English
新闻公告
More
化学进展 2020, Vol. 32 Issue (6): 851-860 DOI: 10.7536/PC191003 前一篇   

• 综述与评论 •

超亲水疏油材料的制备及其油水分离性能

李孝建1, 张海军1,**(), 李赛赛1, 张 俊1, 贾全利2, 张少伟1   

  1. 1. 武汉科技大学省部共建耐火材料与冶金国家重点实验室 武汉 430081
    2. 郑州大学河南省高温功能材料重点实验室 郑州 450052
  • 收稿日期:2019-10-11 修回日期:2019-12-02 出版日期:2020-06-05 发布日期:2020-04-13
  • 通讯作者: 张海军
  • 作者简介:
    ** Corresponding author e-mail:
  • 基金资助:
    国家自然科学基金面上项目(51872210); 国家自然科学基金面上项目(51672194); 湖北省自然科学基金创新群体项目(2017CFA004); 湖北省教育厅高等学校优秀中青年科技创新团队计划(No. T201602)资助()

Preparation of Superhydrophilic and Oleophobic Materials and Their Oil-Water Separation Properties

Xiaojian Li1, Haijun Zhang1,**(), Saisai Li1, Jun Zhang1, Quanli Jia2, Shaowei Zhang1   

  1. 1. The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
    2. Henan Key Laboratory of High Temperature Functional Ceramics, Zhengzhou University, Zhengzhou 450052, China
  • Received:2019-10-11 Revised:2019-12-02 Online:2020-06-05 Published:2020-04-13
  • Contact: Haijun Zhang
  • Supported by:
    the National Natural Science Foundation of China(51872210); the National Natural Science Foundation of China(51672194); the Key Program of Natural Science Foundation of Hubei Province, China(2017CFA004); the Program for Innovative Teams of Outstanding Young and Middle-aged Researchers in the Higher Education Institutions of Hubei Province(No. T201602).()

含油污水的随意排放对海洋、沿海周边环境以及人类健康造成了严重的影响。传统的油水分离方法易造成环境二次污染,同时也是对有限资源的一种损耗。因此,如何高效环保地解决含油污水问题具有重要意义。物理过滤/吸附法被认为是一种高效环保的分离方法,基于仿生学原理,许多可用于物理选择性分离的超亲油疏水和超亲水疏油材料被制备出来。超亲油疏水材料易被油污染,重复利用率低;相比之下,超亲水疏油材料具有自清洁性且重复利用率高,在油水分离方面具有广阔的应用前景。根据基底材料的选择不同,本文综述了金属基以及高分子基超亲水疏油材料的研究现状,总结了其优缺点,并对今后超亲水疏油材料的研究方向和重点进行了展望。

Frequent offshore oil spill accidents, industrial oily sewage and the indiscriminate disposal of urban oily sewage have increasingly serious impacts on human living environment and health. The traditional oil-water separation methods not only cause easily environmental secondary pollution, but also lead to waste of limited resources. Therefore, how to efficiently and environmentally solve the problem of oily sewage has great significance. Physical filtration/adsorption is considered to be an efficient and environmentally friendly separation method. Based on bionics principle, many superoleophilic hydrophobic materials and superhydrophilic oleophobic materials which can be used for selectively physical oil-water separation have been prepared. The superoleophilic hydrophobic materials are easy to be polluted by oil, resulting in low reuse ability. In contrast, environment-friendly and self-cleaning superhydrophilic oleophobic materials usually have high reuse ability, thus having broad application prospects for oil-water separation. Based on the difference of base materials, the present paper mainly statues the recent advances and summarizes the advantages and disadvantages of metal and polymer-based superhydrophilic oleophobic materials, and the general direction and emphasis of superhydrophilic oleophobic materials are also proposed.

Contents

1 Introduction
2 Metal-based superhydrophilic oleophobic filtering material

2.1 Externally assembled metal-based superhydrophilic oleophobic filtering material

2.2 In-situ growth metal-based superhydrophilic oleophobic filtering material

3 Polymer-based superhydrophilic oleophobic material

3.1 Polymer-based superhydrophilic oleophobic filtering material

3.2 Polymer-based superhydrophilic oleophobic adsorbent material

4 Conclusion and outlook
()
图1 自然界的特殊润湿性现象:(a) 紫叶芦莉草;(b) 荷叶;(c) 鲨鱼皮[20,21]
Fig. 1 Natural special wettability phenomena:(a) Ruellia devosiana;(b) lotus leaf;(c) shark skin[20,21]
图2 固体表面液滴的接触角示意图:(a) 空气中的Young 模型;(b) 水下的Young 模型;(c) Cassie 模型
Fig. 2 Schematic illustration of contact angle of a liquid drop on a solid surface:(a) Young model in air;(b) Young model in water;(c) Cassie model.
图3 层层自组装法改性不锈钢网示意图[45]
Fig. 3 Schematic diagram of stainless steel mesh modified by layer-by-layer self-assembly method[45]
图4 改性前后不锈钢网的SEM图片(a. 304型不锈钢网;b. WO3涂层;c. WO3涂层的放大图片;d. WO3/TiO2复合层,400 ℃/5 h)[48]
Fig. 4 The contrast SEM images of the original stainless steel mesh and the coated membrane(a. stainless steel mesh-304; b. WO3 coating; c. magnified image of b; d. WO3/TiO2 composite layer, 400 ℃/5 h)[48]
图5 TiO2/CuO双涂层改性铜网工艺示意图:(a) 铜网表面电化学阳极氧化生成的Cu(OH)2纳米针阵列;(b)在Cu(OH)2纳米针覆盖的铜网上通过溶胶-凝胶逐层自组装沉积Ti(OH)4;(c) 煅烧Ti(OH)4/Cu(OH)2制备TiO2/CuO纳米结构改性铜网[51]
Fig. 5 Schematic illustration of modified copper mesh by TiO2/CuO double coating:(a) electrochemical anodization of the surfaces of copper meshes to produce Cu(OH)2 nanoneedle arrays(NNA);(b) deposition of Ti(OH)4 layers by sol-gel layer-by-layer self-assembly process on the Cu(OH)2 nanoneedle arrays-coated copper meshes, and(c) calcination of Ti(OH)4/Cu(OH)2 dual coatings to obtain the nanostructured TiO2/CuO dual-coated copper meshes[51]
图6 两步法制备TiO2@CuO纳米线结构改性铜网示意图(采用化学氧化法先在铜网上形成Cu(OH)2纳米线;再负载TiO2-P25,通过水热结晶制备TiO2@CuO纳米线阵列涂层[52])
Fig. 6 Schematic diagram of TiO2@CuO nanowire structure modified copper mesh prepared by two-step method(Chemical oxidation of copper meshes to form Cu(OH)2 nanowire array(NWA), and loading of TiO2-P25 on the Cu(OH)2 nanowire array-coated copper meshes to produce TiO2@CuO nanowire array coatings via hydrothermal crystallization[52])
图7 改性纳米纤维膜的制备过程示意图[59]
Fig. 7 Schematic illustrating the formation process of the nanofibrous skin layers[59]
图8 纤维素纳米晶(a) 和坡缕石(b) 的透射电镜图像,纤维素纳米晶/坡缕石膜的制备示意图(c) 及纤维素纳米晶/坡缕石薄膜表面(d) 和横截面(e) 的扫描电镜图片[60]
Fig. 8 TEM images of tunicate cellulose nanocrystal (a) and palygorskite(b), schematic illustration for the preparation of tunicate cellulose nanocrystal/palygorskite membrane(c), and SEM image of the surface (d) and cross section(e) of tunicate cellulose nanocrystal/palygorskite membrane[60]
[1]
Nistico R, Franzoso F, Cesano F, Scarano D, Magnacca G, Parolo M E, Carlos L . ACS Sustainable Chemistry & Engineering, 2017,5(1):793.
[2]
张俊 (Zhang J), 韩磊(Han L), 曾渊(Zeng Y), 田亮(Tian L), 张海军(Zhang H J). 化学进展( Progress in Chemistry), 2019,31(01):146. http://manu56.magtech.com.cn/progchem/CN/10.7536/PC180447
[3]
Joye S B . Science, 2015,349(6248):592. https://www.ncbi.nlm.nih.gov/pubmed/26250675

URL     pmid: 26250675
[4]
Bi Y B, Han L, Zheng Y F, Guan Y P, Zhang H J, Ge S T, Wang H F, Jia Q L, Zhang Y X, Zhang S W . ACS Applied Materials & Interfaces, 2018,10(32):27416. https://www.ncbi.nlm.nih.gov/pubmed/30036035

doi: 10.1021/acsami.8b05878     URL     pmid: 30036035
[5]
Ivshina I B, Kuyukina M S, Krivoruchko A V, Elkin A A, Makarov S O, Cunningham C J, Peshkur T A, Atlas R M, Philp J C . Environmental Science Processes & Impacts, 2015,17(7):1201. https://www.ncbi.nlm.nih.gov/pubmed/26089295

URL     pmid: 26089295
[6]
Ge J, Zhao H Y, Zhu H W, Huang J, Shi L A, Yu S H . Advanced Materials, 2016,28(47):10459. https://www.ncbi.nlm.nih.gov/pubmed/27731513

URL     pmid: 27731513
[7]
李文涛 (Li W T), 雍佳乐(Yong J L), 杨青(Yang Q), 陈烽(Chen F), 方瑶(Fang Y), 侯洵(Hou X). 物理化学学报( Acta Physico-Chimica Sinica), 2018,34(5):456.
[8]
Xia B B, Liu H T, Fan Y N, Chen T C, Chen C, Wang B . Materials Design, 2017,135: 51. https://linkinghub.elsevier.com/retrieve/pii/S0264127517308158

doi: 10.1016/j.matdes.2017.08.057     URL    
[9]
Wang Z, Guo Z . Chemical Communications, 2017,53(4):12990. http://xlink.rsc.org/?DOI=C7CC07436K

doi: 10.1039/C7CC07436K     URL    
[10]
Chen L, Guo Z, Liu W . Journal of Materials Chemistry A, 2017,5(28):14480. http://xlink.rsc.org/?DOI=C7TA03248J

doi: 10.1039/C7TA03248J     URL    
[11]
Tang X, Shen C, Zhu W, Zhang S, Xu Y, Yang Y, Gao M, Dong F . Royal Society of Chemistry Advances, 2017,7(48):30495.
[12]
Emelyanenko A M, Boinovich L B, Bezdomnikov A A, Chulkova E V, Emelyanenko K A . ACS Applied Materials Interfaces, 2017,9(28):24210. https://www.ncbi.nlm.nih.gov/pubmed/28657289

URL     pmid: 28657289
[13]
Zhu Y Z, Wang D, Jiang L, Jin J . NPG Asia Materials, 2014,6: 5.
[14]
Liu K S, Tian Y, Jiang L . Progress in Materials Science, 2013,4(58):503.
[15]
Drelich J, Chibowski E, Meng D D . Soft Matter, 2011,21(7):9804.
[16]
Zhang W B, Shi Z, Zhang F, Liu X, Jin J, Jiang L . Advanced Materials, 2013,14(25):2071.
[17]
Liu M J, Wang S T, Wei Z X, Song Y L, Jiang L . Advanced Materials, 2009,6(21):665.
[18]
Song J L, Lu Y, Luo J, Huang S, Wang L, Xu W J, Parkin I P . Advanced Materials Interfaces, 2015,15(2):1500350.
[19]
屈孟男( Qu M N),马利利(Ma L L), 何金梅(He J M), 袁明娟(Yuan M J), 姚亚丽(Yao Y L), 刘向荣(Liu X R) . 材料导报( Materials Reports), 2017, ( 19):155.
[20]
Darmanin T, Guittard F . Progress in Polymer Science, 2014,39(4):656. https://linkinghub.elsevier.com/retrieve/pii/S007967001300124X

doi: 10.1016/j.progpolymsci.2013.10.003     URL    
[21]
Bixler G D, Bhushan B . Nanoscale, 2013,5(17):7685. 86802f62-1046-4a1c-91b1-786fe5da2db8http://dx.doi.org/10.1039/c3nr01710a

doi: 10.1039/c3nr01710a     URL    
[22]
Bixler G D, Bhushan B . Journal of Colloid Interface Science, 2013,393: 384. https://www.ncbi.nlm.nih.gov/pubmed/23266029

URL     pmid: 23266029
[23]
Ensikat H J, Ditsche-Kuru P, Neinhuis C . Beilstein Journal of Nanotechnology, 2011,2: 152. https://www.ncbi.nlm.nih.gov/pubmed/21977427

URL     pmid: 21977427
[24]
Jiang T, Guo Z, Liu W . Journal of Materials Chemistry A, 2015,3: 1811.
[25]
Liu Y, Qu R, Zhang W . ACS Applied Materials Interface, 2019,11: 20545.
[26]
Koch K, Blecher I C, Kcenig G . Functional Plant Biology, 2009,36(4):339.
[27]
Zorba V, Stratakis E, Barberoglou M . Advanced Materials, 2008,20: 4049.
[28]
Xue Z, Cao Y, Liu N, Feng L, Jiang L . Journal of Materials Chemistry A, 2014,2(8):2445. http://xlink.rsc.org/?DOI=C3TA13397D

doi: 10.1039/C3TA13397D     URL    
[29]
Cheng Q, Li M, Zheng Y, Su B, Wang S, Jiang L . Soft Matter, 2011,7(13):5948.
[30]
Liu K, Yao X, Jiang L . Chemical Society Reviews, 2010,39(8):3240. https://www.ncbi.nlm.nih.gov/pubmed/20589267

doi: 10.1039/b917112f     URL     pmid: 20589267
[31]
袁静( Yuan J),廖芳芳(Liao F F), 郭雅妮(Guo Y N), 梁丽芸(Liang L Y) . 化学进展( Progress in Chemistry), 2019,31(01):156. http://manu56.magtech.com.cn/progchem/CN/10.7536/PC180313
[32]
Pan Y L, Liu L M, Zhang Z J, Huang S C, Hao Z, Zhao X Z . Chemical Engineering Journal, 2019,378: 122178.
[33]
Yang J, Yin L, Tang H, Song H, Gao X, Liang K, Li C . Chemical Engineering Journal, 2015,268: 245. https://linkinghub.elsevier.com/retrieve/pii/S1385894715001023

doi: 10.1016/j.cej.2015.01.073     URL    
[34]
Li F, Wang Z, Huang S . Advanced Functional Materials, 2018,28(20):1706867.
[35]
Naseem S, Wu C M, Xu T Z, Lai C C, Rwei S P . Polymers, 2018,10(7):746.
[36]
Tian D, Zhang X, Tian Y, Wu Y, Wang X, Zhai J, Jiang L . Journal of Materials Chemistry, 2012,22(37):19652.
[37]
Darmanin T, Guittard F . Journal of Colloid and Interface, 2013,408(408):101.
[38]
曾新娟( Zeng X J), 王丽(Wang L), 皮丕辉(Pi P H), 程江(Chen J), 文秀芳(Wen X F), 钱宇(Qian Y) . 化学进展( Progress in Chemistry), 2018,30(1):73. http://manu56.magtech.com.cn/progchem/CN/10.7536/PC170828
[39]
Wang C F, Tzeng F S, Chen H G, Chang C J . Langmuir, 2012,28(26):10015. https://www.ncbi.nlm.nih.gov/pubmed/22679902

URL     pmid: 22679902
[40]
Ganne A, Maslakov K I, Gavrilov A I . Surface Innovations, 2017,5(3):154.
[41]
Choi H, Stathatos E, Dionysiou D D . Desalination, 2007,202: 199.
[42]
Chong M N, Jin B, Chow C W K, Saint C P . Water Research, 2010,44(10):2997. https://www.ncbi.nlm.nih.gov/pubmed/20378145

doi: 10.1016/j.watres.2010.02.039     URL     pmid: 20378145
[43]
Zhang L, Zhong Y, Cha D, Wang P . Scientific Reports, 2013,3(1):2326.
[44]
Gunatilake U B, Bandara J . Chemosphere, 2017,171: 134. https://www.ncbi.nlm.nih.gov/pubmed/28013074

URL     pmid: 28013074
[45]
Hou K, Zeng Y, Zhou C, Chen J, Wen X, Xu S, Cheng J, Lin Y, Pi P . Applied Surfcae Science, 2017,416: 344.
[46]
斯芳芳( Si F F), 张靓(Zhang L), 赵宁(Zhao N), 陈莉(Chen L), 徐坚(Xu J) . 化学进展( Progress in Chemistry), 2011,23(9):1831. http://manu56.magtech.com.cn/progchem/CN/Y2011/V23/I9/1831
[47]
Xue Z, Wang S, Lin L, Chen L, Liu M, Feng L, Jiang L . Advanced Materials, 2011,23(37):4270. https://www.ncbi.nlm.nih.gov/pubmed/22039595

URL     pmid: 22039595
[48]
Wang B, Chen C, Liu H, Xia B, Fan Y, Chen T . Thin Solid Films, 2018,665: 9. https://linkinghub.elsevier.com/retrieve/pii/S0040609018305789

doi: 10.1016/j.tsf.2018.08.039     URL    
[49]
Brown P S, Bhushan B . Scientific Reports, 2015,5(1):8701.
[50]
Zhang F, Zhang W B, Shi Z, Wang D, Jin J, Jiang L . Advanced Materials, 2013,25(30):4192. https://www.ncbi.nlm.nih.gov/pubmed/23788392

URL     pmid: 23788392
[51]
Yuan S, Chen C, Raza A, Song R, Zhang T J, Pehkonen S O, Liang B . Chemical Engineering Journal, 2017,328: 497. https://linkinghub.elsevier.com/retrieve/pii/S1385894717312238

doi: 10.1016/j.cej.2017.07.075     URL    
[52]
Ji J, He H, Chen C, Jiang W, Raza A, Zhang T J, Yuan S . ACS Sustainable Chemistry Engineering, 2018,7(2):2569.
[53]
Lai H, Yu X, Liu M, Cheng Z . Applied Surface Science, 2018,448: 241. https://linkinghub.elsevier.com/retrieve/pii/S0169433218310729

doi: 10.1016/j.apsusc.2018.04.110     URL    
[54]
Zhou C, Cheng J, Hou K, Zhao A, Pi P, Wen X, Xu S . Chemical Engineering Journal, 2016,301: 249.
[55]
Wei W, Sun M, Zhang L, Zhao S, Wu J, Wang J . Separation and Purification Technology, 2017,189: 32.
[56]
Liu N, Lin X, Zhang W, Cao Y, Chen Y, Feng L, Wei Y . Scientific Reports, 2015,5(1):9688.
[57]
Zhang W, Shi Z, Zhang F . Advanced Materials, 2013,25(14):2071. https://www.ncbi.nlm.nih.gov/pubmed/23418068

doi: 10.1002/adma.201204520     URL     pmid: 23418068
[58]
Chen P C, Xu Z K . Scientific Reports, 2013,3(1):2776.
[59]
Ge J, Zong D, Jin Q, Yu J, Ding B . Advanced Functional Materials, 2018,28(10):1705051.
[60]
Zhan H, Zuo T, Tao R, Chnag C . ACS Sustainable Chemistry Engineering, 2018,6(8):10833.
[61]
Zhang X, Wang C, Liu X, Wang J, Zhang C, Wen Y . Journal of Cleaner Production, 2018,193: 702.
[62]
Ning C, Qian L, Jin L, Yong W, Bai Y, Szunerits S, Boukherroub R . Chemical Engineering Journal, 2017,326: 17. https://linkinghub.elsevier.com/retrieve/pii/S1385894717308665

doi: 10.1016/j.cej.2017.05.117     URL    
[63]
Wan W, Lin Y, Prakash A, Zhou Y . Journal of Materials Chemistry A, 2016,4(48):18687. http://xlink.rsc.org/?DOI=C6TA07211A

doi: 10.1039/C6TA07211A     URL    
[64]
Shen Y, Li L, Xiao K, Xi J . ACS Sustainable Chemistry Engineering, 2016,4(4):2351. https://pubs.acs.org/doi/10.1021/acssuschemeng.6b00030

doi: 10.1021/acssuschemeng.6b00030     URL    
[65]
Gupta S, Tai N H . Journal of Materials Chemistry A, 2016,4(5):1550. http://xlink.rsc.org/?DOI=C5TA08321D

doi: 10.1039/C5TA08321D     URL    
[66]
Fard A K, Rhadfi T, McKay G, Al-Marri M, Abdala A, Hilal N, Hussien M A . Chemical Engineering Journal, 2016,293(293):90.
[67]
Cao X, Zang L, Bu Z, Sun L, Guo D, Wang C . Journal of Materials Chemistry A, 2016,4(27):10479.
[68]
Wang G, He Y, Wang H, Zhang L, Yu Q Y, Peng S S, Wu X D, Ren T H, Zeng Z X, Xue Q J . Green Chemistry, 2015,17(5):3093.
[69]
Chen J J, Zhang Y X, Chen C, Xu M Y, Wang G, Zeng Z X, Wang L P, Xue Q J . Macromolecular Materials and Engineering, 2017,302(9):1700086.
[70]
Su C, Yang H, Song S, Lu B, Chen R . Chemical Engineering Journal, 2017,309: 366.
[1] 许金凯, 蔡倩倩, 于占江, 廉中旭, 田纪文, 于化东. 金属基仿生超滑表面制造及其应用[J]. 化学进展, 2021, 33(6): 958-974.
[2] 张俊, 韩磊, 曾渊, 田亮, 张海军. 选择性油水分离材料[J]. 化学进展, 2019, 31(1): 134-143.
[3] 袁静, 廖芳芳, 郭雅妮, 梁丽芸. 超亲水超疏油油水分离膜的制备及其性能[J]. 化学进展, 2019, 31(1): 144-155.
[4] 邵建文, 杨付超, 郭志光. 仿生超疏油材料在苛刻工况条件下的应用[J]. 化学进展, 2018, 30(12): 2003-2011.
[5] 杨卧龙, 纪献兵, 徐进良. 从自然到仿生到实际应用的超亲水表面[J]. 化学进展, 2016, 28(6): 763-772.
[6] 詹媛媛, 刘玉云, 吕久安, 赵勇, 俞燕蕾. 光响应固体表面的浸润性调控[J]. 化学进展, 2015, 27(2/3): 157-167.
[7] 斯芳芳, 张靓, 赵宁, 陈莉, 徐坚. 超亲水表面制备方法及其应用[J]. 化学进展, 2011, 23(9): 1831-1840.
[8] 刘湘梅 贺军辉. 防雾技术的研究进展—从表面工程到功能表面*[J]. 化学进展, 2010, 22(0203): 270-276.
[9] 王文寿,甄良,徐成彦,邵文柱. 液相法合成空心无机微纳米结构的研究[J]. 化学进展, 2008, 20(05): 679-689.
[10] 徐建海,李梅,赵燕,路庆华. 具有微纳米结构超疏水表面润湿性的研究*[J]. 化学进展, 2006, 18(11): 1425-1433.