English
新闻公告
More
化学进展 2020, Vol. 32 Issue (9): 1344-1351 DOI: 10.7536/PC200104 前一篇   后一篇

• 综述 •

电控离子(交换)膜分离技术——从ESIX到ESIPM

高凤凤1, 杨言言1, 杜晓1, 郝晓刚1,**(), 官国清2, 汤兵3   

  1. 1. 太原理工大学化学化工学院 太原 030024
    2. 日本国立弘前大学地域战略研究所 青森 030-0813
    3. 广东工业大学环境科学与工程学院 广州 510006
  • 收稿日期:2020-01-02 修回日期:2020-04-23 出版日期:2020-09-24 发布日期:2020-06-30
  • 通讯作者: 郝晓刚
  • 作者简介:
    ** Corresponding author e-mail: ;
  • 基金资助:
    * 国家重点研发计划政府间国际科技创新合作重点专项项目(2017YFE0129200); 国家自然科学基金项目(21276173, 21476156, 21576184, 21706181, 21776191); 山西省自然科学基金项目(201901D211054)

Electrically Switched Ion Membrane for Ion Selective Separation and Recovery: From ESIX to ESIPM

Fengfeng Gao1, Yanyan Yang1, Xiao Du1, Xiaogang Hao1,**(), Guoqing Guan2, Bing Tang3   

  1. 1. College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
    2. Institute of Regional Innovation(IRI), Hirosaki University, Aomori 030-0813, Japan
    3. College of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
  • Received:2020-01-02 Revised:2020-04-23 Online:2020-09-24 Published:2020-06-30
  • Contact: Xiaogang Hao
  • Supported by:
    the National Key Research and Development Program with Key Special Project of Intergovernmental Cooperation on International Science and Technology Innovation(2017YFE0129200); the National Natural Science Foundation of China(21276173, 21476156, 21576184, 21706181, 21776191); the Natural Science Foundation of Shanxi Province(201901D211054)

电控离子膜(Electrically Switched Ion Membrane, ESIM)分离是近年来发展起来的一种新型离子选择性高效分离技术,已被用于多种金属阳离子及阴离子的选择性分离与回收。电控膜分离源于电控离子交换(Electrically Switched Ion Exchange, ESIX)技术,其高效运行依赖于具有离子交换功能的电活性材料(Electroactive Ion Exchange Material, EIXM)。EIXM既能传递电子又能传递离子,通过调节其氧化/还原电位可以控制离子的可逆置入/释放,同时实现目标离子的高效分离和EIXM的再生,因而不产生二次污染。本文从EIXM简介、结构设计与可控合成、各种电控离子选择性分离机制的研究进展以及新型ESIX-ESIM膜组件开发和应用几个方面,分析总结了从最初的ESIX技术到基于ESIX原理的电控离子选择渗透膜(Electrically Switched Ion Permselective Membrane, ESIPM)分离的发展历程。展望未来ESIM分离技术,应针对目标离子的选择性分离要求,设计合成新型结构ESIM材料和研发相关膜组件系统,可望最终实现ESIM技术的工业应用。

Electrically switched ion membrane(ESIM) separation is a novel ion selective separation and recovery technology developed in recent years. To date, the target ion species separated by using ESIM have involved various metal cations and anions. ESIM separation is originated from electrically switched ion exchange(ESIX) technology, whose highly efficient operation depends on the electroactive ion exchange material(EIXM) with unique ion exchange function. Reversible ion loading/unloading can be easily controlled by modulating the redox states of the EIXM with both electronic and ionic conductivity to perform the separation of target ions from mixed solution and regeneration of the matrix. Therefore, the secondary waste is eliminated due to that the chemical regeneration of the ion-exchange matrix is not necessary. This paper begins with a brief introduction of EIXM to the structure design and controllable preparation of membrane/film materials, then the research progress of various mechanisms of ESIX and the development and application of some novel ESIX-ESIM modules are outlined. The development course from intermittent operation of ESIX to electrically switched ion permselective membrane(ESIPM) based on the ESIX principle is summarized. It is necessary to emphasize the design and synthesis of novel structural ESIM materials and the development of the corresponding membrane modules focused on the selective separation of target ions, then finally the industrial application of ESIM could be realized.

Contents

1 Introduction

2 Design, structure and controllable preparation of EIXM

3 Electrically switched ion exchange/separation mechanism

3.1 Traditional ESIX mechanism

3.2 ESIX-PTPS mechanism

3.3 ESIX-IIP coupling mechanism

3.4 ESIX-pH conversion mechanism

3.5 Electrically switched ion permselective membrane separation mechanism

4 Membrane modules development and application

5 Conclusion and outlook

()
图1 NiHCF的电控离子交换过程
Fig.1 The ESIX process of NiHCF
图2 α-ZrP/PANI复合膜的电控离子交换-质子内部自交换机理图[33, 34]
Fig.2 The ESIX-PTPS mechanism of α-ZrP/PANI complex film[33, 34]
图3 Ni2+印迹-FCN/PPy的制备方法[12]
Fig.3 Strategy for the preparation of Ni2+ ion imprinted ferricyanide/PPy[12]. Copyright 2015, ACS
图4 碳基双电层-电控离子选择渗透膜的离子分离机理[55]
Fig.4 The EDL-ESIPM mechanism of carbon-based membrane[55]. Copyright 2017, Elsevier
图5 电控离子选择渗透膜分离工艺图[66]
Fig.5 Schematic for the process of ESIPM[66]. Copyright 2012, Taiyuan University of Technology
[1]
王忠德( Wang Z D ), 郝晓刚(Hao X G), 杜晓(Du X). 电控离子交换技术及应用(Electrically Switched Ion Exchange Technology and Its Application). 北京:化学工业出版社(Beijing: Chemical Industry Press), 2017, 1.
[2]
郝晓刚( Hao X G ), 杜晓(Du X), 张权 104264206A, 2015.
[3]
Li N , Li Z J , Yuan J H , Hu J G , Miao J G , Zhang Q X , Niu L , Song J X. Electrochim. Acta, 2012, 72: 150.
[4]
肖俊强( Xiao J G ), 郝晓刚(Hao X G). 化学进展(Progress in Chemistry), 2010, 22(12): 2420.
[5]
Liu D F , Sun S Y , Yu J G. Chem. Eng. J., 2018, 377: 119825.
[6]
杨言言( Yang Y Y ), 张贝蕾(Zhang B L), 杜晓(Du X), 郝晓刚(Hao X G). 水处理技术(Technology of Water Treatment), 2019, 45(11): 42.
[7]
Sun B , Hao X G , Wang Z D , Guan G Q , Zhang Z L , Li Y B , Liu S B. J Hazard Mater., 2012, 233/234: 177.
[8]
Lin Y H , Cui X L , Bontha J. Environ. Sci. Technol., 2006, 40: 4004.
[9]
Zhang P L , Zheng J L , Zheng J L , Du X , Gao F F , Hao X G , Guan G Q , Li C C , Liu S B. Ind. Eng. Chem. Res., 2016, 55: 6194.
[10]
鞠健( Ju J ), 郝晓刚(Hao X G), 张忠林(Zhang Z L), 刘世斌(Liu S B), 孙彦平(Sun Y P). 无机材料学报(Journal of Inorganic Materials), 2008, 23(6): 1115.
[11]
Du X , Sun X L , Zhang H , Wang Z D , Hao X G , Guan G Q , Abudula A. Electrochim. Acta, 2015, 176: 1313.
[12]
Du X , Zhang H , Hao X G , Guan G Q , Abudula A. ACS Appl.Mater. Interfaces, 2014, 6: 9543.
[13]
Du X , Zhang D , Ma X L , Qiao W L , Wang Z D , Hao X G , Guan G Q. Electrochim. Acta, 2018, 282: 384.
[14]
Wang Z D , Ma Y , Hao X G , Huang W , Guan G Q , Abuliti A. Electrochim. Acta, 2014, 130: 40.
[15]
Liu M M , Du X , Gao F F , Luo J H , Wang Q , Liu F F , Chang L T , Hao X G. J. Solid State Electr., 2019, 23: 2541.
[16]
陈如意( Chen R Y ), 张朋乐(Zhang P L), 廖森梁(Liao S L), 李馨然(Li X R), 王忠德(Wang Z D), 郝晓刚(Hao X G). 电化学(Journal of Electrochemistry), 2015, 21: 344.
[17]
Luo J H , Du X , Gao F F , Yang Y Y , Hao X Q , Li S S , Hao X G , Tang K Y , Guan G Q. Chem. Eng. J., 2020, 380: 122529.
[18]
Yang Y Y , Du X , An X W , Ding S Q , Liu F F , Zhang Z L , Ma X L , Hao X G , Guan G Q , Zhang H. J. Colloid Interface Sci., 2018, 523: 159.
[19]
Zhang S , Shao Y , Liu J , Aksay I A , Lin Y H. ACS Appl.Mater. Interfaces, 2011, 3(9): 3633.
[20]
Cui H , Qian Y , An H , Sun C C , Zhai J P , Li Q. Water Res., 2012, 46(12): 3943.
[21]
Yang Y Y , Du X , Abuliti A , Zhang Z L , Ma X L , Tang K Y , Hao X G , Guan G Q. Sep. Purif. Technol., 2019, 223: 154.
[22]
Wang J , Gao F F , Du X , Ma X L , Hao X G , Ma W B , Wang K Z , Guan G Q , Abuliti A. Electrochim. Acta, 2019, 135288.
[23]
Du X , Hao X , Wang Z D , Guan G Q. J. Mater. Chem. A, 2016, 4: 6236.
[24]
郝晓刚( Hao X G ), 郭金霞(Guo J X), 张忠林(Zhang Z L), 刘世斌(Liu S B), 孙彦平(Sun Y P). 化工学报(Journal of Chemical Industry and Engineering(China)), 2005, 56(12): 2380.
[25]
Hao X G , Schwartz D T. Chem. Mater., 2005, 17: 5831.
[26]
Hao X G , Li Y G , Pritzker M. Sep. Purif. Technol., 2008, 63: 407.
[27]
Hao X G , Yan T , Wang Z D , Liu S B , Liang Z H , Shen Y H , Pritzker M. Thin Solid Films, 2012, 520: 2438.
[28]
Du X , Hao X G , Wang Z D , Ma X L , Guan G Q , Abuliti A , Ma G Z , Liu S B. Synth. Met., 2013, 175: 138.
[29]
Li Y , Zhao K , Du X , Wang Z D , Hao X G , Liu S B , Guan G Q. Synth. Met., 2012, 162: 107.
[30]
Chen W , Xia X H. Adv. Funct. Mater., 2007, 17: 2943.
[31]
Hao G X , Guo J X , Liu S B , Sun Y P. Trans. Nonferrous Met.Soc. China, 2006, 16: 556.
[32]
Takei T , Yonesaki Y , Kumada N , Kinomura N. Langmuir, 2008, 24: 8554.
[33]
Wang Z D , Feng Y T , Hao X G , Huang W , Feng X S. J. Mater. Chem. A, 2014, 2: 10263.
[34]
Wang Z D , Feng Y T , Hao X G , Huang W , Guan G Q , Abudula A. J. Hazard. Mater., 2014, 274: 436.
[35]
Zhang Q , Du X , Ma X L , Hao X G , Guan G Q , Wang Z D , Xue C F , Zhang Z L , Zuo Z J. J. Hazard. Mater., 2015, 289: 91.
[36]
Lilga M A , Orth R J , Sukamto J P H, Haight S M, Schwartz D T. Sep. Purif. Technol., 1997, 11: 147.
[37]
Jeerage K M , Schwartz D T. Sep. Sci. Technol., 2000, 35: 2375.
[38]
Li N , Li Z J , Yuan J H , Hu J G , Miao J G , Zhang Q X , Niu L , Song J X. Electrochim. Acta, 2012, 72: 150.
[39]
Jin X L , Huang L , Yu S , Ye M N , Yuan J H , Shen J F , Fang K M , Weng X X. Sep. Purif. Technol., 2019, 209: 65.
[40]
Su J Y , Jin G P , Chen T , Liu X D , Chen C N , Tian J J. Electrochim. Acta, 2017, 230: 399.
[41]
Chen R Z , Tanaka H , Kawamoto T , Asai M , Fukushima C , Na H , Kurihara M , Watanabe M , Arisaka M , Nankawa T. Electrochim. Acta, 2013, 87: 119.
[42]
Weidlich C , Mangold K M , Jüttner K. Electrochim. Acta, 2005, 50: 1547.
[43]
李越( Li Y ), 李慧(Li H), 郝晓刚(Hao X G), 张忠林(Zhang Z L), 梁镇海(Liang Z H), 刘世斌(Liu S B). 化工学报(Journal of Chemical Industry and Engineering(China)), 2010, 61(S1): 56.
[44]
Du X , Guan G Q , Li X M , Jagadale A D , Ma X L , Wang Z D , Hao X G , Abudula A. J. Mater. Chem. A, 2016, 4: 13989.
[45]
Guo Z Z , Shams M , Zhu C Z , Shi Q R , Tian Y H , Engelhard M H , Du D , Chowdhury I , Lin Y H. Environ. Sci. Technol., 2019, 53: 2612.
[46]
Weidlich C , Mangold K M. Electrochim. Acta, 2005, 50: 5247.
[47]
Cui H , Li Q , Qian Y , Tang R , An H , Zhai J P. Water Res., 2011, 45: 5736.
[48]
李越( Li Y ), 郝晓刚(Hao X G), 王忠德(Wang Z D), 张忠林(Zhang Z L), 梁镇海(Liang Z H), 刘世斌(Liu S B). 化工学报(Journal of Chemical Industry and Engineering(China)), 2010, 61(S1): 120.
[49]
李慧( Li H ), 李越(Li Y), 郝晓刚(Hao X G), 张忠林(Zhang Z L), 刘世斌(Liu S B). 高等学校化学学报(Chemical Journal of Chinese Universities), 2011, 32(7): 1645
[50]
Du X , Zhang Q , Qiao W L , Sun X L , Ma X L , Hao X G , Wang Z D , Abudula A , Guan G Q. Chem. Eng. J., 2016, 302: 516.
[51]
Kang C C , Li W M , Tan L , Li H , Wei C H , Tang Y W. J. Mater. Chem. A, 2013, 1: 7147.
[52]
Le X T , Viel P , Sorin A , Jegou P , Palacin S. Electrochim. Acta, 2009, 54: 6089.
[53]
Le X T , Viel P , Jegou P , Sorin A , Palacin S. Sep. Purif. Technol., 2009, 69: 135.
[54]
Gao F F , Du X , Hao X G , Li S S , Zheng J L , Yang Y Y , Han N C , Guan G Q. Electrochim. Acta, 2017, 236: 434.
[55]
Gao F F , Du X , Hao X G , Li S S , Zheng J L , Yang Y Y , Han N C , Guan G Q. J. Membr. Sci., 2017, 535: 20.
[56]
Gao F F , Du X , Hao X G , Li S S , An X W , Liu M M , Han N C , Wang T H , Guan G Q. Chem. Eng. J., 2017, 328: 293.
[57]
Gao F F , Du X , Hao X G , Ma X L , Chang L T , Han N C , Guan G Q , Tang K Y. Chem. Eng. J., 2020, 380: 122413.
[58]
孙斌( Sun B ), 郝晓刚(Hao X G), 王忠德(Wang Z D), 张忠林(Zhang Z L). 化工进展(Chemical Industry and Engineering Progress), 2011, 30(S1): 25.
[59]
Sun B , Hao X G , Wang Z D , Zhang Z L , Liu S B , Guan G Q. Chinese J. Chem. Eng., 2012, 20(5): 837.
[60]
Liao S L , Xue C F , Wang Y H , Zheng J L , Hao X G , Guan G Q , Abuliti A , Zhang H , Ma G Z. Sep. Purif. Technol., 2015, 139: 63.
[61]
郝晓刚( Hao X G ), 韩念琛(Han N C), 孙斌 102583664B, 2012.
[62]
Saleh M M. Desalination, 2009, 235: 319.
[63]
Price W E , Too C Q , Wallace G G , Zhou D. , Synth. Met. 1999, 102: 1338.
[64]
Davey J M , Ralph S F , Too C O , Wallace G G , Partridge A C. React. Funct. Polym., 2001, 49: 87.
[65]
Akieh M N , Ralph S F , Bobacka J , Ivaska A. J. Membrane Sci., 2010, 354: 162.
[66]
郝晓刚( Hao X G ), 郑君兰(Zheng J L), 孙斌 102718292B, 2012.
[67]
张忠林( Zhang Z L ), 郝晓刚(Hao X G), 郑君兰 104587835A, 2015.
[68]
郝晓刚( Hao X G ), 杜晓(Du X), 蔡富刚 105948188A, 2016.
[69]
Zhang H C , Hou J , Hu Y X , Wang P Y , Ou R , Jiang L , Liu Z J , Freeman B D , Hill A J , Wang H T. Sci. adv., 2018,4(2): eaaq0066.
[70]
Lu P , Liu Y , Zhou T , Wang, Q, Li Y S. J. Membrane Sci.,2018, 567: 89.
[71]
Anasori B , Lukatskaya M R , Gogotsi Y. Nat. Rev. Mater, 2017, 2(2): 16098.
[1] 尹晓庆, 陈玮豪, 邓博苑, 张佳路, 刘婉琪, 彭开铭. 超润湿膜在乳化液破乳中的应用及作用机制[J]. 化学进展, 2022, 34(3): 580-592.
[2] 王斐然, 蒋峰景. 全钒液流电池离子导电膜[J]. 化学进展, 2021, 33(3): 462-470.
[3] 刘阳, 张新波, 赵樱灿. 二维MoS2纳米材料及其复合物在水处理中的应用[J]. 化学进展, 2020, 32(5): 642-655.
[4] 陈青柏, 刘雨, 赵津礼, 李鹏飞, 王建友. 基于新型离子交换膜过程的含盐废水零排放技术[J]. 化学进展, 2019, 31(12): 1669-1680.
[5] 于致源, 丁万德, 王志宁. 含AQP仿生膜在水处理中的应用[J]. 化学进展, 2015, 27(7): 953-962.
[6] 张慧捷, 王世荣, 肖殷, 李祥高. 电场响应光子晶体[J]. 化学进展, 2014, 26(10): 1690-1700.
[7] 彭勇, 王正宝. 用于乙醇/水分离的MFI型分子筛膜[J]. 化学进展, 2013, 25(12): 2178-2188.
[8] 汪南方, 刘素琴*. 全钒液流电池隔膜的制备与性能[J]. 化学进展, 2013, 25(01): 60-68.
[9] 李鹏章, 王粤博*. 蛋白质组学中磷酸化肽的常用富集方法[J]. 化学进展, 2012, (9): 1785-1793.
[10] 方彦彦, 李倩, 王晓琳*. 解读纳滤:一种具有纳米尺度效应的分子分离操作[J]. 化学进展, 2012, 24(05): 863-870.
[11] 肖俊强, 郝晓刚. 电化学控制离子交换技术研究进展[J]. 化学进展, 2010, 22(12): 2420-2427.
[12] 吴翠明 肖新乐 崔鹏 徐铜文. 杂化离子膜的制备和应用*[J]. 化学进展, 2010, 22(10): 2003-2013.
[13] 张敏莲 胡丁 刘孟儒 孔宪. 离子交换色谱在药用质粒分析中的应用*[J]. 化学进展, 2010, 22(0203): 482-488.
[14] 曾仁权 傅相锴. 磷酸锆及其衍生物的离子交换性能* [J]. 化学进展, 2009, 21(12): 2536-2541.
[15] 洪厚胜 陈龙祥 由涛 张庆文. 渗透汽化复合膜* [J]. 化学进展, 2009, 21(10): 2229-2234.