English
新闻公告
More
化学进展 2021, Vol. 33 Issue (5): 726-739 DOI: 10.7536/PC200694 前一篇   后一篇

所属专题: 金属有机框架材料

• 研究论文 •

MOF基水凝胶材料的制备及其应用

杨宇州1, 李政1,3,*(), 黄艳凤2, 巩继贤1, 乔长晟3, 张健飞1,4   

  1. 1 天津工业大学纺织科学与工程学院 先进纺织复合材料教育部重点实验室 天津 300387
    2 天津工业大学化学与化工学院 天津 300387
    3 宁夏中宁枸杞产业创新研究院有限公司 中宁 755199
    4 国家先进印染技术创新中心 泰安 271001
  • 收稿日期:2020-06-20 修回日期:2020-07-30 出版日期:2021-05-20 发布日期:2020-12-22
  • 通讯作者: 李政
  • 作者简介:
    * Corresponding author e-mail:
  • 基金资助:
    天津市重点研发计划科技支撑重点项目(20YFZCSN00130); 国家重点研发计划(2017YFB0309800); 国家重点研发计划(2016YFC0400503-02); 新疆自治区重大专项(2016A03006-3); 天津自然科学基金项目(18JCYBJC89600); 中国纺织工业联合会科技指导性项目(2017011); 宁夏中宁枸杞产业创新研究院一般项目(ZNGQCX-B-2019006)

Preparation and Application of MOF-Based Hydrogel Materials

Yuzhou Yang1, Zheng Li1,3,*(), Yanfeng Huang2, Jixian Gong1, Changsheng Qiao3, Jianfei Zhang1,4   

  1. 1 Key Laboratory of Advanced Textile Composites of Ministry of Education, School of Textiles Science and Engineering, Tiangong University,Tianjin 300387, China
    2 School of Chemistry and Chemical Engineering, Tiangong University,Tianjin 300387, China
    3 Innovation Research Institute of Wolfberry Industry Co. LTD,Zhongning 755199, China
    4 National Innovation Center of Advanced Dyeing and Finishing Technology, Taian 271001, China
  • Received:2020-06-20 Revised:2020-07-30 Online:2021-05-20 Published:2020-12-22
  • Contact: Zheng Li
  • Supported by:
    Tianjin Key Research and Development Project(20YFZCSN00130); National Key Research and Development Project Foundation of China(2017YFB0309800); National Key Research and Development Project Foundation of China(2016YFC0400503-02); Xinjiang Autonomous Region Major Significant Project Foundation(2016A03006-3); Tianjin Natural Science Foundation(18JCYBJC89600); Science and Technology Guidance Project of China National Textile and Apparel Council(2017011); Innovation Research Institute of Wolfberry Industry Co. LTD(ZNGQCX-B-2019006)

近年来,金属-有机骨架材料(MOFs)因为具有优异的骨架结构、丰富的孔隙度和多功能性,吸引了众多研究者的注意,各种各样的MOFs材料和MOF基复合材料被研制。但是由于MOFs大多以晶体和粉末的形式存在,其本身的刚性和易碎性限制了它的实际应用,同时MOFs在溶液中的不稳定性会导致材料的分解,一些高结晶度的MOFs还十分脆弱易碎且不易加工,因此有研究者将MOFs与水凝胶相结合,开发出许多具有优异性能的MOF基水凝胶材料。本文综述了MOF基水凝胶材料近年的研究进展,重点介绍了MOF基水凝胶的种类及其与其他材料的协同作用,讨论了MOF基水凝胶在传感、催化、水处理、伤口敷料和药物载体等方面的优势。MOF基水凝胶具有的可加工性、稳定性、易处理性为MOFs在实际应用中的研究具有指导意义。我们概述了纯MOF水凝胶、MOF@生物有机大分子水凝胶、MOF@生物相容性水凝胶,其他MOF基复合水凝胶的最新进展以及这些复合材料的应用。

In recent years, metal-organic framework materials(MOFs) have attracted the attention of many researchers because of their excellent framework structure, rich porosity and versatility. A variety of MOFs materials and MOF-based composites have been developed. However, since most MOFs exist in the form of crystals and powders, their rigidity and fragility limit its practical application. Meanwhile, the instability of MOFs in solution can cause the decomposition of the material. Some high-crystallinity MOFs are also very fragile and difficult to process, so researchers combine MOFs with hydrogels and develop many MOF-based hydrogel materials with excellent properties. This review presents current developments of MOF-based hydrogels with emphasis on the specific categories and the synergistic effects of MOF-derived hydrogels between MOFs and additional materials. Particular emphasis is placed on discussing the advantages of MOF-based hydrogels in applications such as sensors, catalysts, water treatment, wound dressings, drug carriers, etc. MOF-based hydrogels can provide valuable guidance for the investigation of MOFs towards practical applications with processability, stability, and easy handling. Specifically, the recent progress of pure MOF hydrogels, MOF@bioorganic macromolecule hydrogels, MOF@biocompatible hydrogels, other MOF-based composite hydrogels, and the applications of these composite materials are summarized.

Contents

1 Introduction

2 Methods to prepare MOF-based hydrogels

2.1 Direct mixing method

2.2 In situ growth

3 Classification of MOF-based hydrogels

3.1 Pure MOF hydrogels

3.2 MOF@bioorganic macromolecule hydrogels

3.3 MOF@biocompatible hydrogels

3.4 Other MOF-based composite hydrogels

4 Application of MOF-based hydrogels

4.1 Sensing

4.2 Catalytic

4.3 Water treatment

4.4 Wound healing

4.5 Drug carrier

5 Conclusion and outlook

()
表1 不同材料的BET比表面积和孔体积[3]
Table 1 BET specific surface area and pore volume of different materials[3]
图1 采用直接合成法制备MOF基水凝胶[38]
Fig. 1 The preparation processes of MOF-based hydrogels by using the direct mixing method[38]
图2 采用原位生长法制备MOF基水凝胶[38]
Fig. 2 The preparation processes of MOF-based hydrogels in situ on hydrogels[38]
图3 (a)Tb-Dy MOF水凝胶,(b)Eu-Tb MOF水凝胶,(c)Eu-Dy MOF水凝胶,(d)Eu-Tb-Dy MOF水凝胶在阳光(左侧)和275 nm(右侧)光激发下的形态(混合金属比为1∶1或1∶1∶1),(e,f) 不同放大比例的Tb-MOF 水凝胶透射图[41]
Fig. 3 Photographs of(a) Tb-Dy MOF hydrogel,(b) Eu-Tb MOF hydrogel,(c) Eu-Dy MOF hydrogel, and(d) Eu-Tb-Dy MOF hydrogel with mixed-metal ratios of 1∶1 or 1∶1∶1 under sunlight(left) and under excitation at 275 nm(right).(e, f) Transmission electron microscopy(TEM) images with different amplification of Tb-MOF[41]
表2 MOF基水凝胶分类
Table 2 Classification of MOF-based hydrogels
图4 UIO-66的合成、Tr分子在UIO-66孔中的负载以及用卡拉胶包覆Tr@UIO-66的过程[44]
Fig. 4 The schematic representation of the synthesis of UIO-66, loading of Tr molecules into the UIO-66 pores and the general procedure for coating of Tr@UIO-66 with k-Cr[44]
图5 含MOF-Pt的ABEI/Co2+/CS的Cl-成像传感器检测OPs和D-AAs示意图[48]
Fig. 5 Schematic diagram of detection of OPs and D-AAs based on MOF-Pt enhanced long-lasting CL of ABEI/Co2+/CS hydrogels[48]
图6 (i) HKUST-1-藻酸盐复合物(ii) ZIF-8-藻酸盐复合物(iii) MIL-100(Fe)-藻酸盐复合物(iv) ZIF-67- 藻酸盐复合物(A) MOF 结构.(B)交联金属离子的纤维状水凝胶照片(C) MOF@藻酸盐水凝胶照片[52]
Fig. 6 (i) HKUST-1-alginate composite.(ii) ZIF-8-alginate composite.(iii) MIL-100(Fe)-alginate composite.(iv) ZIF-67- alginate composite.(A) MOF structure.(B) Photographs of the ?berlike metal ion cross-linked hydrogels.(C) Photographs of the corresponding MOF-alginate composites [52]
图7 (a)合成带有染料或药物的DNA/聚丙烯酰胺水凝胶涂层的MOFs示意图,(b) MOFs的SEM图像,(c)涂有水凝胶的MOFs的SEM图像[58]
Fig. 7 (a) Synthesis of DNA/polyacrylamide-hydrogel-coated MOFs loaded with dye or drug. Typical SEM image of the MOFs(b), and the MOFs coated with hydrogel(c)[58]
图8 制备ZIF-8/rGO复合水凝胶的自组装机制图[62]
Fig. 8 Schematic of the self-assembly mechanism of the rGO and ZIF-8 nanoparticles for the formation of ZIF-8/rGO composite hydrogels[62]
图9 用羧甲基纤维素包封Cu-MOF@IBU和从CMC/Cu-MOF@IBU释放IBU的程序示意图[67]
Fig. 9 Schematic of the general procedure employed for encapsulating Cu-MOF@IBU with carboxymethylcellulose and IBU release from CMC/Cu-MOF@IBU[67]
图10 (a)HM对不同浓度β-内酰胺酶的发光响应,(b)HM发光强度与β-内酰胺酶浓度之间的关系,(c)不同浓度的β-内酰胺酶血清溶液中HM的照片[75]
Fig. 10 (a) Luminescence responses of HM for the varying β-lactamase.(b) The relationship between intensities of HM and the concentrations of β-lactamase.(c) Photographs of the HM toward the various β-lactamase serum solutions with various concentrations [75]
图11 (A)合成Ag NPs@MIL100(Fe)/GG杂化水凝胶的示意图;(B)光催化降解的应用;(C)油/水分离;(D)Ag NPs@MIL-100(Fe)/GG杂化水凝胶的抗菌活性[57]
Fig. 11 (A) Schematic for synthesis of Ag NPs@MIL100(Fe)/GG hybrid hydrogel.(B) Applications for photocatalytic degradation.(C) Oil/Water separation.(D) Antibacterial activity of the Ag NPs@MIL-100(Fe)/GG hybrid hydrogel[57]
图12 疏水性MOFs@PVA多孔水凝胶膜的制备及应用(a)通过微流体方法制备载有ZIF-8的全疏水性水凝胶膜以及将所得膜用于伤口愈合的应用。(b)具有均匀孔的膜的显微光学图像。(插图显示了10 μL水滴在膜上的状态图)(c)ZIF-8@PVA水凝胶多孔膜上有滴一滴血的光学图像 [84]
Fig. 12 The fabrication and application of the omniphobic MOFs@PVA porous hydrogel membrane.(a) Schematic showing the fabrication of the ZIF8-loaded omniphobic hydrogel membranes by a microfluidic approach and the application of resultant membranes for wound healing.(b) Microscopic optical image of the membrane with uniform pores. The inset shows the CA of a water droplet of 10 μL.(c) Optical image showing a drop of blood on the ZIF-8@PVA hydrogel porous membrane [84]
[1]
Murray L J, Dincă M, Long J R. Chem. Soc. Rev., 2009, 38(5):1294.

doi: 10.1039/b802256a     URL    
[2]
Deria P, Bury W, Hod I, Kung C W, Karagiaridi O, Hupp J T, Farha O K. Inorg. Chem., 2015, 54(5):2185.

doi: 10.1021/ic502639v     URL    
[3]
Wang R. Master Dissertation of Hubei Minzu University, 2019.
( 王锐. 湖北民族大学硕士论文, 2019.).
[4]
Kaija A R, Wilmer C E. J. Phys. Chem. Lett., 2018, 9(15):4275.

doi: 10.1021/acs.jpclett.8b01421     pmid: 29983053
[5]
Zhao J, Liu X, Wu Y P, Li D S, Zhang Q C. Coord. Chem. Rev., 2019, 391:30.

doi: 10.1016/j.ccr.2019.04.002     URL    
[6]
Li D S, Wu Y P, Zhao J, Zhang J, Lu J Y. Coord. Chem. Rev., 2014, 261:1.

doi: 10.1016/j.ccr.2013.11.004     URL    
[7]
Zhou W, Huang D D, Wu Y P, Zhao J, Wu T, Zhang J, Li D S, Sun C H, Feng P Y, Bu X H. Angew. Chem. Int. Ed., 2019, 58(13):4227.

doi: 10.1002/anie.v58.13     URL    
[8]
Wang X K, Liu J, Zhang L, Dong L Z, Li S L, Kan Y H, Li D S, Lan Y Q. ACS Catal., 2019, 9(3):1726.

doi: 10.1021/acscatal.8b04887     URL    
[9]
Yang S J, Kim T, Im J H, Kim Y S, Lee K, Jung H, Park C R. Chem. Mater., 2012, 24(3):464.

doi: 10.1021/cm202554j     URL    
[10]
Li S L, Xu Q. Energy Environ. Sci., 2013, 6(6):1656.

doi: 10.1039/c3ee40507a     URL    
[11]
Zhao M T, Yuan K, Wang Y, Li G D, Guo J, Gu L, Hu W P, Zhao H J, Tang Z Y. Nature, 2016, 539(7627):76.

doi: 10.1038/nature19763     URL    
[12]
Hong Y S, Li F, Sun S L, Sun Q, Ye M. J. Solid State Chem., 2019, 274:315.

doi: 10.1016/j.jssc.2019.03.048     URL    
[13]
He C B, Lu K D, Liu D M, Lin W B. J. Am. Chem. Soc., 2014, 136(14):5181.

doi: 10.1021/ja4098862     URL    
[14]
Huang Y F, Liu M, Wang Y Q, Li Y, Zhang J M, Huo S H. RSC Adv., 2016, 6(19):15362.

doi: 10.1039/C5RA23132A     URL    
[15]
Chen Y F, Li S Q, Pei X K, Zhou J W, Feng X, Zhang S H, Cheng Y Y, Li H W, Han R D, Wang B. Angew. Chem. Int. Ed., 2016, 55(10):3419.

doi: 10.1002/anie.201511063     URL    
[16]
Filippousi M, Turner S, Leus K, Siafaka P I, Tseligka E D, Vandichel M, Nanaki S G, Vizirianakis I S, Bikiaris D N, van der Voort P, van Tendeloo G. Int. J. Pharm., 2016, 509(1/2):208.

doi: 10.1016/j.ijpharm.2016.05.048     URL    
[17]
Furukawa H, Ko N, Go Y B, Aratani N, Choi S B, Choi E, Yazaydin A O, Snurr R Q, O’Keeffe M, Kim J, Yaghi O M. Science, 2010, 329(5990):424.

doi: 10.1126/science.1192160     URL    
[18]
Lv D, Chen Y W, Li Y J, Shi R F, Wu H X, Sun X J, Xiao J, Xi H X, Xia Q B, Li Z. J. Chem. Eng. Data, 2017, 62(7):2030.

doi: 10.1021/acs.jced.7b00049     URL    
[19]
Cornell R M, Schwertmann U. The Iron Oxides: Structure, Properties, Reactions, Occurences and Uses, 2nd ed. NJ: John Wiley & Sons, 2003.5.
[20]
Chubar N, Gilmour R, Gerda V, Mičušík M, Omastova M, Heister K, Man P, Fraissard J, Zaitsev V. Adv. Colloid Interface Sci., 2017, 245:62.

doi: 10.1016/j.cis.2017.04.013     URL    
[21]
Stoller M D, Park S, Zhu Y W, An J, Ruoff R S. Nano Lett., 2008, 8(10):3498.

doi: 10.1021/nl802558y     pmid: 18788793
[22]
Wang L D, Qi T Y, Wu S Y, Zhang S H, Qi D, Xiao H N. J. Mater. Chem. A, 2017, 5(17):8018.

doi: 10.1039/C7TA01513E     URL    
[23]
Möller K, Yilmaz B, Müller U, Bein T. Chem. Mater., 2011, 23(19):4301.

doi: 10.1021/cm103533e     URL    
[24]
Zhang K, Liu Z W, Yan X, Hao X L, Wang M, Li C, Xi H X. Langmuir, 2017, 33(50):14396.

doi: 10.1021/acs.langmuir.7b03067     pmid: 29148783
[25]
Neves P, Gomes A C, Amarante T R, Paz F A A, Pillinger M, Gonçalves I S, Valente A A. Microporous Mesoporous Mater., 2015, 202:106.

doi: 10.1016/j.micromeso.2014.09.046     URL    
[26]
Huang Y F, Liu Q H, Li K, Li Y, Chang N. J. Sep. Sci., 2018, 41(5):1129.

doi: 10.1002/jssc.v41.5     URL    
[27]
Huang Y F, Wang Y Q, Zhao Q S, Li Y, Zhang J M. RSC Adv., 2014, 4(89):47921.

doi: 10.1039/C4RA05515B     URL    
[28]
Wei J P, Wang H, Luo T, Zhou Z J, Huang Y F, Qiao B. Anal. Bioanal. Chem., 2017, 409(7):1895.

doi: 10.1007/s00216-016-0136-2     URL    
[29]
Tong L, Mo M Y, Du Y L, Jing T. Mod. Chem. Res., 2018(8):188.
( 童琳, 莫名月, 杜奕霖, 景婷. 当代化工研究, 2018(8):188.)
[30]
Li Z. CN 103013106 A, 2013.
[31]
Li Z, He G D, Hua J C, Wu M Q, Guo W, Gong J X, Zhang J F, Qiao C S. RSC Adv., 2017, 7(18):11085.

doi: 10.1039/C6RA26419K     URL    
[32]
Xu J, Wu C Y, Qiu Y, Tang X, Zeng D W. Macromol. Rapid Commun., 2020, 41(6):1900573.

doi: 10.1002/marc.v41.6     URL    
[33]
Liu H Z, Peng H, Xin Y M, Zhang J Y. Polym. Chem., 2019, 10(18):2263.

doi: 10.1039/C9PY00085B     URL    
[34]
Ribeiro S C, de Lima H H C, Kupfer V L, da Silva C T P, Veregue F R, Radovanovic E, Guilherme M R, Rinaldi A W. J. Mol. Liq., 2019, 294:111553.

doi: 10.1016/j.molliq.2019.111553     URL    
[35]
Nandakumar D K, Zhang Y X, Ravi S K, Guo N, Zhang C, Tan S C. Adv. Mater., 2019, 31(10):1806730.

doi: 10.1002/adma.v31.10     URL    
[36]
Sada K. Bull. Chem. Soc. Jpn., 2018, 91(8):1282.

doi: 10.1246/bcsj.20180096     URL    
[37]
Ananthoji R, Eubank J F, Nouar F, Mouttaki H, Eddaoudi M, Harmon J P. J. Mater. Chem., 2011, 21(26):9587.

doi: 10.1039/c1jm11075f     URL    
[38]
Wang L Y, Xu H, Gao J K, Yao J M, Zhang Q C. Coord. Chem. Rev., 2019, 398:213016.

doi: 10.1016/j.ccr.2019.213016     URL    
[39]
Chakraborty A, Sutar P, Yadav P, Eswaramoorthy M, Maji T K. Inorg. Chem., 2018, 57(23):14480.

doi: 10.1021/acs.inorgchem.8b02545     pmid: 30444363
[40]
Ishiwata T, Kokado K, Sada K. Angew. Chem. Int. Ed., 2017, 56(10):2608.

doi: 10.1002/anie.201611338     URL    
[41]
Chen F, Wang Y M, Guo W W, Yin X B. Chem. Sci., 2019, 10(6):1644.

doi: 10.1039/c8sc04732d     pmid: 30842827
[42]
Fan W T, Du J J, Kou J F, Zhang Z Y, Liu F Y. J. Rare Earths, 2018, 36(10):1036.

doi: 10.1016/j.jre.2018.03.021     URL    
[43]
Alavi F, Emam-Djomeh Z, Yarmand M S, Salami M, Momen S M, Moosavi-Movahedi A A. Food Hydrocoll., 2018, 85:267.

doi: 10.1016/j.foodhyd.2018.07.012     URL    
[44]
Javanbakht S, Shadi M, Mohammadian R, Shaabani A, Amini M M, Pooresmaeil M, Salehi R. J. Drug Deliv. Sci. Technol., 2019, 54:101311.
[45]
Wu D B, Xu J Y, Chen Y, Yi M R, Wang Q G. Carbohydr. Polym., 2018, 181:167.

doi: 10.1016/j.carbpol.2017.10.076     URL    
[46]
Dou C Y, Li Z, He G D, Gong J X, Liu X M, Zhang J F. Prog. Chem., 2018, 30(8):1161.
( 窦春妍, 李政, 何贵东, 巩继贤, 刘秀明, 张健飞. 化学进展, 2018, 30(8):1161.)

doi: 10.7536/PC180122    
[47]
Ren S Z, Li C H, Tan Z L, Hou Y, Jia S R, Cui J D. J. Agric. Food Chem., 2019, 67(12):3372.

doi: 10.1021/acs.jafc.8b06182     URL    
[48]
Lu Y, Wei M, Wang C C, Wei W, Liu Y. Nanoscale, 2020, 12(8):4959.

doi: 10.1039/D0NR00203H     URL    
[49]
HjertÉn S. Biochim. et Biophys. Acta, 1962, 62(3):445.

doi: 10.1016/0006-3002(62)90224-X     URL    
[50]
Gao N, Huang J, Wang L Y, Feng J Y, Huang P C, Wu F Y. Appl. Surf. Sci., 2018, 459:686.

doi: 10.1016/j.apsusc.2018.08.092     URL    
[51]
Zhang W T, Shi S, Zhu W X, Huang L J, Yang C Y, Li S H, Liu X N, Wang R, Hu N, Suo Y R, Li Z H, Wang J L. ACS Sustainable Chem. Eng., 2017, 5(10):9347.

doi: 10.1021/acssuschemeng.7b02376     URL    
[52]
Zhu H, Zhang Q, Zhu S P. ACS Appl. Mater. Interfaces, 2016, 8(27):17395.

doi: 10.1021/acsami.6b04505     URL    
[53]
Zhuang Y, Kong Y, Wang X C, Shi B Y. New J. Chem., 2019, 43(19):7202.

doi: 10.1039/c8nj06031b    
[54]
Park S H, Kim K, Lim J H, Lee S J. Sep. Purif. Technol., 2019, 212:611.

doi: 10.1016/j.seppur.2018.11.067     URL    
[55]
Zhou X Y, Guo Y H, Zhao F, Shi W, Yu G H. Adv. Mater., 2020, 32(52):2007012.

doi: 10.1002/adma.v32.52     URL    
[56]
Garai A, Shepherd W, Huo J, Bradshaw D. J. Mater. Chem. B, 2013, 1(30):3678.

doi: 10.1039/c3tb20814a     URL    
[57]
Duan C, Liu C R, Meng X, Gao K, Lu W L, Zhang Y L, Dai L, Zhao W, Xiong C Y, Wang W L, Liu Y S, Ni Y H. Carbohydr. Polym., 2020, 230:115642.

doi: 10.1016/j.carbpol.2019.115642     URL    
[58]
Chen W H, Liao W C, Sohn Y S, Fadeev M, Cecconello A, Nechushtai R, Willner I. Adv. Funct. Mater., 2018, 28(8):1870053.

doi: 10.1002/adfm.v28.8     URL    
[59]
Lin Y N, Wang X Y, Sun Y L, Dai Y X, Sun W Y, Zhu X D, Liu H, Han R, Gao D D, Luo C N. Sensor Actuat. B: Chem., 2019, 289:56.

doi: 10.1016/j.snb.2019.03.075     URL    
[60]
Huang X, Yin Z Y, Wu S X, Qi X Y, He Q Y, Zhang Q C, Yan Q Y, Boey F, Zhang H. Small, 2011, 7(14):1876.

doi: 10.1002/smll.201002009     pmid: 21630440
[61]
Ou C F. J. Mater. Sci. Chem. Eng., 2015, 3(12):30.
[62]
Mao J J, Ge M Z, Huang J Y, Lai Y K, Lin C J, Zhang K Q, Meng K, Tang Y X. J. Mater. Chem. A, 2017, 5(23):11873.

doi: 10.1039/C7TA01343D     URL    
[63]
Huang P, Yan L F. Chin. J. Chem. Phys., 2016, 29(6):742.

doi: 10.1063/1674-0068/29/cjcp1604073     URL    
[64]
Chen W F, Yan L F. Nanoscale, 2011, 3(8):3132.

doi: 10.1039/c1nr10355e     URL    
[65]
Yang X, Shi K Y, Zhitomirsky I, Cranston E D. Adv. Mater., 2015, 27(40):6104.

doi: 10.1002/adma.201502284     URL    
[66]
Valtakari D, Liu J, Kumar V, Xu C L, Toivakka M, Saarinen J J. Nanoscale Res. Lett., 2015, 10:386.

doi: 10.1186/s11671-015-1093-y     pmid: 26437656
[67]
Javanbakht S, Pooresmaeil M, Hashemi H, Namazi H. Int. J. Biol. Macromol., 2018, 119:588.

doi: 10.1016/j.ijbiomac.2018.07.181     URL    
[68]
Carson C G, Hardcastle K, Schwartz J, Liu X T, Hoffmann C, Gerhardt R A, Tannenbaum R. Eur. J. Inorg. Chem., 2009, 2009(16):2338.

doi: 10.1002/ejic.v2009:16     URL    
[69]
Jin H X, Xu H, Wang N, Yang L Y, Wang Y G, Yu D, Ouyang X K. Materials, 2019, 12(6):942.

doi: 10.3390/ma12060942     URL    
[70]
Sultan S, Abdelhamid H N, Zou X D, Mathew A P. Adv. Funct. Mater., 2019, 29(2):1805372.

doi: 10.1002/adfm.v29.2     URL    
[71]
Zhu Q, Li Y T, Wang W, Sun G, Yan K L, Wang D. Compos. Commun., 2018, 10:36.

doi: 10.1016/j.coco.2018.05.005     URL    
[72]
Xiao J S, Chen S Y, Yi J, Zhang H F, Ameer G A. Adv. Funct. Mater., 2017, 27(1):1604872.

doi: 10.1002/adfm.v27.1     URL    
[73]
Zhang X, Yang M, Kohr B, Morgan A, Ozkan C S. Materials Res. Soc. Symp. Proc., 2004:1, 187.
[74]
Mao W Y, Wang Y Q, Qian X N, Xia L Y, Xie H X. ChemBioChem, 2019, 20(4):511.

doi: 10.1002/cbic.v20.4     URL    
[75]
Lian X, Yan B. Chem. Commun., 2019, 55(2):241.

doi: 10.1039/C8CC08245F     URL    
[76]
Zhao L S, Gan J L, Xia T F, Jiang L C, Zhang J, Cui Y J, Qian G D, Yang Z M. J. Mater. Chem. C, 2019, 7(4):897.

doi: 10.1039/C8TC05154B     URL    
[77]
Lin Y N, Sun Y L, Dai Y X, Sun W Y, Zhu X D, Liu H, Han R, Gao D D, Luo C N, Wang X Y. Talanta, 2020, 207:120300.

doi: 10.1016/j.talanta.2019.120300     URL    
[78]
Cheng K P, Svec F, Lv Y, Tan T W. Small, 2019, 15(49):1906245.

doi: 10.1002/smll.v15.49     URL    
[79]
World Health Organization. Guidelines for Drinking-Water Quality:Fourth Edition Incorporating the First Addendum. GE: World Health Organization, 2017.8.
[80]
Tan S C, Lee H K. Microchimica Acta, 2019, 186(8):545.

doi: 10.1007/s00604-019-3679-z     URL    
[81]
Maan O, Song P, Chen N X, Lu Q Y. Adv. Mater. Interfaces, 2019, 6(10):1970062.

doi: 10.1002/admi.v6.10     URL    
[82]
Zhu H, Yang X, Cranston E D, Zhu S P. Adv. Mater., 2016, 28(35):7652.

doi: 10.1002/adma.201601351    
[83]
Zhao Q, Xie R, Luo F, Faraj Y, Liu Z, Ju X J, Wang W, Chu L Y. J. Membr. Sci., 2018, 549:151.

doi: 10.1016/j.memsci.2017.10.068     URL    
[84]
Yao X X, Zhu G S, Zhu P G, Ma J, Chen W W, Liu Z, Kong T T. Adv. Funct. Mater., 2020, 30(13):1909389.

doi: 10.1002/adfm.v30.13     URL    
[85]
Yu Y R, Chen G P, Guo J H, Liu Y X, Ren J N, Kong T T, Zhao Y J. Mater. Horiz., 2018, 5(6):1137.

doi: 10.1039/C8MH00647D     URL    
[86]
Zhu Y M, Yao Z C, Liu Y S, Zhang W, Geng L L, Ni T. Int. J. Nanomed., 2020, 15:333.

doi: 10.2147/IJN     URL    
[87]
Javanbakht S, Hemmati A, Namazi H, Heydari A. Int. J. Biol. Macromol., 2020, 155:876.

doi: 10.1016/j.ijbiomac.2019.12.007     URL    
[88]
Karimzadeh Z, Javanbakht S, Namazi H. BioImpacts, 2018, 9(1):5.

doi: 10.15171/bi.2019.02     URL    
[1] 陈一明, 李慧颖, 倪鹏, 方燕, 刘海清, 翁云翔. 含儿茶酚基团的湿态组织粘附水凝胶[J]. 化学进展, 2023, 35(4): 560-576.
[2] 李良春, 郑仁林, 黄毅, 孙荣琴. 多组分自组装小分子水凝胶中的自分类组装[J]. 化学进展, 2023, 35(2): 274-286.
[3] 宫悦, 程一竹, 胡银春. 高分子导电水凝胶的制备及在柔性可穿戴电子设备中的应用[J]. 化学进展, 2022, 34(3): 616-629.
[4] 李红, 史晓丹, 李洁龄. 肽自组装水凝胶的制备及在生物医学中的应用[J]. 化学进展, 2022, 34(3): 568-579.
[5] 王雨萌, 杨蓉, 邓七九, 樊潮江, 张素珍, 燕映霖. 双金属MOFs及其衍生物在电化学储能领域中的应用[J]. 化学进展, 2022, 34(2): 460-473.
[6] 李立清, 吴盼旺, 马杰. 双网络凝胶吸附剂的构建及其去除水中污染物的应用[J]. 化学进展, 2021, 33(6): 1010-1025.
[7] 胡豪, 何云鹏, 杨水金. 多酸@金属-有机骨架材料的制备及其在废水处理中的应用[J]. 化学进展, 2021, 33(6): 1026-1034.
[8] 白钰, 王拴紧, 肖敏, 孟跃中, 王成新. 燃料电池用高温质子交换膜[J]. 化学进展, 2021, 33(3): 426-441.
[9] 李超, 乔瑶雨, 李禹红, 闻静, 何乃普, 黎白钰. MOFs/水凝胶复合材料的制备及其应用研究[J]. 化学进展, 2021, 33(11): 1964-1971.
[10] 张开宇, 高国伟, 李延生, 宋钰, 温永强, 张学记. DNA水凝胶在生物传感中的应用和发展[J]. 化学进展, 2021, 33(10): 1887-1899.
[11] 宁鹏, 程云辉, 许宙, 丁利, 陈茂龙. 金属-有机框架材料在活性肽富集中的应用[J]. 化学进展, 2020, 32(4): 497-504.
[12] 于秋灵, 李政, 窦春妍, 赵义平, 巩继贤, 张健飞. pH敏感性智能水凝胶的设计及其应用[J]. 化学进展, 2020, 32(2/3): 179-189.
[13] 苏喜, 葛闯, 陈李, 徐溢. 基于水凝胶的细菌传感检测[J]. 化学进展, 2020, 32(12): 1908-1916.
[14] 封啸, 任颜卫, 江焕峰. 金属-有机框架材料在光催化二氧化碳还原中的应用[J]. 化学进展, 2020, 32(11): 1697-1709.
[15] 蔡紫煊, 张斌, 姜丽阳, 李允译, 许国贺, 马晶军. 智能响应型水凝胶药物控释体系及其应用[J]. 化学进展, 2019, 31(12): 1653-1668.
阅读次数
全文


摘要

MOF基水凝胶材料的制备及其应用