English
新闻公告
More
化学进展 2022, Vol. 34 Issue (10): 2302-2315 DOI: 10.7536/PC220237 前一篇   后一篇

• 综述与评论 •

超浸润光热材料的构筑及其多功能应用研究

吴明明, 林凯歌, 阿依登古丽·木合亚提, 陈诚*()   

  1. 新疆大学特色纺织品与清洁染整技术重点实验室 乌鲁木齐 830017
  • 收稿日期:2022-02-28 修回日期:2022-06-27 出版日期:2022-10-24 发布日期:2022-07-20
  • 通讯作者: 陈诚
  • 作者简介:

    陈诚 工学博士,新疆大学纺织与服装学院副教授、硕士研究生导师,所属科研平台为新疆大学特色纺织品与清洁染整技术重点实验室。主要从事特殊润湿性微纳米材料受控构建、多功能超浸润纺织化学品控制合成、仿生染整技术等学术研究工作。

  • 基金资助:
    新疆维吾尔自治区自然科学基金青年科学基金项目(2022D01C68); 新疆维吾尔自治区高校科研计划自然科学项目(XJEDU2021Y007); 新疆维吾尔自治区天池博士计划科研启动项目(TCBS202011); 新疆大学博士启动基金(BS210215)

Research on the Construction and Application of Superwetting Materials with Photothermal Effect

Wu Mingming, Lin Kaige, Aydengul Muhyati, Chen Cheng()   

  1. Key Laboratory For Characteristic Textiles & Cleaner Dyeing and Finishing Technology, Xinjiang University,Urumqi 830017, China
  • Received:2022-02-28 Revised:2022-06-27 Online:2022-10-24 Published:2022-07-20
  • Contact: Chen Cheng
  • Supported by:
    Natural Science Foundation of Xinjiang Uygur Autonomous Region(2022D01C68); Scientific Research Program of the Higher Education Institution of Xinjiang(XJEDU2021Y007); Tianchi Doctoral Program of Xinjiang(TCBS202011); PhD Start-Up Fund of Xinjiang University(BS210215)

随着工业社会的不断发展,不同行业对于超浸润材料的功能提出了更高的要求,超浸润材料向多功能化或智能化转型成为其发展的必然趋势。同时,在人们对环境问题日益重视的背景下,符合环保可持续、高效、低耗的新技术受到关注,具有光热效应的超浸润材料作为实现油水分离、海水淡化及太阳能蒸发等领域的新兴产品而成为研究热点。本文首先介绍了近年来碳基、有机物基、半导体基及复合型超浸润光热材料构筑的研究现状并对其局限性进行了分析,然后梳理并详细论述超浸润光热材料在防覆冰、海水淡化、油水分离等领域的应用进展及其作用机理,进而总结了其目前制备过程中存在的环境危害性等问题,并对功能性与智能型超浸润光热材料的发展趋势及研究路线进行了展望。

With the continuous developing of industrial society, higher requirements for the functions of superwetting materials have been put forward in different industries. In this circumstances, the transformation to multi-function or intelligent for superwetting materials has become an inevitable trend. Meanwhile, under the background of people’s increasing attention to the environmental issue, new technologies with sustainable environmental protection, high efficiency and low consumption has been concerned. Superwetting materials with photothermal effect have become a research hotpot at home and abroad, which could be as the emerging products to achieve seawater desalination, solar evaporator and other fields. In this review, we firstly introduced the research status for constructing superwetting photothermal materials, including carbon-based, organic-based or semiconductor-based substrates and compound type. Besides, the limitation of these materials were analyzed. Then, the research progress and mechanism of superwetting photothermal materials, which are applied in anti-icing, seawater desalination, oil/water separation and etc, are teased and elaborated. Furthermore, the problems such as environmental hazards in the process of preparation were summarized. At last, the development tendency and research route of functional and intelligent superwetting materials with photothermal effect were prospected.

()
图1 (a) 光热转换机理; (b) 光热转换原理示意图; (c) 超浸润光热材料的海水淡化应用示意图[23]
Fig.1 (a) Mechanism of photothermal conversion; (b) schematic diagram of photothermal conversion principle; (c) schematic diagram for seawater desalination application of superwetting photothermal materials[23]
图2 超浸润光热材料的构筑方法
Fig. 2 The construction methods of superwetting photothermal materials
表1 超浸润光热材料的制备方法对比
Table 1 The comparison of preparation methods of superwetting photothermal materials
图3 (a) 石墨烯掩膜制备方法; (b) 红外照射下原掩膜与石墨烯掩膜升温情况[30]; (c) SiC/CNTs涂层的光热除冰示意图; (d)红外照射下不同样品温度变化曲线[25]; (e) 玻璃(上)及炭黑超疏水涂层(下)在一个太阳强度下的光热除冰过程; (f) 玻璃及炭黑超疏水涂层在一个太阳强度下的光热曲线[33].
Fig. 3 (a) Preparation method of graphene mask; (b) Heating of original mask and graphene mask under infrared irradiation[30]; (c) Diagram of photothermal deicing of SiC/CNTs coatings; (d) Temperature curves of different samples under infrared irradiation[25]; (e) Photothermal deicing of glass (top) and carbon black superhydrophobic coating (bottom) at one solar intensity; (f) Photothermal-heating curves for surface of glass and carbon black superhydrophobic coating under one-sun irradiation[33]
表2 不同碳基超浸润光热材料的光热转换性能
Table 2 Photothermal conversion properties of different carbon-based superwetting photothermal materials
图4 (a) HCPs合成示意图[36]; (b) 超疏水FTPMF海绵的制备过程示意图; (c) Janus海绵上下表面的太阳加热测量示意图; (d) MF、PMF、TPMF和Janus海绵的紫外-可见吸收光谱; (e) MF和Janus海绵上下表面光热性能的红外图像[37]
Fig. 4 (a) Diagram of HCPs synthesis[36]; (b) schematic illustration of the preparation process for superhydrophobic FTPMF sponge; (c) schematic illustration of the solar-heating measurement of Janus sponge top and bottom surfaces; (d) UV-vis absorption spectra of MF, PMF, TPMF and Janus sponge; (e) infrared images of the photothermal performance of the top and bottom surfaces of MF and Janus sponge[37]
图5 (a) 模拟阳光照射下原油表面样品的表面温度变化曲线; (b) 原油黏度随油温变化图[39]; (c) CuO纳米线网制备及蒸发实验示意图; (d) 不同条件下质量变化曲线:黑暗条件下氧化铜树(红线),光照下纯水(绿线),光照下氧化铜树(黑线); (e) 氧化铜树系统在太阳蒸发过程的能量分布比[40]
Fig. 5 (a) The surface temperature evolution curves of the sample placed on the surface of crude oil under the simulated sunlight irradiation; (b) The change of crude oil viscosity as a function of oil temperature[39]; (c) Schematic representation of the fabrication of the CuO nanowire mesh and the evaporation experiment; (d) Comparison of the mass-changes over different conditions: CuO tree in dark condition (red line), water under light (green line), CuO tree under light (black line); (e) Different energy distribution ratio of the solar evaporation process for the CuO tree system[40]
图6 (a) Fe2O3/CNT/NF纳米复合泡沫制备示意图[49]; (b) MNP@NH2@P(C6SMA-r-SMA-r-GMA)涂层的合成路线;(c) 光热实验装置示意图;(d) 日光照射下涂层表面的光热效应(75 W)[51]
Fig. 6 (a) Schematic diagram of fabrication of Fe2O3/CNT/NF nanocomposite foam[49]; (b) Synthetic route of MNP@NH2@P(C6SMA-r-SMA-r-GMA) coating; (c) Schematic diagram of photothermal experimental set-up; (d) Photothermal effect of coating surfaces under sunlamp irradiation (75 W)[51]
图7 (a) 超疏水涂层制备及不同普鲁士蓝添加量复合涂层光热曲线[55]; (b) Fe3O4@SiO2/HMDS粒子制备示意图[29]; (c) EVA基底上SiO2/SiC超疏水涂层制备示意图
Fig. 7 (a) Preparation of the superhydrophobic coatings and photothermal curves of composite coatings added with different amount of Prussian blue[55]; (b) Schematic illustration for preparing Fe3O4@SiO2/HMDS particles[29]; (c) Schematic diagram of preparation of SiO2/SiC superhydrophobic coating onto EVA substrate
图8 硅胶/MWCNT蒸发器的(a)制备示意图,(b)各组件功能,(c) 用于太阳能淡化收集水的实验装置图[58]; (d) 疏水d-Ti3C2膜制造工艺示意图;(e) 制备高效稳定太阳能淡化的一般策略[23];(f) 太阳能蒸气发电用碳烟灰涂层PAFs的合成示意图;(g) 太阳能蒸气发电蒸发器的示意图[59]
Fig. 8 The (a) schematic preparation, (b) functions of each component, (c) diagram of experimental device for clean water collection via solar desalination of ilicone/MWCNT evaporators[58]; (d) The fabrication process, (e) a general strategy for efficient and stable solar desalination hydrophobic d-Ti3C2 membrane[23]; (f) schematic illustration of synthesis of carbon soot coated PAFs for solar steam generation; (g) schematic diagram of the CPAFs as evaporator for solar steam generation[59]
图9 (a) 泡沫复合材料的制备示意图;(b) 温度随光照时间的变化情况;(c) 无光照和有光照20 min后吸油过程的实际场景[60];(d) 超疏水PDMS/CuS/PDA@MF海绵的制备工艺示意图;(e) 不同海绵在一个太阳强度照射下的温度随时间变化图;(f) 在一个太阳强度照射下顶部到底部吸收原油滴(0.4 mL)的PDMS0.8/CuS3/PDA@MF海绵[62]
Fig. 9 (a) The schematic illustration for the preparation, and (b) the temperature variation with the illumination time of the foam composite; (c) The practical scenario of the oil absorption process without and with light illumination after 20 min[60]; (d) Schematic illustration of the preparation process for a superhydrophobic PDMS/CuS/PDA@MF sponge; (e) Time-dependent temperature evolution for different sponges under one sunlight. The light was turned off after 200 s; (f) The PDMS0.8/CuS3/PDA@MF sponge for absorbing a crude oil droplet (0.4 mL) from top to bottom under one sunlight[62]
表3 具备光热效应的超浸润材料应用简述
Table 3 Brief introduction to the application of superwetting materials with photothermal effect
[1]
Li H, Yu S R. Appl. Surf. Sci., 2017, 420: 336.

doi: 10.1016/j.apsusc.2017.05.131     URL    
[2]
Cui S, Lu S X, Xu W G, An B F, Wu B. J. Alloys Compd., 2017, 728: 271.

doi: 10.1016/j.jallcom.2017.09.007     URL    
[3]
Lu Y, Sathasivam S, Song J L, Crick C R, Carmalt C J, Parkin I P. Science, 2015, 347(6226): 1132.

doi: 10.1126/science.aaa0946     URL    
[4]
Gao Y L, Qu L C, He B, Dai K M, Fang Z S, Zhu R J. Constr. Build. Mater., 2018, 191: 270.

doi: 10.1016/j.conbuildmat.2018.10.009     URL    
[5]
Wang L, Gong Q H, Zhan S H, Jiang L, Zheng Y M. Adv. Mater., 2016, 28(35): 7729.

doi: 10.1002/adma.201602480     URL    
[6]
Subeshan B, Usta A, Asmatulu R. Surf. Interfaces, 2020, 18: 100429.
[7]
Latthe S S, Sutar R S, Shinde T B, Pawar S B, Khot T M, Bhosale A K, Sadasivuni K K, Xing R M, Mao L Q, Liu S H. ACS Appl. Nano Mater., 2019, 2(2): 799.

doi: 10.1021/acsanm.8b02021     URL    
[8]
Huang G, Lai B W, Xu H D, Jin Y K, Huo L, Li Z R, Deng Y L. Sep. Purif. Technol., 2021, 258: 118063.

doi: 10.1016/j.seppur.2020.118063     URL    
[9]
Mao Y, Wang F, Li Y, Guidoin R, Wang L, Wang F J. Appl. Surf. Sci., 2020, 517: 146104.

doi: 10.1016/j.apsusc.2020.146104     URL    
[10]
Xun X W, Wan Y Z, Zhang Q C, Gan D Q, Hu J, Luo H L. Appl. Surf. Sci., 2020, 505: 144566.

doi: 10.1016/j.apsusc.2019.144566     URL    
[11]
He J, Mao M, Lu Y T, Jiang W, Liang B. Ind. Eng. Chem. Res., 2017, 56(2): 495.

doi: 10.1021/acs.iecr.6b03542     URL    
[12]
Cho E C, Chang-Jian C W, Chen H C, Chuang K S, Zheng J H, Hsiao Y S, Lee K C, Huang J H. Chem. Eng. J., 2017, 314: 347.

doi: 10.1016/j.cej.2016.11.145     URL    
[13]
Vazirinasab E, Jafari R, Momen G. Surf. Coat. Technol., 2018, 341: 40.

doi: 10.1016/j.surfcoat.2017.11.053     URL    
[14]
Kim A, Kim H, Lee C, Kim J. Appl. Phys. Lett., 2014, 104(8): 081601.

doi: 10.1063/1.4866262     URL    
[15]
Dai H Y, Gao C, Sun J H, Li C X, Li N, Wu L, Dong Z C, Jiang L. Adv. Mater., 2019, 31(43): 1905449.

doi: 10.1002/adma.201905449     URL    
[16]
Lai Y K, Huang J Y, Cui Z Q, Ge M Z, Zhang K Q, Chen Z, Chi L F. Small, 2016, 12(16): 2203.

doi: 10.1002/smll.201501837     URL    
[17]
Yin K, Du H F, Dong X R, Wang C, Duan J A, He J. Nanoscale, 2017, 9(38): 14620.

doi: 10.1039/C7NR05683D     URL    
[18]
Luo F L, Shen L P, Ling Z C. Text. Aux., 2019, 36(1): 32.
雒芳林, 沈兰萍, 凌子超. 印染助剂, 2019, 36(1): 32.).
[19]
Xu D. Master Dissertation of Northeast Normal University, 2018.
徐丹. 东北师范大学硕士学位论文, 2018.).
[20]
Fu C. Master Dissertation of University of Chinese Academy of Sciences, 2020.
付超. 中国科学院大学硕士学位论文, 2020.).
[21]
Su F H, Yao K. ACS Appl. Mater. Interfaces, 2014, 6(11): 8762.

doi: 10.1021/am501539b     URL    
[22]
Zhu Q, Chu Y, Wang Z K, Chen N, Lin L, Liu F T, Pan Q M. J. Mater. Chem. A, 2013, 1(17): 5386.

doi: 10.1039/c3ta00125c     URL    
[23]
Zhao J Q, Yang Y W, Yang C H, Tian Y P, Han Y, Liu J, Yin X T, Que W X. J. Mater. Chem. A, 2018, 6(33): 16196.

doi: 10.1039/C8TA05569F     URL    
[24]
Shen C, Zhu Y Q, Xiao X D, Xu X Q, Chen X L, Xu G. ACS Appl. Mater. Interfaces, 2020, 12(31): 35142.

doi: 10.1021/acsami.0c11332     URL    
[25]
Jiang G, Chen L, Zhang S D, Huang H X. ACS Appl. Mater. Interfaces, 2018, 10(42): 36505.

doi: 10.1021/acsami.8b11201     URL    
[26]
Xue C H, Du M M, Guo X J, Liu B Y, Wei R X, Li H G, Huang M C, Deng F Q, Jia S T. Cellulose, 2021, 28(8): 5107.

doi: 10.1007/s10570-021-03857-z     URL    
[27]
Xie Z T,. Wang H, Zhu X, Chen R, Ding Y D, Liao Q. CIESC Journal, 2021, 72(11): 5840.
谢震廷, 王宏, 朱恂, 陈蓉, 丁玉栋, 廖强. 化工学报, 2021, 72(11): 5840.).
[28]
Zhu Z D, Fu S Y, Lucia L A. ACS Sustainable Chem. Eng., 2019, 7(19): 16428.

doi: 10.1021/acssuschemeng.9b03544     URL    
[29]
Zhu R F, Liu M M, Hou Y Y, Zhang L P, Li M, Wang D, Fu S H. ACS Appl. Mater. Interfaces, 2020, 12(14): 17004.

doi: 10.1021/acsami.9b22268     URL    
[30]
Zhong H, Zhu Z R, Lin J, Cheung C F, Lu V L, Yan F, Chan C Y, Li G J. ACS Nano, 2020, 14(5): 6213.

doi: 10.1021/acsnano.0c02250     pmid: 32329600
[31]
Wang X D, Dai L G, Jiao N D, Tung S, Liu L Q. Chem. Eng. J., 2021, 422: 129394.

doi: 10.1016/j.cej.2021.129394     URL    
[32]
Su X J, Li H Q, Lai X J, Yang Z P, Chen Z H, Wu W J, Zeng X R. J. Mater. Chem. A, 2018, 6(35): 16910.

doi: 10.1039/C8TA05273E     URL    
[33]
Li H G, Xue Z H, Jia S T. Fine Chemicals, 2021, 38(05): 934.
李回归, 薛朝华, 贾顺田. 精细化工, 2021, 38(05): 934.).
[34]
Zhou Y L, Ying P J, Geng Y, Tian T Q, Li M, Sun K. Research and Exploration in Laboratory, 2020, 39(01): 54.
周永利, 应佩晋, 耿阳, 田廷泉, 李猛, 孙宽. 实验室研究与探索, 2020, 39(01): 54.).
[35]
Guo X X, Gao H, Yin L F, Wang S Y, Dai Y R, Feng C P. Prog. Chem., 2019, 31(4): 580.
郭星星, 高航, 殷立峰, 王思宇, 代云容, 冯传平. 化学进展, 2019, 31(4): 580.).

doi: 10.7536/PC180908    
[36]
Liu F, Liang W D, Wang C J, He J X, Xiao C H, Zhu Z Q, Sun H X, Li A. Sol. Energy Mater. Sol. Cells, 2021, 221: 110913.

doi: 10.1016/j.solmat.2020.110913     URL    
[37]
Yang J, Xu P, Yao Y L, Li Y, Shi B, Jia X H, Song H J. Mater. Des., 2020, 195: 108979.

doi: 10.1016/j.matdes.2020.108979     URL    
[38]
Ibrahim I, Seo D H, McDonagh A M, Shon H K, Tijing L. Desalination, 2021, 500: 114853.

doi: 10.1016/j.desal.2020.114853     URL    
[39]
Li Q Q, Sun Q Y, Li Y H, Wu T, Li S K, Zhang H, Huang F Z. ACS Appl. Mater. Interfaces, 2020, 12(17): 19476.

doi: 10.1021/acsami.0c01207     URL    
[40]
Xu Y, Ma J X, Han Y, Zhang J J, Cui F Y, Zhao Y, Li X, Wang W. ACS Sustainable Chem. Eng., 2019, 7(5): 5476.

doi: 10.1021/acssuschemeng.8b06679     URL    
[41]
Jiang T T, Song J, Zhang W T, Wang H, Li X D, Xia R X, Zhu L X, Xu X L. ACS Appl. Mater. Interfaces, 2015, 7(39): 21985.

doi: 10.1021/acsami.5b08305     URL    
[42]
Espinosa A, Curcio A, Cabana S, Radtke G, Bugnet M, Kolosnjaj-Tabi J, PÉchoux C, Alvarez-Lorenzo C, Botton G A, Silva A K A, Abou-Hassan A, Wilhelm C. ACS Nano, 2018, 12(7): 6523.

doi: 10.1021/acsnano.8b00482     pmid: 29906096
[43]
Cai S C, Li J J, Yu E Q, Chen X, Chen J, Jia H P. ACS Appl. Nano Mater., 2018, 1(11): 6368.

doi: 10.1021/acsanm.8b01578     URL    
[44]
Liu X, Zhang X, Zhu M, Lin G H, Liu J, Zhou Z F, Tian X, Pan Y. ACS Appl. Mater. Interfaces, 2017, 9(1): 279.

doi: 10.1021/acsami.6b15183     URL    
[45]
Chen S, Tang F, Tang L Z, Li L D. ACS Appl. Mater. Interfaces, 2017, 9(24): 20895.

doi: 10.1021/acsami.7b04956     URL    
[46]
Zhang W X, Hao Y N, Gao Y R, Shu Y, Wang J H. ACS Appl. Mater. Interfaces, 2021, 13(32): 38127.

doi: 10.1021/acsami.1c12199     URL    
[47]
Li D M. Master Dissertation of Northwest Normal University, 2017.
李殿明. 西北师范大学硕士学位论文, 2017.).
[48]
Song Y F, Li X Y, Wang Y C. Chem. Res., 2017, 28(4): 513.
宋玉丰, 李西营, 王玉超. 化学研究, 2017, 28(4): 513.).
[49]
Han S, Yang J, Li X F, Li W, Zhang X T, Koratkar N, Yu Z Z. ACS Appl. Mater. Interfaces, 2020, 12(11): 13229.

doi: 10.1021/acsami.0c00606     URL    
[50]
Wang L, Wang D, Wu Z F, Luo J C, Huang X W, Gao Q, Lai X J, Tang L C, Xue H G, Gao J F. ACS Appl. Mater. Interfaces, 2020, 12(11): 13316.

doi: 10.1021/acsami.0c00150     URL    
[51]
Cheng T T, He R, Zhang Q H, Zhan X L, Chen F Q. J. Mater. Chem. A, 2015, 3(43): 21637.

doi: 10.1039/C5TA05277G     URL    
[52]
Li Y B, Li B C, Zhao X, Tian N, Zhang J P. ACS Appl. Mater. Interfaces, 2018, 10(45): 39391.

doi: 10.1021/acsami.8b15061     URL    
[53]
Hao Q Y, Pang Y C, Zhao Y, Zhang J, Feng J, Yao S H. Langmuir, 2014, 30(51): 15416.

doi: 10.1021/la504166x     URL    
[54]
Hu J H, Jiang G. Surf. Coat. Technol., 2020, 402: 126342.

doi: 10.1016/j.surfcoat.2020.126342     URL    
[55]
Yang X X, Chen Q, Zhang H L, Xu Z S, Y C F. Acta Mater Compos. Sin, 2021, 38(12): 4014.
杨晓昕, 陈奇, 张宏量, 徐祖顺, 易昌凤. 复合材料学报, 2021, 38(12): 4014.).
[56]
Gao S R, Jiao L L, Yi M C, Jin J X, Wang X D. Acta. Aerodynamica Sinica, 2021, 39(02): 151.
高淑蓉, 焦丽丽, 易孟超, 金佳鑫, 王晓东. 空气动力学学报, 2021, 39(02): 151.).
[57]
S. P, Liu H. Express Water Resour. & Hydropower Inf., 2017, 38(5): 14.
S.普里查德, 刘卉. 水利水电快报, 2017, 38(5): 14.).
[58]
Hu T, Li L X, Yang Y F, Zhang J P. J. Mater. Chem. A, 2020, 8(29): 14736.

doi: 10.1039/D0TA04917D     URL    
[59]
Liu F, Liang W D, Wang C J, Xiao C H, He J X, Zhao G H, Zhu Z Q, Sun H X, Li A. Mater. Today Energy, 2020, 16: 100375.
[60]
Guo Z, Long B, Gao S J, Luo J C, Wang L, Huang X W, Wang D, Xue H G, Gao J F. J. Hazard. Mater., 2021, 402: 123838.

doi: 10.1016/j.jhazmat.2020.123838     URL    
[61]
Ji H N, Yi C F, Xu Z S, Yang X X. Acta. Materiae Compositae Sinica, 2021, 39(0): 1.
纪浩楠, 易昌凤, 徐祖顺, 杨晓昕. 复合材料学报, 2021, 39(0): 1.).
[62]
Niu H F, Li J B, Wang X F, Luo F H, Qiang Z, Ren J. ACS Appl. Mater. Interfaces, 2021, 13(18): 21175.

doi: 10.1021/acsami.1c00452     URL    
[63]
Zhang C, Li Y L, Sun S, Kalulu M, Wang Y, Zhou X, Wang X Y, Du Q, Jiang Y. Prog. Org. Coat., 2020, 139: 105369.
[64]
Zhang S, Huang X W, Wang D, Xiao W, Huo L Y, Zhao M, Wang L, Gao J F. ACS Appl. Mater. Interfaces, 2020, 12(41): 47076.

doi: 10.1021/acsami.0c15110     URL    
[65]
Yang R L, Zhu Y J, Chen F F, Qin D D, Xiong Z C. ACS Sustainable Chem. Eng., 2019, 7(15): 13226.

doi: 10.1021/acssuschemeng.9b02488     URL    
[66]
Cao W T, Feng W, Jiang Y Y, Ma C, Zhou Z F, Ma M G, Chen Y, Chen F. Mater. Horiz., 2019, 6(5): 1057.

doi: 10.1039/C8MH01566J     URL    
[67]
Chen C, Huang Z C, Shi L A, Jiao Y L, Zhu S W, Li J W, Hu Y L, Chu J R, Wu D, Jiang L. Adv. Funct. Mater., 2019, 29(40): 1904766.

doi: 10.1002/adfm.201904766     URL    
[68]
Jiao L, Chen R, Ye D D, Li W, Li D L. Int. J. Heat Mass Transf., 2019, 143: 118560.

doi: 10.1016/j.ijheatmasstransfer.2019.118560     URL    
[1] 郑明心, 谭臻至, 袁金颖. 光响应Janus粒子体系的构建与应用[J]. 化学进展, 2022, 34(11): 2476-2488.
[2] 李孝建, 张海军, 李赛赛, 张 俊, 贾全利, 张少伟. 超亲水疏油材料的制备及其油水分离性能[J]. 化学进展, 2020, 32(6): 851-860.
[3] 王猛, 马丹阳, 王成杰. 近红外光响应液晶弹性体[J]. 化学进展, 2020, 32(10): 1452-1461.
[4] 左继浩, 陈嘉慧, 文秀芳, 徐守萍, 皮丕辉. 用于分离油水乳液的先进材料[J]. 化学进展, 2019, 31(10): 1440-1458.
[5] 张俊, 韩磊, 曾渊, 田亮, 张海军. 选择性油水分离材料[J]. 化学进展, 2019, 31(1): 134-143.
[6] 袁静, 廖芳芳, 郭雅妮, 梁丽芸. 超亲水超疏油油水分离膜的制备及其性能[J]. 化学进展, 2019, 31(1): 144-155.
[7] 屈孟男*, 袁明娟, 何姣, 薛萌辉, 何金梅*. 智能响应型超浸润材料[J]. 化学进展, 2018, 30(12): 1874-1886.
[8] 侯琳刚, 马利利, 周亦晨, 赵彧, 张毅, 何金梅*. 低表面能化合物在超浸润材料中的应用[J]. 化学进展, 2018, 30(12): 1887-1898.
[9] 曾新娟, 王丽, 皮丕辉, 程江, 文秀芳, 钱宇. 特殊润湿性油水分离材料的开发与研究[J]. 化学进展, 2018, 30(1): 73-86.
[10] 李俊同, 霍延平, 刘梦娟, 曾华强. 可用于溢油处理的相选择性有机胶凝剂[J]. 化学进展, 2017, 29(6): 617-627.
[11] 孟德芃, 吴俊涛. 静电纺丝法制备新型吸附分离材料[J]. 化学进展, 2016, 28(5): 657-664.
[12] 阎映弟, 罗能镇, 相咸高, 徐义明, 张庆华, 詹晓力. 防覆冰涂层构建机理及制备[J]. 化学进展, 2014, 26(01): 214-222.
[13] 屈阳, 李建波*, 任杰*. 温度敏感性药物载体及其在肿瘤热化疗中的应用[J]. 化学进展, 2013, 25(05): 785-798.
[14] 吴礼光,周勇,张林,陈欢林,高从堦. 反渗透复合膜功能材料研究进展[J]. 化学进展, 2008, 20(0708): 1216-1221.