi: 10.1016/j.talanta.2020.121160     URL    
[117]
Wang T T, Wang Y, Zhang Y L, Cheng Y H, Ye J N, Chu Q C, Cheng G F. J. Chromatogr. A, 2020, 1625: 461284.

doi: 10.1016/j.chroma.2020.461284     URL    
[118]
Xu S J, Wang Y Y, Li W, Ji Y B. J. Chromatogr. A, 2019, 1602: 481.

doi: 10.1016/j.chroma.2019.06.018     URL    
[119]
Wang Y Y, Zhuo S Q, Hou J W, Li W, Ji Y B. ACS Appl. Mater. Interfaces, 2019, 11(51): 48363.

doi: 10.1021/acsami.9b16720     URL    
[120]
Li Y J, Lin X T, Qin S L, Gao L D, Tang Y M, Liu S R, Wang Y Y. Chirality, 2020, 32(7): 1008.

doi: 10.1002/chir.v32.7     URL    
[121]
Zhang J H, Zhu P J, Xie S M, Zi M, Yuan L M. Anal. Chimica Acta, 2018, 999: 169.

doi: 10.1016/j.aca.2017.11.021     URL    
[122]
He L X, Tian C R, Zhang J H, Xu W, Peng B, Xie S M, Zi M, Yuan L M. Electrophoresis, 2020, 41(1/2): 104.

doi: 10.1002/elps.v41.1-2     URL    
[123]
Li Z T, Mao Z K, Zhou W, Chen Z L. Anal. Chimica Acta, 2020, 1094: 160.

doi: 10.1016/j.aca.2019.10.002     URL    
[124]
Jakubec P, Douša M, Nováková L. J. Sep. Sci., 2020, 43(13): 2675.

doi: 10.1002/jssc.202000085     pmid: 32233109
[125]
Deng H M, Ji Y, Tang S, Yang F, Tang G L, Shi H W, Lee H K. J. Chromatogr. A, 2020, 1634: 461684.

doi: 10.1016/j.chroma.2020.461684     URL    
[126]
Harps L C, Joseph J F, Parr M K. J. Pharm. Biomed. Anal., 2019, 162: 47.

doi: 10.1016/j.jpba.2018.08.061     URL    
[127]
West C. Trac Trends Anal. Chem., 2019, 120: 115648.

doi: 10.1016/j.trac.2019.115648     URL    
[128]
Felletti S, Ismail O H, De Luca C, Costa V, Gasparrini F, Pasti L, Marchetti N, Cavazzini A, Catani M. Chromatographia, 2019, 82(1): 65.

doi: 10.1007/s10337-018-3606-1    
[129]
Schenk C, Kutzscher C, Drache F, Helten S, Senkovska I, Kaskel S. ACS Appl. Mater. Interfaces, 2017, 9(3): 2006.

doi: 10.1021/acsami.6b13092     URL    
[130]
Zhang M, Zhong S, Liu H, Yang K L, Rao G X. China Pharm., 2018, 29(13): 1764.
( 张美, 钟帅, 刘涵, 杨宽林, 饶高雄. 中国药房, 2018, 29(13): 1764.)
[131]
Fu Q Q, Ran Y M, Zhang X, Ge J P. ACS Appl. Mater. Interfaces, 2020, 12(39): 44058.

doi: 10.1021/acsami.0c12443     URL    
[132]
Tang H T, Yang K K, Wang K Y, Meng Q, Wu F fang Y, Wu X, Li Y G, Zhang W C, Luo Y F, Zhu C F, Zhou H C. Chem. Commun., 2020, 56(63): 9016.

doi: 10.1039/D0CC00897D     URL    
[133]
Dalgliesh C E. J. Chem. Soc., 1952: 3940.
[134]
Lämmerhofer M. J. Chromatogr. A, 2010, 1217(6): 814.

doi: 10.1016/j.chroma.2009.10.022     pmid: 19906381
[1] 孙晓杰, 邢钧, 翟毓秀, 李兆新. 离子液体在气相色谱固定相中的应用[J]. 化学进展, 2014, 26(04): 647-656.
[2] 翁西伦, 鲍宗必, 罗飞, 苏宝根, 杨亦文, 任其龙. 纤维素类手性色谱固定相的制备及其应用[J]. 化学进展, 2014, 26(0203): 415-423.
[3] 谢生明, 袁黎明. 金属-有机骨架材料用于色谱固定相[J]. 化学进展, 2013, 25(10): 1763-1770.
[4] 吴亮, 沐春磊, 张群林*, 吕忱, 张晓悦. 纳米粒子参与的鲁米诺化学发光及其分析应用[J]. 化学进展, 2013, 25(07): 1187-1197.
[5] 赵贝贝, 张艳, 唐涛, 王风云, 张维冰, 李彤. 硅胶基质高效液相色谱填料研究进展[J]. 化学进展, 2012, 24(01): 122-130.
[6] 钟亚兰 蒋序林. 高效液相色谱表征高聚物*[J]. 化学进展, 2010, 22(04): 706-712.
[7] 陈英 张锴 何锡文 张玉奎. 质谱技术鉴定细胞中组蛋白翻译后修饰的研究进展*[J]. 化学进展, 2010, 22(04): 713-719.
[8] 柴欣生,付时雨,莫淑欢,万顺刚,朱俊勇. 静态顶空气相色谱技术*[J]. 化学进展, 2008, 20(05): 762-766.
[9] 周瑛,叶丽,竹鑫平. HPLC-ICP-MS在食品中硒和砷形态分析及其生物有效性研究中的应用*[J]. 化学进展, 2007, 19(06): 982-995.
[10] 李莉,字敏,任朝兴,袁黎明. 气相色谱手性固定相研究进展*[J]. 化学进展, 2007, 19(0203): 393-403.
[11] 袁瑞娟,王怀锋,刘丹宁,郭玉高,付华锋. 毛细管电色谱技术研究进展*[J]. 化学进展, 2006, 18(09): 1181-1187.
[12] 何永祝,庞浩,廖兵. 纤维素衍生物手性固定相研究进展[J]. 化学进展, 2006, 18(0708): 957-965.
[13] 彭夫敏,王俊德,李海洋,张西咸,李安林. 快速气相色谱研究*[J]. 化学进展, 2006, 18(0708): 974-986.
[14] 敦惠娟,赵惠敏,陈立仁. 氧化锆基质HPLC 柱填料研究进展*[J]. 化学进展, 2005, 17(06): 1116-1122.
[15] 李来生,达世禄,冯钰锜,刘敏. 杯芳烃在液相色谱、毛细管电泳和电色谱中的应用进展**[J]. 化学进展, 2005, 17(03): 523-530.