English
新闻公告
More
化学进展 2020, Vol. 32 Issue (9): 1316-1333 DOI: 10.7536/PC200219 前一篇   后一篇

• 综述 •

固相萃取分离铀

李波1,2(), 马利建3,**, 罗宁1,2, 李首建3, 陈云明1,2, 张劲松1,2,**   

  1. 1. 中国核动力研究设计院 成都 610213
    2. 四川省放射性同位素工程技术研究中心 成都 610213
    3. 四川大学化学学院 成都 610064
  • 收稿日期:2020-02-18 修回日期:2020-03-10 出版日期:2020-09-24 发布日期:2020-03-31
  • 通讯作者: 马利建, 张劲松
  • 作者简介:
    ** Corresponding author e-mail:
  • 基金资助:
    *国家自然科学基金项目(21771128, 21976125); 中国核动力研究院核技术应用项目(16JS1807, 18JS1808)

Extraction and Separation of Uranium via Solid Phase Extraction

Bo Li1,2(), Lijian Ma3,**, Ning Luo1,2, Shoujian Li3, Yunming Chen1,2, Jinsong Zhang1,2,**   

  1. 1. Nuclear Power Institute of China, Chengdu 610213, China
    2. Radioisotope Engineering Technology Research Center of Sichuan, Chengdu 610213, China
    3. College of Chemistry, Sichuan University, Chengdu 610064, China
  • Received:2020-02-18 Revised:2020-03-10 Online:2020-09-24 Published:2020-03-31
  • Contact: Lijian Ma, Jinsong Zhang
  • Supported by:
    the National Natural Science Foundation of China(21771128, 21976125); the Nuclear Technology Application Foundaion of Nuclear Power Institute of China(16JS1807, 18JS1808)

铀是重要的核工业原料,也是一种有较强化学和生物毒性的重金属。从各类含铀水体系中分离和回收铀对缓解铀资源短缺,保护人类健康和生态环境安全都具有重要的科学和实际意义。本文简要回顾和评述了近15年来具有代表性的新型固相萃取材料及其在铀分离方面的应用研究,并对相关材料在铀分离领域的应用前景进行了分析和展望。

Uranium is an important raw material in the nuclear industry. Besides, uranium is a heavy metal with higher chemical and biological toxicity. Therefore, it is of great scientific and practical significance to efficiently separate and recover uranium from various uranium-containing aqueous systems for alleviating the shortage of uranium resources, and protecting human health and ecological environment safety. In the review, all kinds of representative solid phase extractants developed in the recent 15 years for uranium separation and recovery are briefly summarized, and the prospect and potential research directions of the solid phase extractants are also introduced.

Contents

1 Introduction

2 Solid phase extractants for uranium separation

2.1 Inorganic materials

2.2 Polymer materials

2.3 Carbonaceous materials

2.4 Metal-organic frameworks materials

2.5 Other solid phase extractants

2.6 Evaluation of the separation performance of various materials toward uranium

3 Conclusion and outlook

()
图1 近15年来每年发表的关于铀固相萃取方面的文章数量(资料来源:web of science,检索时间: 2020年1月)
Fig.1 Numbers of annually published articles on the solid phase extraction of uranium in the recent 15 years(source:web of science, 2020-01 )
图2 铀与赤铁矿(Fe2O3)和nZVI反应过程中不同时间的STEM-XEDS映射图[5]
Fig.2 STEM-XEDS mappings of uranium reactions with hematite(Fe2O3) and nZVI at different times[5]
图3 (a)POMN竞争吸附模拟海水中的铀,(b)POMN分散在水中及其磁分离[16]
Fig.3 (a) Competitive adsorption of uranium on POMN in simulated seawater,(b)Water dispersion of POMN and magnetic separation[16]
表1 各磁性纳米材料对铀的吸附容量对比
Table 1 Comparison of adsorption capacity of uranium on various inorganic materials(T = 298 K)
图4 (a) KMS-1吸附铀前(左)后(右)的形貌,(b) KMS-1通过交换层间K+来捕获UO22+离子[7]
Fig.4 (a) SEM images of KMS-1(left) and UO22+-exchanged KMS-1(right),(b) Mechanism of capture of UO22+ ions by KMS-1 through exchange of its interlayer potassium cations[7]
图5 (a) MoS2-g-PDMA的合成机理,(b) MoS2-g-PDMA吸附铀可能的机理[53]
Fig.5 (a) The schematic for synthesis of MoS2-g-PDMA,(b) Possible sorption mechanism of MoS2-g-PDMA towards uranium[53]
表2 对比各种双层氢氧化物对铀的吸附容量
Table 2 Comparison of adsorption capacity of uranium on various double hydroxides
图6 水合插层策略制备Ti3C2Tx及其对铀的分离[65]
Fig.6 Hydrated intercalation strategy synthesis of Ti3C2Tx MXene for efficient uranium separation[65]
图7 聚丙烯无纺布表面离子印迹聚合过程[87]
Fig.7 Preparation of surface ion-imprinted polypropylene nonwoven fabric[87]
图8 CPT-T吸附铀可能的机理[99]
Fig.8 Possible sorption mechanism of CPT-T towards uranium[99]
图9 (a)CPT-IHEP1的合成过程,(b)实验和模拟的CPT-IHEP1的PXRD结构[102]
Fig.9 (a)Synthetic procedures for COF-IHEP1,(b)experiment(black)and predicted(red)PXRD patterns of CPT-IHEP1[102]
表3 对比各种聚合物对铀的吸附容量
Table 3 Comparison of adsorption capacity of uranium on various polymer materials (T = 298 K)
表4 对比各种炭质材料对铀的吸附容量
Table 4 Comparison of adsorption capacity of uranium on various carbon materials (T = 298 K)
图10 偕胺肟接枝水热炭(AO-HTC-DAMN)的制备过程[115]
Fig.10 Preparation of amidoxime-anchored AO-HTC-DAMN[115]
图11 DFT计算提出的Urea-GO与铀酰离子的配位机理[135]
Fig.11 Proposed ligand exchange mechanism of uranyl extraction based on DFT calculation[135]
图12 ND-AO的制备及其可能的吸附机理[159]
Fig.12 Preparation of ND-AO and the possible adsorption mechanism[159]
图13 UiO-66-AO的合成[165]
Fig.13 Synthetic route of UiO-66-AO[165]
表5 对比各种COFs对铀的吸附容量
Table 5 Comparison of adsorption capacity of uranium on various COFs (T = 298 K)
图14 MA-TMA吸附铀前后颜色变化(a)和(b)及配位机理(c)和(d)[180]
Fig.14 (a)and(b)Color change after MA-TMA adsorption of uranium , (c)and(d)possible coordination mechanism[180]
图15 氢键超分子吸附铀后结构形貌变化及配位机理[181]
Fig.15 Morphology and coordination mechanism of HSOF adsorbed uranium[181]
[1]
Shou S, Zhang X L. Energy, 2010, 35: 4282.
[2]
Wang H, Ma L, Cao K, Geng J, Liu J, Song Q, Yang X, Li S.J. Hazard. Mater., 2012, 229: 321.
[3]
Zhang X F, Ding C L, Liu H, Liu L H, Zhao C Q.Toxicol., 2011, 286: 75.
[4]
Gu B, Liang L, Dickey M J, Yin X, Dai S. Environ. Sci. Technol., 1998, 32: 3366.
[5]
Ling L, Zhang W X.J. Am. Chem. Soc., 2015, 137: 2788.
[6]
Li X F, Li Y, Wu Q X, Zhang M C, Guo X H, Li X, Ma L J, Li S J. Chem. Eng J., 2019, 365: 70.
[7]
Manos M J, Kanatzidis M G.J. Am. Chem. Soc., 2012, 134: 16441.
[8]
John S A, Cattrall R W, Kolev S D.J. Membr. Sci., 2012, 409: 242.
[9]
John S M, Cattrall R W, Kolev S D.J. Membr. Sci., 2010, 364: 354.
[10]
Liu M X, Dong F Q, Yan X Y, Zeng W M, Hou L Y, Pang X F. Bioresour. Technol., 2010, 101: 8573.
[11]
Yang H, Tan N, Wu F, Liu H, Sun M, She Z, Lin Y J. Radioanal. Nucl. Chem., 2012, 292: 1011.http://link.springer.com/10.1007/s10967-011-1552-6

doi: 10.1007/s10967-011-1552-6     URL    
[12]
Aytas S, Turkozu D A, Gok C. Desalination, 2011, 280: 354.
[13]
Hellé G, Mariet C, Cote G. Talanta, 2015, 139: 123.
[14]
Kong F, Liao J L, Ding S D, Yang Y Y, Huang H, Yang J J, Tang J, Liu N. J. Radioanal. Nucl. Chem., 2013, 298: 651.
[15]
Krea M, Khalaf H. Hydrometallurgy, 2000, 58: 215.
[16]
Xu M Y, Han X L, Hua D B.J. Mater. Chem., 2017, 5: 12278.
[17]
Zhang M C, Li Y, Bai C Y, Guo X H, Han J, Hu S X, Jiang H Q, Tan W, Li S J, Ma L J. ACS Appl. Mater. Interfaces, 2018, 10: 28936.
[18]
Zhang W, Ye G, Chen J.J. Mater. Chem., 2013, 1: 12706.
[19]
Hidayah N N, Abidin S Z. Miner. Eng., 2018, 121: 146.
[20]
Mathur J, Murali M, Natarajan P, Badheka L, Banerji A, Ramanujam A, Dhami G V, Dhumwad R, Rao M. Waste Manage.(Oxford)., 1993, 13: 317.
[21]
Rao T P, Metilda P, Gladis J M. Talanta, 2006, 68: 1047.
[22]
Song Q, Ma L, Liu J, Bai C, Geng J, Wang H, Li B, Wang L, Li S.J. Colloid Interface Sci., 2012, 386: 291.
[23]
W Hu W, Lu S, Song W, Chen T, Hayat T, Alsaedi N S, Chen C, Liu H. Appl. Clay Sci., 2018, 157: 121.
[24]
Schlegel M L, Descostes M. Environ. Sci. Technol., 2009, 43: 8593.
[25]
Chegrouche S, Mellah A, Barkat M, Aknoun A. Am. J. Chem. Mater. Sci., 2016, 3: 6.
[26]
Ohnuki T, Yoshida T, Ozaki T, Samadfam M, Kozai N, Yubuta K, Mitsugashira T, Kasama T, Francis A. , Chem. Geol. 2005, 220: 237.
[27]
Wang G, Wang X, Chai X, Liu J, Deng N. Appl. Clay Sci., 2010, 47: 448.
[28]
Yu H W, Yang S S, Ruan H M, Shen J N, Gao C J, van Der Bruggen B. Appl. Clay Sci., 2015, 111: 67.
[29]
Sprynskyy M, Kovalchuk I, Buszewski B J. Hazard. Mater., 2010, 181: 700.
[30]
Lee S S, Li W, Kim C, Cho M, Catalano J G, Lafferty B J, Decuzzi P, Fortner J D. Environ. Sci. Nano., 2015, 2: 500.
[31]
Lee S S, Li W, Kim C, Cho M, Lafferty B J, Fortner J D J. Mater. Chem., 2015, 3: 21930.
[32]
Mortada W, Moustafa A, Ismail A, Hassanien M, Aboud A. , RSC Adv. 2015, 5: 62414.
[33]
Wei J, Zhang X, Liu Q, Li Z, Liu L, Wang J. Chem. Eng. J., 2014, 241: 228.
[34]
Sun Y, Ding C, Cheng W, Wang X.J. Hazard. Mater., 2014, 280: 399.
[35]
Calì E, Qi J, Preedy O, Chen S, Boldrin D, Branford W, Vandeperre L, Ryan M.J. Mater. Chem., 2018, 6: 3063.
[36]
Evans C J, Nicholson G P, Faith D A, Kan J. , Green Chem. 2004, 6: 196.
[37]
Paririe M R. Env. Sci. Technol., 1993, 27: 1776.
[38]
张丽华(Zhang L H). 南华大学硕士论文(Master’s Dissertation of Univerisity of South China). 2013.
[39]
Li W, Mayo J T, Benoit D N, Troyer L D, Lewicka Z, Fortner J D J. Mater. Chem., 2016, 4: 15022.
[40]
Cran A R, Dickinson M, Popescu I C, Scott T. Water Res., 2011, 45: 2931.
[41]
Tan L, Wang J, Liu Q, Sun Y, Zhang H, Wang Y, Jing X, Liu J. Colloids Surf. A, 2015, 466: 85.
[42]
Zhao Y, Li J, Zhao L, Zhang S, Huang Y, Wu X, Wang X. Chem. Eng J., 2014, 235: 275.
[43]
Sadeghi S, Azhdari H, Arabi H, Moghaddam A Z.J. Hazard. Mater., 2012, 215: 208.
[44]
Zhao D, Zhang Q, Xuan H, Chen Y, Zhang K, Feng S, Alsaedi A, Hayat T, Chen C.J. Colloid Interface Sci., 2017, 506: 300.
[45]
Zhang X, Wang J, Li R, Dai Q, Gao R, Liu Q, Zhang M. In. Eng. Chem. Res., 2013, 52: 10152.
[46]
Li Z J, Huang Z W, Guo W L, Wang L, Zheng L R, Chai Z F, Shi W Q. Environ. Sci. Technol., 2017, 51: 5666.
[47]
Tan L, Zhang X, Liu Q, Jing X, Liu J, Song D, Hu S, Liu L, Wang J. Colloids Surf. A, 2015, 469: 279.
[48]
Zong P, Wang S, Zhao Y, Wang H, Pan H, He C. Chem. Eng J., 2013, 220: 45.
[49]
Jiang X H, Xing Q J, Luo X B, Li F, Zou J P, Liu S S, Li X, Wang X K. Appl. Catal. B, 2018, 228: 29.
[50]
Manos M J, Kanatzidis M G.J. Am. Chem. Soc., 2009, 131: 6599.
[51]
Manos M J, Kanatzidis M G. Chem. Sci., 2016, 7: 4804.
[52]
Shen L, Han X, Qian J, Hua D. RSC Adv., 2017, 7: 10791.
[53]
Yang S, Hua M, Shen L, Han X, Xu M, Kuang L, Hua D.J. Hazard. Mater., 2018, 354: 191.
[54]
Asiabi H, Yamini Y, Shamsayei M. Chem. Eng J., 2018, 337: 609.
[55]
Ma S, Huang L, Ma L, Shim Y, Islam S M, Wang P, Zhao L D, Wang S, Sun G, Yang X, Kanatzidis M.J. Am. Chem. Soc., 2015, 137: 3670.
[56]
Wang P, Yin L, Wang X, Zhao G, Yu S, Song G, Xie J, Alsaedi A, Hayat T, Wang X.J. Environ. Manage., 2018, 217: 468.
[57]
Zou Y, Liu Y, Wang X, Sheng G, Wang S, Ai Y, Ji Y, Liu Y, Hayat T, Wang X. ACS Sustainable Chem. Eng., 2017, 5: 3583.
[58]
Zhu K, Chen C, Wang H, Xie Y, Wakeel M, Wahid A, Zhang X.J. Colloid Interface Sci., 2019, 535: 265.
[59]
Yu S, Wang X, Liu Y, Chen Z, Wu Y, Liu Y, Pang H, Song G, Chen J, Wang X. Chem. Eng J., 2019, 365: 51.
[60]
Yao W, Wang X, Liang Y, Yu S, Gu P, Sun Y, Xu C, Chen J, Hayat T, Alsaedi A. Chem. Eng J., 2018, 332: 775.
[61]
Tan L, Wang Y, Liu Q, Wang J, Jing X, Liu L, Liu J, Song D. Chem. Eng J., 2015, 259: 752.
[62]
Zou Y, Wang X, Wu F, Yu S, Hu Y, Song W, Liu Y, Wang H, Hayat T, Wang X. ACS Sustainable Chem. Eng., 2016, 5: 1173.
[63]
Naguib M, Kurtoglu M, Presser V, Lu J, Niu J, Heon M, Hultman L, Gogotsi Y, Barsoum M W. Adv. Mater., 2011, 23: 4207.
[64]
Wang L, Yuan L, Chen K, Zhang Y, Deng Q, Du S, Huang Q, Zheng L, Zhang J, Chai Z. ACS Appl. Mater. Interfaces, 2016, 8: 16396.
[65]
Wang L, Tao W, Yuan L, Liu Z, Huang Q, Chai Z, Gibson J K, Shi W. , Chem. Commun. 2017, 53: 12084.
[66]
Zhang Y J, Zhou Z J, Lan J H, Ge C C, Chai Z F, Zhang P, Shi W Q. Appl. Surf. Sci., 2017, 426: 572.
[67]
Wang L, Song H, Yuan L Y, Li Z J, Zhang Y J, Gibson J K, Zheng L R, Chai Z F, Shi W Q. Environ. Sci. Technol., 2018, 52: 10748.
[68]
Psareva T S, Zakutevskyy O I, Chubar N I, Strelko V V, Shaposhnikova T O, Carvalho J R, Correia M J. Colloids Surf. A, 2005, 252: 231.
[69]
Bhat S V, Melo J S, Chaugule B B, D’souza S F.J. Hazard. Mater., 2008, 158: 628.
[70]
Zou W, Zhao L, Zhu L.J. Radioanal. Nucl. Chem., 2012, 292: 1303.
[71]
Aly Z, Luca V.J. Radioanal. Nucl. Chem., 2013, 295: 889.
[72]
Parab H, Joshi S, Shenoy N, Verma R, Lali A, Sudersanan M. , Bioresour. Technol. 2005, 96: 1241.
[73]
Khani M, Keshtkar A, Ghannadi M, Pahlavanzadeh H.J. Hazard. Mater., 2008, 150: 612.
[74]
Gok C, Aytas S.J. Hazard. Mater., 2009, 168: 369.
[75]
Yang J, Volesky B. Water Res., 1999, 33: 3357.
[76]
Hu M Z C, Norman J M, Faison B D, Reeves M E. Biotechnol. Bioeng., 1996, 51: 237.
[77]
Yi Z J, Yao J.J. Radioanal. Nucl. Chem., 2012, 293: 907.
[78]
Parker B, Zhang Z, Rao L, Arnold J. , Dalton Trans. 2018, 47: 639.
[79]
Abney C W, Mayes R T, Saito T, Dai S. , Chem. Rev. 2017, 117: 13935.
[80]
Gill G A, Kuo L J, Janke C J, Park J, Jeters R T, Bonheyo G T, Pan H B, Wai C, Khangaonkar T, Bianucci L. In. Eng. Chem. Res. 2016, 55: 4264.
[81]
Yue Y, Mayes R T, Kim J, Fulvio P F, Sun X G, Tsouris C, Chen J, Brown S, Dai S. Angew. Chem. Int. Ed., 2013, 52: 13458.
[82]
Sabarudin A, Oshima M, Takayanagi T, Hakim L, Oshita K, Gao Y H, Motomizu S. Anal. Chim. Acta, 2007, 581: 214.
[83]
Cao Q, Liu Y, Wang C, Cheng J.J. Hazard. Mater., 2013, 263: 311.
[84]
Liu J, Li J, Yang X, Song Q, Bai C, Shi Y, Zhang L, Liu C, Li S, Ma L. , Mater. Lett. 2013, 97: 177.
[85]
Anirudhan T S, Nima J, Divya P L.J. Environ. Chem. Eng., 2015, 3: 1267.
[86]
Metilda P, Gladis J M, Rao T P. Anal. Chim. Acta, 2004, 512: 63.
[87]
Zhang L, Yang S, Qian J, Hua D. In. Eng. Chem. Res., 2017, 56: 1860.
[88]
Singh D K, Mishra S. Anal. Chim. Acta, 2009, 644: 42.
[89]
Pakade V, Cukrowska E, Darkwa J, Darko G, Torto N, Chimuka L. Water Sci. Technol., 2012, 65: 728.
[90]
Ahmadi S J, Noori K O, Shirvani A S.J. Hazard. Mater., 2010, 175: 193.
[91]
Preetha C R, Gladis J M, Rao T P, Venkateswaran G. Environ. Sci. Technol., 2006, 40: 3070.
[92]
Say R, Ersöz A, Denizli A. Sep. Sci. Technol., 2003, 38: 3431.
[93]
Cote A P, Benin A I, Ockwig N W, O’keeffe M, Matzger A J, Yaghi O M. Science, 2005, 310: 1166.
[94]
Ding S Y, Wang W. Chem. Soc. Rev., 2013, 42: 548.
[95]
Li J, Yang X, Bai C, Tian Y, Li B, Zhang S, Yang X, Ding S, Xia C, Tan X.J. Colloid Interface Sci., 2015, 437: 211.
[96]
Bai C, Zhang M, Li B, Tian Y, Zhang S, Zhao X, Li Y, Wang L, Ma L, Li S.J. Hazard. Mater., 2015, 300: 368.
[97]
Bai C, Zhang M, Li B, Zhao X, Zhang S, Wang L, Li Y, Zhang J, Ma L, Li S. RSC Adv., 2016, 6: 39150.
[98]
Zhang S, Zhao X, Li B, Bai C, Li Y, Wang L, Wen R, Zhang M, Ma L, Li S.J. Hazard. Mater., 2016, 314: 95.
[99]
Zhang M, Li Y, Bai C, Guo X, Han J, Hu S, Jiang H, Tan W, Li S, Ma L. ACS Appl. Mater.Interfaces, 2018, 10: 28936.
[100]
Li Y, Guo X, Li X, Zhang M, Jia Z, Deng Y, Tian Y, Li S, Ma L. Angew. Chem. Int. Ed., 2019.
[101]
Sun Q, Aguila B, Perman J, Ivanov A S, Bryantsev V S, Earl L D, Abney C W, Wojtas L, Ma S. , Nat. Commun. 2018, 9: 1644.
[102]
Yu J P, Yuan L Y, Wang S A, Lan J H, Zheng L R, Xu C, Chen J, Wang L, Huang Z W, Shi W Q. CCS Chemistry, 2019, 1: 286.
[103]
Han X, Xu M, Yang S, Qian J, Hua D.J. Mater. Chem., 2017, 5: 5123.
[104]
Xu M, Han X, Wang T, Li S, Hua D.J. Mater. Chem., 2018, 6: 13894.
[105]
Wang T, Xu M, Han X, Yang S, Hua D.J. Hazard. Mater., 2019, 368: 214.
[106]
Wen J Q, Xie J, Chen X B, Li X. Appl. Surf. Sci., 2017, 391: 72.
[107]
Lu C, Chen R, Wu X, Fan M, Liu Y, Le Z, Jiang S, Song S. Appl. Surf. Sci., 2016, 360: 1016.
[108]
Ke L, Li P, Wu X, Jiang S, Luo M, Liu Y, Le Z, Sun C, Song S. Appl. Catal. B., 2017, 205: 319.
[109]
Wu X, Jiang S, Song S, Sun C. Appl. Surf. Sci., 2018, 430: 371.
[110]
Chen T, Zhang J, Ge H, Li M, Li Y, Duan T, He R, Zhu W.J. Hazard. Mater., 2020, 384: 121383.
[111]
Akshay J, Balasubramanian R, Srinivasan M P. Chem. Eng. J. 2016, 283: 789.
[112]
Xu F, Tang Z W, Huang S Q, Chen L Y, Liang Y, Mai W C, Zhong H, Fu R W, Wu D C. Nat. Commun., 2015, 6: 1.
[113]
Chen Z, Ma L, Li S, Geng J, Song Q, Liu J, Wang C, Wang H, Li J, Qin Z. Appl. Surf. Sci., 2011, 257: 8686.
[114]
Song Q, Ma L, Liu J, Bai C, Geng J, Wang H, Li B, Wang L, Li S.J. Colloid Interface Sci., 2012, 386: 291.
[115]
Geng J, Ma L, Wang H, Liu J, Bai C, Song Q, Li J, Hou M, Li S.J. Nanosci. Nanotechnol., 2012, 12: 7354.
[116]
Li B, Ma L, Tian Y, Yang X, Li J, Bai C, Yang X, Zhang S, Li S, Jin Y.J. Hazard. Mater., 2014, 271: 41.
[117]
Yang X, Li J, Liu J, Tian Y, Li B, Cao K, Liu S, Hou M, Li S, Ma L.J. Mater. Chem., 2014, 2: 1550.
[118]
Zhang Z B, Zhou Z W, Cao X H, Liu Y H, Xiong G X, Liang P.J. Radioanal. Nucl. Chem., 2014, 299: 1479.
[119]
Zhang Z, Dong Z, Dai Y, Xiao S, Cao X, Liu Y, Guo W, Luo M, Le Z. RSC Adv., 2016, 6: 102462.
[120]
Zhang Z B, Nie W B, Li Q, Xiong G X, Cao X H, Liu Y H.J. Radioanal. Nucl. Chem., 2013, 298: 361.
[121]
Zhang W L, Zhang Z B, Cao X H, Ma R C, Liu Y H. J. Radioanal. Nucl. Chem., 2014, 301: 197.
[122]
Li Z, Chen F, Yuan L, Liu Y, Zhao Y, Chai Z, Shi W. Chem. Eng. J. 2012, 210: 539.
[123]
Song W, Shao D, Lu S, Wang X. Science China Chemistry, 2014, 57: 1291.
[124]
Liu X, Li J, Wang X, Chen C, Wang X.J. Nucl. Mater., 2015, 466: 56.
[125]
Hu R, Shao D, Wang X. , Polym. Chem. 2014, 5: 6207.
[126]
Sun Y, Shao D, Chen C, Yang S, Wang X. Environ. Sci. Technol., 2013, 47: 9904.
[127]
Shao D, Li J, Wang X. Science China Chemistry, 2014, 57: 1449.
[128]
Li Z J, Wang L, Yuan L Y, Xiao C L, Mei L, Zheng L R, Zhang J, Yang J H, Zhao Y L, Zhu Z T.J. Hazard. Mater., 2015, 290: 26.
[129]
Zhao Y, Li J, Zhang S, Chen H, Shao D. , RSC Adv.2013, 3: 18952.
[130]
Wang F, Li H, Liu Q, Li Z, Li R, Zhang H, Liu L, Emelchenko G, Wang J. , Sci. Rep. 2016, 6: 19367.
[131]
Chen L, Zhao D, Chen S, Wang X, Chen C.J. Colloid Interface Sci., 2016, 472: 99.
[132]
Qian Y, Yuan Y, Wang H, Liu H, Zhang J, Shi S, Guo Z, Wang N.J. Mater. Chem., 2018, 6: 24676.
[133]
Shao L, Wang X, Ren Y, Wang S, Zhong J, Chu M, Tang H, Luo L, Xie D. Chem. Eng. J., 2016, 286: 311.
[134]
Maghrabi H H, Abdelmaged S M, Nada A A, Zahran F, ElWahab S A, Yahea D, Hussein G, Atrees M. J. Hazard. Mater., 2017, 322: 370.
[135]
Tian Y, Fu J, Zhang Y, Cao K, Bai C, Wang D, Li S, Xue Y, Ma L, Zheng C. Phys. Chem. Chem. Phys., 2015, 17: 7214.
[136]
Wu Q Y, Lan J H, Wang C Z, Xiao C L, Zhao Y L, Wei Y Z, Chai Z F, Shi W Q.J. Phys. Chem. A, 2014, 118: 2149.
[137]
Nie B W, Zhang Z B, Cao X H, Liu Y H, Liang P.J. Radioanal. Nucl. Chem., 2013, 295: 663.
[138]
Liu Y, Li Q, Cao X, Wang Y, Jiang X, Li M, Hua M, Zhang Z. Appl. Surf. Sci., 2013, 285: 258.
[139]
Zhang Z B, Yu X F, Cao X H, Hua R, Li M, Liu Y H.J. Radioanal. Nucl. Chem., 2014, 301: 821.
[140]
Zou Y D, Cao X H, Luo X P, Liu Y, Hua R, Liu Y H, Zhang Z B.J. Radioanal. Nucl. Chem., 2015, 306: 515.
[141]
Cheng Z P, Liu Y H, Xiong G X, Luo X P, Cao X H, Li M, Zhang Z B.J. Radioanal. Nucl. Chem., 2015, 306: 365.
[142]
Górka J, Mayes R T, Baggetto L, Veith G M, Dai S.J. Mater. Chem., 2013, 1: 3016.
[143]
Carboni M L, Abney C W, Taylor-Pashow K M, Vivero-Escoto J L, Lin W. In. Eng. Chem. Res., 2013, 52: 15187.
[144]
Tian G, Geng J, Jin Y, Wang C, Li S, Chen Z, Wang H, Zhao Y, Li S.J. Hazard. Mater., 2011, 190: 442.
[145]
Husnain S M, Kim H J, Um W, Chang Y Y, Chang Y S. In. Eng. Chem. Res., 2017, 56: 9821.
[146]
Sun Y, Yang S, Sheng G, Guo Z, Wang X.J. Environ. Radioact., 2012, 105: 40.
[147]
Shao D, Hu J, Wang X. Plasma Processes Polym., 2010, 7: 977.
[148]
Shao D, Jiang Z, Wang X, Li J, Meng Y.J. Phys. Chem. B.,2009, 113: 860.
[149]
Wang Y, Gu Z, Yang J, Liao J, Yang Y, Liu N, Tang J. Appl. Surf. Sci., 2014, 320: 10.
[150]
刘淑娟 (Liu S J), 李金英(Li J Y), 罗明标 (Luo M B). 核化学与放射化学(Journal of Nuclear and Radiochemistry), 2011, 33: 285.
[151]
刘淑娟 (Liu S J), 李金英 (Li J Y), 罗明标(LuoM B), 花榕(Hua R), 林海禄(Lin H L), 马建国 (Ma J G). 原子能科学技术(Atomic Energy Science and Technology), 2013, 47: 7.
[152]
刘淑娟(Liu S J), 马建国(Ma J G), 花榕(Hua R), 林海禄(Lin H L), 李芳清(Li F Q). 东华理工大学学报: 自然科学版(Journal of Donghua University of Technology: Natural Science). 2013, 35: 388.
[153]
Fasfous I I, Dawoud J N. Appl. Surf. Sci., 2012, 259: 433.
[154]
Tian K, Wu J, Wang J. Radiochim. Acta, 2018, 106: 719.
[155]
Gu Z, Wang Y, Tang J, Yang J, Liao J, Yang Y, Liu N.J. Radioanal. Nucl. Chem., 2015, 303: 1835.
[156]
Tan L, Liu Q, Jing X, Liu J, Song D, Hu S, Liu L, Wang J. Chem. Eng. J., 2015, 273: 307.
[157]
Abdeen Z, Akl Z. , RSC Adv. 2015, 5: 74220.
[158]
Zhao X, Zhang S, Bai C, Li B, Li Y, Wang L, Wen R, Zhang M, Ma L, Li S.J. Colloid Interface Sci., 2016, 469: 109.
[159]
Li Y, Wang L, Li B, Zhang M, Wen R, Guo X, Li X, Zhang J, Li S, Ma L. ACS Appl. Mater.Interfaces, 2016, 8: 28853.
[160]
Furukawa H, Ko N, Go Y B, Aratani N, Choi S B, Choi E, Yazaydin A, Snurr R Q, O’keeffe M, Kim J. Science, 2010, 329: 424.
[161]
Kuppler R J, Timmons D J, Fang Q R, Li Jian R, Makal T A. Coord. Chem. Rev., 2009, 253: 3042.
[162]
Carboni M, Abney C W, Liu S, Lin W. Chem. Sci., 2013, 4: 2396.
[163]
Yang W, Bai Z Q, Shi W Q, Yuan L Y, Tian T, Chai Z F, Wang H, Sun Z M. Chem. Commun., 2013, 49: 10415.
[164]
Zheng T, Yang Z, Gui D, Liu Z, Wang X, Dai X, Liu S, Zhang L, Gao Y, Chen L. , Nat. Commun. 2017, 8: 15369.
[165]
Chen L, Bai Z, Zhu L, Zhang L, Cai Y, Li Y, Liu W, Wang Y, Chen L, Diwu J. ACS Appl. Mater.Interfaces, 2017, 9: 32446.
[166]
Bai Z Q, Yuan L Y, Zhu L, Liu Z R, Chu S Q, Zheng L R, Zhang J, Chai Z F, Shi W Q.J. Mater. Chem., 2015, 3: 525.
[167]
Zhang J Y, Zhang N, Zhang L, Fang Y, Deng W, Yu M, Wang Z, Li L, Liu X, Li J. Sci. Rep., 2015, 5: 13514.
[168]
Wang L L, Luo F, Dang L L, Li J Q, Wu X L, Liu S J, Luo M B.J. Mater. Chem., 2015, 3: 13724.
[169]
Li L, Ma W, Shen S, Huang H, Bai Y, Liu H. ACS Appl. Mater. Interfaces, 2016, 8: 31032.
[170]
Zhang L, Wang L L, Le Gong L, Feng X F, Luo M B, Luo F.J. Hazard. Mater., 2016, 311: 30.
[171]
Liu S, Luo M, Li J, Luo F, Ke L, Ma J.J. Radioanal. Nucl. Chem., 2016, 310: 353.
[172]
Yang P, Liu Q, Liu J, Zhang H, Li Z, Li R, Liu L, Wang J.J. Mater. Chem., 2017, 5: 17933.
[173]
Min X, Yang W, Hui Y F, Gao C Y, Dang S, Sun Z M. Chem. Commun., 2017, 53: 4199.
[174]
Xiao C, Silver M A, Wang S. Dalton Trans., 2017, 46: 16381.
[175]
Li J, Wang X X, Zhao G X, Chen C L, Chai Z F, Alsaedi A, Hayat T, Wang X K. Chem. Soc. Rev., 2018, 47: 2322.
[176]
Feng M, Zhang P, Zhou H C, Sharma V K. Chemosphere, 2018, 209: 783.
[177]
Yuan L Y, Liu YL, Shi W Q, Li Z J, Lan J H, Feng Y X, Zhao Y L, Yuan Y L, Chai Z F.J. Mater. Chem., 2012, 22: 17019.
[178]
Tripathi S, Bose R, Roy A, Nair S, Ravishankar N. ACS Appl. Mater. Interfaces, 2015, 7: 26430.
[179]
Lebed P J, Savoie J D, Florek J, Bilodeau F O, LarivièRe D, Kleitz F. Chem. Mater., 2012, 24: 4166.
[180]
Li B, Bai C, Zhang S, Zhao X, Li Y, Wang L, Ding K, Shu X, Li S, Ma L.J. Mater. Chem., 2015, 3: 23788.
[181]
Li B, Wang L, Li Y, Wang D, Wen R, Guo X, Li S, Ma L, Tian Y. RSC Adv., 2017, 7: 8985.
[182]
Pan N, Jin Y, Wang X, Hu X, Chi F, Zou H, Xia C. ACS Sustainable Chem. Eng., 2018, 7: 950.
[183]
Li H, Li Y, Zhou Y, Li B, Liu D, Liao H.J. Colloid Interface Sci., 2019, 544: 14.
[184]
Wegner S V, Boyaci H, Chen H, Jensen M P, He C. Angew. Chem. Int. Ed., 2009, 48: 2339.
[185]
Zhou L, Bosscher M, Zhang C, zçubukçu S, Zhang L, Zhang W, Li C J, Liu J, Jensen M P, Lai L. Nat. Chem., 2014, 6: 236.
[186]
Odoh S O, Bondarevsky G D, Karpus J, Cui Q, He C, Spezia R, Gagliardi L.J. Am. Chem. Soc., 2014, 136: 17484.
[187]
Carugo O.J. Inorg. Biochem., 2018, 189: 1.
[188]
ZäNker H, Heine K, Weiss S, Brendler V, Husar R, Bernhard G, Gloe K, Henle T, Barkleit A. Inorg. Chem., 2019, 58: 4173.
[189]
Barkleit A, Hennig C, Ikeda-Ohno A. Chem. Res. Toxicol., 2018, 31: 1032.
[190]
Kou S, Yang Z, Sun F. ACS Appl. Mater. Interfaces., 2017, 9: 2035.
[1] 王芷铉, 郑少奎. 选择性离子吸附原理与材料制备[J]. 化学进展, 2023, 35(5): 780-793.
[2] 谭依玲, 李诗纯, 杨希, 金波, 孙杰. 金属氧化物半导体气敏材料抗湿性能提升策略[J]. 化学进展, 2022, 34(8): 1784-1795.
[3] 张沐雅, 刘嘉琪, 陈旺, 王利强, 陈杰, 梁毅. 蛋白质凝聚作用在神经退行性疾病中的作用机制研究[J]. 化学进展, 2022, 34(7): 1619-1625.
[4] 乔瑶雨, 张学辉, 赵晓竹, 李超, 何乃普. 石墨烯/金属-有机框架复合材料制备及其应用[J]. 化学进展, 2022, 34(5): 1181-1190.
[5] 韩亚南, 洪佳辉, 张安睿, 郭若璇, 林可欣, 艾玥洁. MXene二维无机材料在环境修复中的应用[J]. 化学进展, 2022, 34(5): 1229-1244.
[6] 李诗宇, 阴永光, 史建波, 江桂斌. 共价有机框架在水中二价汞吸附去除中的应用[J]. 化学进展, 2022, 34(5): 1017-1025.
[7] 赵洁, 邓帅, 赵力, 赵睿恺. 湿气源吸附碳捕集: CO2/H2O共吸附机制及应用[J]. 化学进展, 2022, 34(3): 643-664.
[8] 尹晓庆, 陈玮豪, 邓博苑, 张佳路, 刘婉琪, 彭开铭. 超润湿膜在乳化液破乳中的应用及作用机制[J]. 化学进展, 2022, 34(3): 580-592.
[9] 李炜, 梁添贵, 林元创, 吴伟雄, 李松. 机器学习辅助高通量筛选金属有机骨架材料[J]. 化学进展, 2022, 34(12): 2619-2637.
[10] 闫保有, 李旭飞, 黄维秋, 王鑫雅, 张镇, 朱兵. 氨/醛基金属有机骨架材料合成及其在吸附分离中的应用[J]. 化学进展, 2022, 34(11): 2417-2431.
[11] 吴明明, 林凯歌, 阿依登古丽·木合亚提, 陈诚. 超浸润光热材料的构筑及其多功能应用研究[J]. 化学进展, 2022, 34(10): 2302-2315.
[12] 康淳, 林延欣, 景远聚, 王新波. MXenes的制备及其在环境领域的应用[J]. 化学进展, 2022, 34(10): 2239-2253.
[13] 卢赟, 史宏娟, 苏岳锋, 赵双义, 陈来, 吴锋. 元素掺杂碳基材料在锂硫电池中的应用[J]. 化学进展, 2021, 33(9): 1598-1613.
[14] 向笑笑, 田晓雯, 刘会娥, 陈爽, 朱亚男, 薄玉琴. 石墨烯基气凝胶小球的可控制备[J]. 化学进展, 2021, 33(7): 1092-1099.
[15] 陶学兵, 于吉攀, 梅雷, 聂长明, 柴之芳, 石伟群. 铀催化的氮气活化[J]. 化学进展, 2021, 33(6): 907-913.
阅读次数
全文


摘要

固相萃取分离铀