English
新闻公告
More
化学进展 2013, Vol. 25 Issue (10): 1771-1780 DOI: 10.7536/PC130125 前一篇   后一篇

所属专题: 电化学有机合成

• 综述与评论 •

电化学活性微生物的分离与鉴定

肖勇1, 吴松1,2, 杨朝晖2, 郑越1,2, 赵峰1   

  1. 1. 中国科学院城市环境研究所 厦门361021;
    2. 湖南大学环境科学与工程学院 环境生物与控制教育部重点实验室(湖南大学) 长沙410082
  • 收稿日期:2013-01-01 修回日期:2013-03-01 出版日期:2013-11-12 发布日期:2013-07-18
  • 通讯作者: 杨朝晖, 赵峰 E-mail:yzh@hnu.edu.cn; fzhao@iue.ac.cn
  • 基金资助:

    中国科学院知识创新工程重要方向项目(No.KZCX2-EW-402)、中国科学院“百人计划”项目、国家自然科学基金项目(No.21177122,51208490)和福建省自然科学基金项目(No.2012J05105)资助

Isolation and Identification of Electrochemically Active Microorganisms

Xiao Yong1, Wu Song1,2, Yang Zhaohui2, Zheng Yue1,2, Zhao Feng1   

  1. 1. Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China;
    2. Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
  • Received:2013-01-01 Revised:2013-03-01 Online:2013-11-12 Published:2013-07-18

生物电化学系统(bioelectrochemical system,BES)在电化学活性微生物的作用下可实现产能、污染物降解、高附加值物质合成,是一种具有广阔应用前景的环境生物技术。电化学活性微生物是BES的基础,微生物-电极界面的相互作用是BES功能实现的关键。本文通过统计分析已报道的电化学活性微生物,系统地阐述了培养基与培养条件、菌株分子鉴定等微生物分离鉴定的生物学方法和循环伏安、微分脉冲伏安、方波伏安、计时电流等微生物电化学活性分析的化学方法,并在此基础上探讨了拓展电化学活性微生物多样性及研究微生物-电极界面相互作用机制的发展趋势,以期促进BES在环境治理及生物能源生产等方面的实际应用。

Bioelectrochemical system (BES), in which electrode reaction is driven by electrochemically active microorganisms (EAM) to recovery energy, degrade contaminants and synthesize high additional value compounds, is a promising biotechnology. EAM is the basis of BES, microorganisms-electrode interaction plays a key role in BES functioning. In contrast with the expanding of BES function, especially BES cathode, the diversity of isolated EAM is limited, and most of them are applied in anode to generate a high power density. In addition, the understanding of microorganisms-electrode interaction mostly confines in Geobacter and Shewanella genus. In this article, we review medium, culture condition and microorganisms identification, as well as cyclic voltammetry, differential pulse voltammetry and chronoamperometry for the isolation and identification of EAMs. We further highlight the research trends of expanding EAM diversity and of microorganisms-electrode interaction, which would promote the application of BES in environmental control and bioenergy production.

Contents
1 Introduction
2 Electrochemically active microorganisms
3 Microorganism isolation
3.1 Culture medium
3.2 Culture condition
4 Microorganism biological identification
4.1 16S/18S rRNA gene sequencing and analysis
4.2 Morphological, physiological and biochemical characterization
5 Characterization of electrochemical activity
5.1 Cyclic voltammetry
5.2 Differential pulse voltammetry and square wave voltammetry
5.3 Chronoamperometry
6 Outlook

 

中图分类号: 

()

[1] Rozendal R, Hamelers H, Rabaey K, Keller J, Buisman C. Trends Biotechnol., 2008, 26: 450—459
[2] Rabaey K, Rozendal R A. Nat. Rev. Micro., 2010, 8: 706—716
[3] Huang L, Chai X, Chen G, Logan B E. Environ. Sci. Technol., 2011, 45: 5025—5031
[4] Chun C L, Payne R B, Sowers K R, May H D. Water Res., 2013, 47: 141—152
[5] Wang X, Cai Z, Zhou Q, Zhang Z, Chen C. Biotechnol. Bioeng., 2012, 109: 426—433
[6] Gregory K B, Lovley D R. Environ. Sci. Technol., 2005, 39: 8943—8947
[7] Lovley D R, Nevin K P. Curr. Opin. Biotechnol., 2011, 22: 441—448
[8] Weber K A, Achenbach L A, Coates J D. Nat. Rev. Micro., 2006, 4: 752—764
[9] Beneyton T, Beyl Y, Guschin D A, Griffiths A D, Taly V, Schuhmann W. Electroanal., 2011, 23: 1781—1789
[10] Reguera G, McCarthy K D, Mehta T, Nicoll J S, Tuominen M T, Lovley D R. Nature, 2005, 435: 1098—1101
[11] Marsili E, Baron D B, Shikhare I D, Coursolle D, Gralnick J A, Bond D R. Proc. Natl. Acad. Sci. U. S. A, 2008, 105: 3968—3973
[12] Rabaey K, Boon N, Hofte M, Verstraete W. Environ. Sci. Technol., 2005, 39: 3401—3408
[13] Zhao F, Rahunen N, Varcoe J R, Roberts A J, Avignone-Rossa C, Thumser A E, Slade R C T. Biosens. Bioelectron., 2009, 24: 1931—1936
[14] Liang F, Xiao Y, Zhao F. Chem. Eng. J., DOI: 10.1016/j. cej. 2012.12.021
[15] Strycharz S M, Glaven R H, Coppi M V, Gannon S M, Perpetua L A, Liu A, Nevin K P, Lovley D R. Bioelectrochemistry, 2011, 80: 142—150
[16] Kim B H, Kim H J, Hyun M S, Park D H. J. Microbiol. Biotechnol., 1999, 9: 127—131
[17] Park H S, Kim B H, Kim H S, Kim H J, Kim G T, Kim M, Chang I S, Park Y K, Chang H I. Anaerobe, 2001, 7: 297—306
[18] Kan J J, Hsu L, Cheung A C M, Pirbazari M, Nealson K H. Environ. Sci. Technol., 2011, 45: 1139—1146
[19] Yates M D, Kiely P D, Call D F, Rismani-Yazdi H, Bibby K, Peccia J, Regan J M, Logan B E. The Isme Journal, 2012, 6: 2002—2013
[20] Logan B E, Regan J M. Trends Microbiol., 2006, 14: 512—518
[21] Bond D R, Lovley D R. Appl. Environ. Microb., 2003, 69: 1548—1555
[22] Bond D R, Lovley D R. Appl. Environ. Microb., 2005, 71: 2186—2189
[23] Borole A P, O'neill H, Tsouris C, Cesar S. Biotechnol. Lett., 2008, 30: 1367—1372
[24] Bretschger O, Obraztsova A, Sturm C A, Chang I S, Gorby Y A, Reed S B, Culley D E, Reardon C L, Barua S, Romine M F. Appl. Environ. Microb., 2007, 73: 7003—7012
[25] Chaudhuri S K, Lovley D R. Nat. Biotechnol., 2003, 21: 1229—1232
[26] Cheng S A, Xing D F, Call D F, Logan B E. Environ. Sci. Technol., 2009, 43: 3953—3958
[27] Chung K M, Okahe S. Biotechnol. Bioeng., 2009, 104: 901—910
[28] Cournet A, Berge M, Roques C, Bergel A, Delia M L. Electrochim. Acta, 2010, 55: 4902—4908
[29] Cournet A, Delia M L, Bergel A, Roques C, Berge M. Electrochem. Commun., 2010, 12: 505—508
[30] Erable B, Vandecandelaere I, Faimali M, Delia M L, Etcheverry L, Vandamme P, Bergel A. Bioelectrochemistry, 2010, 78: 51—56
[31] Fedorovich V, Knighton M C, Pagaling E, Ward F B, Free A, Goryanin I. Appl. Environ. Microb., 2009, 75: 7326—7334
[32] Freguia S, Masuda M, Tsujimura S, Kano K. Bioelectrochemistry, 2009, 76: 14—18
[33] Freguia S, Tsujimura S, Kano K. Electrochim. Acta, 2010, 55: 813—818
[34] Gregory K B, Bond D R, Lovley D R. Environ. Microbiol., 2004, 6: 596—604
[35] Gunasekaran G, Chongdar S, Naragoni S, Rodrigues P V, Bobba R. Int. J. Hydrogen Energ., 2011, 36: 14914—14922
[36] Holmes D E, Bond D R, Lovley D R. Appl. Environ. Microb., 2004, 70: 1234—1237
[37] Holmes D E, Nicoll J S, Bond D R, Lovley D R. Appl. Environ. Microb., 2004, 70: 6023—6030
[38] Liu M, Yuan Y, Zhang L X, Zhuang L, Zhou S G, Ni J R. Bioresource Technol., 2010, 101: 1807—1811
[39] Lovley D R, Giovannoni S J, White D C, Champine J E, Phillips E J P, Gorby Y A, Goodwin S. Arch. Microbiol., 1993, 159: 336—344
[40] Lyautey E, Cournet A, Morin S, Boulêtreau S, Etcheverry L, Charcosset J Y, Delmas F, Bergel A, Garabetian F. Appl. Environ. Microb., 2011, 77: 5394—5401
[41] Marshall C W, May H D. Energy Environ. Sci., 2009, 2: 699—705
[42] Milliken C, May H. Appl. Microbiol. Biot., 2007, 73: 1180—1189
[43] Nercessian O, Parot S, Délia M L, Bergel A, Achouak W. PLoS ONE, 2012, 7: e34216
[44] Parot S, Nercessian O, Delia M L, Achouak W, Bergel A. J. Appl. Microbiol., 2009, 106: 1350—1359
[45] Parot S, Vandecandelaere I, Cournet A, Délia M L, Vandamme P, Bergé M, Roques C, Bergel A. Bioresource Technol., 2011, 102: 304—311
[46] Pham C A, Jung S J, Phung N T, Lee J, Chang I S, Kim B H, Yi H, Chun J. FEMS Microbiology Letters, 2003, 223: 129—134
[47] Rabaey K, Read S T, Clauwaert P, Freguia S, Bond P L, Blackall L L, Keller J. The Isme Journal, 2008, 2: 519—527
[48] Rezaei F, Xing D, Wagner R, Regan J M, Richard T L, Logan B E. Appl. Environ. Microb., 2009, 75: 3673—3678
[49] Ringeisen B R, Ray R, Little B. J. Power Sources, 2007, 165: 591—597
[50] Strycharz S M, Woodard T L, Johnson J P, Nevin K P, Sanford R A, Loffler F E, Lovley D R. Appl. Environ. Microb., 2008, 74: 5943—5947
[51] Thrash J C, Van Trump J I, Weber K A, Miller E, Achenbach L A, Coates J D. Environ. Sci. Technol., 2007, 41: 1740—1746
[52] Wang A, Liu L, Sun D, Ren N, Lee D J. Int. J. Hydrogen. Energ., 2010, 35: 3178—3182
[53] Wang Y F, Masuda M, Tsujimura S, Kano K. Biotechnol. Bioeng., 2008, 101: 579—586
[54] Wrighton K C, Agbo P, Warnecke F, Weber K A, Brodie E L, Desantis T Z, Hugenholtz P, Andersen G L, Coates J D. The Isme Journal, 2008, 2: 1146—1156
[55] Wrighton K C, Thrash J C, Melnyk R A, Bigi J P, Byrne-Bailey K G, Remis J P, Schichnes D, Auer M, Chang C J, Coates J D. Appl. Environ. Microb., 2011, 77: 7633—7639
[56] Xia X, Cao X X, Liang P, Huang X, Yang S P, Zhao G G. Appl. Microbiol. Biot., 2010, 87: 383—390
[57] Xing D, Cheng S, Logan B, Regan J. Appl. Microbiol. Biot., 2010, 85: 1575—1587
[58] Xing D, Zuo Y, Cheng S, Regan J M, Logan B E. Environ. Sci. Technol., 2008, 42: 4146—4151
[59] Xu S, Liu H. J. Appl. Microbiol., 2011, 111: 1108—1115
[60] Zhang C P, Chen S S, Liu G L, Zhang R D, Xie J. Pedosphere, 2012, 22: 528—535
[61] Zhang L, Zhou S, Zhuang L, Li W, Zhang J, Lu N, Deng L. Electrochem. Commun., 2008, 10: 1641—1643
[62] Zhang T, Cui C, Chen S, Ai X, Yang H, Shen P, Peng Z. Chem. Commun., 2006, 2257—2259
[63] Zhao F, Rahunen N, Varcoe J R, Chandra A, Avignone-Rossa C, Thumser A E, Slade R C T. Environ. Sci. Technol., 2008, 42: 4971—4976
[64] Nevin K P, Woodard T L, Franks A E, Summers Z M, Lovley D R. mBio, 2010, 1: e00103
[65] Lovley D R. Annu. Rev. Microbiol., 2012, 66: 391—409
[66] 叶姜瑜(Ye J Y), 罗固源(Luo G Y). 微生物学报(Acta Microbiologica Sinica), 2005, 45: 478—482
[67] Amann R I, Ludwig W, Schleifer K H. Microbiol. Rev., 1995, 59: 143—169
[68] Rabaey K, Boon N, Siciliano S D, Verhaege M, Verstraete W. Appl. Environ. Microb., 2004, 70: 5373—5382
[69] Yuan S J, He H, Sheng G P, Chen J J, Tong Z H, Cheng Y Y, Li W W, Lin Z Q, Zhang F, Yu H Q. Scientific Reports, 2013, 3: art. no. 1315
[70] Zuo Y, Xing D, Regan J M, Logan B E. Appl. Environ. Microb., 2008, 74: 3130—3137
[71] Richter H, Lanthier M, Nevin K P, Lovley D R. Appl. Environ. Microb., 2007, 73: 5347—5353
[72] Manaia C M, Nunes O C, Morais P V, Costa M S D. J. Appl. Microbiol., 1990, 69: 871—876
[73] Schut F, De Vries E J, Gottschal J C, Robertson B R, Harder W, Prins R A, Button D K. Appl. Environ. Microb., 1993, 59: 2150—2160
[74] Saito A, Mitsui H, Hattori R, Minamisawa K, Hattori T. Fems Microbiol. Ecol., 1998, 25: 277—286
[75] 毛跃建(Mao Y J), 张晓君(Zhang X J), 张宝让(Zhang B R), 赵立平(Zhao L P). 微生物学报(Acta Microbiologica Sinica), 2009, 48: 1634—1641
[76] Xiao L, Young E B, Berges J A, He Z. Environ. Sci. Technol., 2012, 46: 11459—11466
[77] Cao X X, Huang X, Boon N, Liang P, Fan M Z. Electrochem. Commun., 2008, 10: 1392—1395
[78] Keasling J D. Science, 2010, 330: 1355—1358
[79] Embley T, Stackebrandt E. Annu. Rev. Microb., 1994, 48: 257—289
[80] Fox G E, Wisotzkey J D, Jurtshuk P. Int. J. Syst. Bacteriol., 1992, 42: 166—170
[81] Goodfellow M, Chun J, Stackebrandt E, Kroppenstedt R M. Int. J. Syst. Evol. Micr., 2002, 52: 749—755
[82] Yassin A F, Rainey F A, Brzezinka H, Burghardt J, Lee H J, Schaal K P. Int. J. Syst. Bacteriol., 1995, 45: 522—527
[83] 陈立香(Chen L X), 肖勇(Xiao Y), 赵峰(Zhao F). 化学进展(Progress in Chemistry), 2012, 24: 157—162
[84] Pfeffer C, Larsen S, Song J, Dong M, Besenbacher F, Meyer R L, Kjeldsen K U, Schreiber L, Gorby Y A, El-Naggar M Y. Nature, 2012, 491(7423): 218—221. DOI: 10.1038/nature11586
[85] Wang Z, Deng H, Chen L, Xiao Y, Zhao F. Bioresource Technol., 2013, 132: 387—390. DIO: 10.1016/j. biortech. 2012.11.026
[86] Harnisch F, Freguia S. Chem. Asian J., 2012, 7: 466—475
[87] Liu X W, Sun X F, Huang Y X, Li D B, Zeng R J, Xiong L, Sheng G P, Li W W, Cheng Y Y, Wang S G, Yu H Q. Biotechnol. Bioeng., 2012, 110: 173—179
[88] Anson F(著), 黄慰曾(Huang W Z)(译). 电化学和电分析化学(Electrochemistry and Electroanalytical Chemistry). 北京(Beijing): 北京大学出版社(Peking University Press), 1983
[89] Wu X E, Zhao F, Rahunen N, Varcoe J R, Avignone-Rossa C, Thumser A E, Slade R C T. Angew. Chem. Int. Ed., 2011, 50: 427—430
[90] Zhao F, Slade R C T, Varcoe J R. Chem. Soc. Rev., 2009, 38: 1926—1939
[91] Masuda M, Freguia S, Wang Y F, Tsujimura S, Kano K. Bioelectrochemistry, 2010, 78: 173—175
[92] Bard A J, Faulkner L R(著), 邵元华(Shao Y H), 朱果逸(Zhu G Y), 董献堆(Dong X D), 张柏林(Zhang B L)(译). 电化学方法原理和应用, 第2版(Electrochemical methods: Fundamentals and applications, ed. 2); 北京(Beijing): 化学工业出版社(Chemical Industry Press), 2005
[93] Marsili E, Sun J, Bond D R. Electroanal., 2010, 22: 865—874
[94] Jeuken L J C, Jones A K, Chapman S K, Cecchini G, Armstrong F A. J. Am. Chem. Soc., 2002, 124: 5702—5713
[95] Wagner R C, Call D F, Logan B E. Environ. Sci. Technol., 2010, 44: 6036—6041
[96] Wei J, Liang P, Cao X, Huang X. Environ. Sci. Technol., 2010, 44: 3187—3191
[97] Schroder U. Phys. Chem. Chem. Phys., 2007, 9: 2619—2629
[98] Esteve-Nunez A, Sosnik J, Visconti P, Lovley D R. Environ. Microbiol., 2008, 10: 497—505
[99] Zhu X, Yates M D, Logan B E. Electrochem. Commun., 2012, 22: 116—119
[100] Carmona-Martínez A A, Harnisch F, Kuhlickeö U, Neu T R, Schrder U. Bioelectrochemistry, DOI: 10.1016/j. bioelechem. 2012.05.002
[101] Finkelstein D A, Tender L M, Zeikus J G. Environ. Sci. Technol., 2006, 40: 6990—6995
[102] Wang X, Feng Y, Ren N, Wang H, Lee H, Li N, Zhao Q. Electrochim. Acta, 2009, 54: 1109—1114
[103] Mahadevan R, Palsson B, Lovley D R. Nat. Rev. Micro., 2011, 9: 39—50

[1] 赵聪媛, 张静, 陈铮, 李建, 舒烈琳, 纪晓亮. 基于电活性菌群的生物电催化体系的有效构筑及其强化胞外电子传递过程的应用[J]. 化学进展, 2022, 34(2): 397-410.
[2] 张瑞, 吴云, 王鲁天, 吴强, 张宏伟. 微生物燃料电池阴极脱氮[J]. 化学进展, 2020, 32(12): 2013-2021.
[3] 陈立香, 李祎頔, 田晓春, 赵峰. 革兰氏阳性电活性菌的电子传递及其应用[J]. 化学进展, 2020, 32(10): 1557-1563.
[4] 田晓春, 吴雪娥, 赵峰, 姜艳霞, 孙世刚. 电化学联用技术研究微生物的胞外电子传递机制[J]. 化学进展, 2018, 30(8): 1222-1227.
[5] 刘明学, 董发勤, 聂小琴, 丁聪聪, 何辉超, 杨刚. 光电子协同微生物介导的重金属离子还原与电子转移机理[J]. 化学进展, 2017, 29(12): 1537-1550.
[6] 马金莲, 马晨, 汤佳, 周顺桂, 庄莉. 电子穿梭体介导的微生物胞外电子传递:机制及应用[J]. 化学进展, 2015, 27(12): 1833-1840.
[7] 刘利丹, 肖勇, 吴义诚, 陈必链, 赵峰. 微生物电化学系统电子中介体[J]. 化学进展, 2014, 26(11): 1859-1866.
[8] 常定明, 张海芹, 卢智昊, 黄光团, 蔡兰坤, 张乐华. 金属离子在微生物燃料电池中的行为[J]. 化学进展, 2014, 26(07): 1244-1254.
[9] 陈立香, 肖勇, 赵峰. 微生物燃料电池生物阴极[J]. 化学进展, 2012, 24(01): 157-162.
[10] 郭坤 张京京 李浩然 杜竹玮. 微生物电解电池制氢*[J]. 化学进展, 2010, 22(04): 748-753.
[11] 刘宏芳,郑碧娟. 微生物燃料电池[J]. 化学进展, 2009, 21(6): 1349-1355.
[12] 毛艳萍,蔡兰坤,张乐华,侯海萍,黄光团,刘勇弟. 生物阴极微生物燃料电池*[J]. 化学进展, 2009, 21(0708): 1672-1677.
[13] 卢娜,周顺桂,倪晋仁. 微生物燃料电池的产电机制*[J]. 化学进展, 2008, 20(0708): 1233-1240.
[14] 关毅,张鑫. 微生物燃料电池*[J]. 化学进展, 2007, 19(01): 74-79.
阅读次数
全文


摘要

电化学活性微生物的分离与鉴定