化学进展 2021, Vol. 33 Issue (6): 1026-1034 DOI: 10.7536/PC200662 前一篇   后一篇

• 综述 •


胡豪1, 何云鹏1, 杨水金1,2,*()   

  1. 1 湖北师范大学化学化工学院 污染物分析与资源化技术湖北省重点实验室 黄石 435002
    2 湖北师范大学先进材料研究院 黄石 435002
  • 收稿日期:2020-06-22 修回日期:2020-07-24 出版日期:2021-06-20 发布日期:2020-12-22
  • 通讯作者: 杨水金
  • 基金资助:

Preparation of Polyoxometalates@Metal-Organic Frameworks Materials and Their Application in Wastewater Treatment

Hao Hu1, Yunpeng He1, Shuijin Yang1,2,*()   

  1. 1 College of Chemistry and Chemical Engineering, Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, Hubei Normal University, Huangshi 435002, China
    2 Institute for Advanced Materials, Hubei Normal University, Huangshi 435002, China
  • Received:2020-06-22 Revised:2020-07-24 Online:2021-06-20 Published:2020-12-22
  • Contact: Shuijin Yang
  • About author:
    * Corresponding author e-mail:
  • Supported by:
    National Natural Science Foundation of China(21171053)


The pollutants in the wastewater are hazardous to human health due to their complex composition, high biological toxicity and difficult degradation. Therefore, finding and developing some adsorbents that can effectively remove highly toxic and refractory pollutants in wastewater have become an urgent problem to be solved. Metal-organic frameworks(MOFs) materials have the characteristics of orderly and diverse structure, rich topology, ultra-high porosity, large specific surface area, stable framework structure and easy doping with other components, which have attracted wide attention in the field of adsorption. Compared with pure MOFs, the new hybrid materials POMs@MOFs are created by incorporating polyoxometalates(POMs) onto metal-organic frameworks(MOFs). They not only have their unique set of properties, but also combine the strong acidity, oxygen-rich surface, and redox capability of POMs. At the same time, they have overcome shortcomings of POMs and MOFs, such as difficult handling, low surface area, and high solubility. In recent years, researchers have discovered that the composites of POMs and MOFs have excellent performance as adsorbents in the field of wastewater treatment. In this paper, the synthesis and preparation of POMs@MOFs, especially the advantages and disadvantages of various preparation methods, are summarized and analyzed based on the reported researches and the works of our group. This article focuses on the application and development of POMs@MOFs in wastewater treatment. Finally, the development direction and research prospect of POMs@MOFs composite materials are also proposed.


1 Introduction

2 Preparation of POMs@MOFs materials

2.1 The method of one-pot synthesis

2.2 The method of impregnation synthesis

2.3 The method of mechanical grinding synthesis

3 Application of POMs@MOFs materials in wastewater treatment

3.1 Application of MOFs materials in wastewater treatment

3.2 Application of POMs materials in wastewater treatment

3.3 Application of POMs@MOFs materials in wastewater treatment

4 Conclusion and outlook

图1 H3PW12O40@Cu3(BTC)2[64]、Co-POM@MIL-101[67]、P5W30@MIL-101(Cr)[68]的示意图
Fig.1 Schematic diagram of H3PW12O40@Cu3(BTC)2[64], Co-POM@MIL-101[67] and P5W30@MIL-101(Cr)[68]
图2 POMs@MIL-101(Cr)[69], H3PMo12O20@ZIF-67[72]的示意图
Fig.2 Schematic diagram of POMs@MIL-101(Cr)[69], H3PMo12O20@ZIF-67[72]
图3 POMs@ZIF-8[75], PW12@MFM-300(In)[77]示意图
Fig.3 Schematic diagram of POMs@ZIF-8[75], PW12@MFM-300(In)[77]
图4 POM@MIL-101对混合染料溶液的选择吸附能力
Fig.4 The selective adsorption capability of POM@MIL-101 toward the mixed dyes solution[101]
Le C, Zha Y, Li Y, Sun D, Lu H, Yin B. Environ. Manag., 2010, 45:662.

doi: 10.1007/s00267-010-9440-3     URL    
Michael I, Rizzo L, McArdell C S, Manaia C M, Merlin C, Schwartz T, Dagot C, Fatta-Kassinos D. Water Res., 2013, 47:957.

doi: 10.1016/j.watres.2012.11.027     pmid: 23266388
Bu Q W, Wang B, Huang J, Deng S B, Yu G. J. Hazard. Mater., 2013, 262:189.

doi: 10.1016/j.jhazmat.2013.08.040     URL    
Ali H, Khan E, Sajad M A. Chemosphere, 2013, 91:869.

doi: 10.1016/j.chemosphere.2013.01.075     URL    
Gallo F, Fossi C, Weber R, Santillo D, Sousa J, Ingram I, Nadal A, Romano D. Environ. Sci. Eur., 2018, 30:13.

doi: 10.1186/s12302-018-0139-z     URL    
Lee C M, Palaniandy P, Dahlan I. Environ. Earth Sci., 2017, 76:611.

doi: 10.1007/s12665-017-6924-y     URL    
Feng M B, Zhang P, Zhou H C, Sharma V K. Chemosphere, 2018, 209:783.

doi: 10.1016/j.chemosphere.2018.06.114     URL    
Fu Z Y, Guo W J, Dang Z, Hu Q, Wu F C, Feng C L, Zhao X L, Meng W, Xing B S, Giesy J P. Environ. Sci. Technol., 2017, 51:3117.

doi: 10.1021/acs.est.7b00223     URL    
Pophali G R, Hedau S, Gedam N, Rao N N, Nandy T. J. Hazard. Mater., 2011, 189:273.

doi: 10.1016/j.jhazmat.2011.02.030     pmid: 21377786
Hasan Z, Jhung S H. J. Hazard. Mater., 2015, 283:329.

doi: 10.1016/j.jhazmat.2014.09.046     URL    
Tong M M, Zhao X D, Xie L T, Liu D H, Yan Q Y, Zhong C L. Prog. Chem., 2012, 24(09):1646.
(童敏曼, 赵旭东, 解丽婷, 刘大欢, 阳庆元, 仲崇立. 化学进展, 2012, 24(09): 1646.)
Fu H, Li X B, Wang J, Lin P F, Chen C, Zhang X J, Suffet I H M. J. Environ. Sci., 2017, 56:145.

doi: 10.1016/j.jes.2016.09.010     URL    
Jiang L H, Liu Y G, Liu S B, Zeng G M, Hu X J, Hu X, Guo Z, Tan X F, Wang L L, Wu Z B. Environ. Sci. Technol., 2017, 51:6352.

doi: 10.1021/acs.est.7b00073     URL    
Khandaker S, Toyohara Y, Saha G C, Awual M R, Kuba T. J. Water Process. Eng., 2020, 33:101055.

doi: 10.1016/j.jwpe.2019.101055     URL    
Cao Y, Li X B. Adsorption, 2014, 20:713.

doi: 10.1007/s10450-014-9615-y     URL    
Hua M, Zhang S J, Pan B C, Zhang W M, Lv L, Zhang Q X. J. Hazard. Mater., 2012, 211/212:317.

doi: 10.1016/j.jhazmat.2011.10.016     URL    
Cook T R, Zheng Y R, Stang P J. Chem. Rev., 2013, 113:734.

doi: 10.1021/cr3002824     URL    
Gross A F, Sherman E, Mahoney S L, Vajo J J. J. Phys. Chem. A, 2013, 117:3771.

doi: 10.1021/jp401039k     pmid: 23586479
Liu Y, Liu J, Lin Y S. Microporous Mesoporous Mater., 2015, 214:242.

doi: 10.1016/j.micromeso.2015.05.001     URL    
Alesaadi S J, Sabzi F. Int. J. Hydrog. Energy, 2014, 39:21076.

doi: 10.1016/j.ijhydene.2014.10.064     URL    
Ethiraj J, Bonino F, Lamberti C, Bordiga S. Microporous Mesoporous Mater., 2015, 207:90.

doi: 10.1016/j.micromeso.2014.12.034     URL    
Chen Z J, Adil K, Weseliński Ł J, Belmabkhout Y, Eddaoudi M. J. Mater. Chem. A, 2015, 3:6276.

doi: 10.1039/C4TA07115H     URL    
Kayal S, Sun B C, Chakraborty A. Energy, 2015, 91:772.

doi: 10.1016/j.energy.2015.08.096     URL    
Sadakiyo M, O? kawa H, Shigematsu A, Ohba M, Yamada T, Kitagawa H. J. Am. Chem. Soc., 2012, 134:5472.

doi: 10.1021/ja300122r     pmid: 22409393
Canivet J, Fateeva A, Guo Y M, Coasne B, Farrusseng D. Chem. Soc. Rev., 2014, 43:5594.

doi: 10.1039/C4CS00078A     URL    
An Y, Li H L, Liu Y Y, Huang B B, Sun Q L, Dai Y, Qin X Y, Zhang X Y. J. Solid State Chem., 2016, 233:194.

doi: 10.1016/j.jssc.2015.10.037     URL    
Kreno L E, Leong K, Farha O K, Allendorf M, van Duyne R P, Hupp J T. Chem. Rev., 2012, 112:1105.

doi: 10.1021/cr200324t     URL    
Sun C Y, Qin C, Wang X L, Su Z M. Expert Opin. Drug Deliv., 2012, 10:89.

doi: 10.1517/17425247.2013.741583     URL    
Peng Y G, Zhang Y X, Huang H L, Zhong C L. Chem. Eng. J., 2018, 333:678.

doi: 10.1016/j.cej.2017.09.138     URL    
Haque E, Lee J E, Jang I T, Hwang Y K, Chang J S, Jegal J, Jhung S H. J. Hazard. Mater., 2010, 181:535.

doi: 10.1016/j.jhazmat.2010.05.047     URL    
Ke F, Qiu L G, Yuan Y P, Peng F M, Jiang X, Xie A J, Shen Y H, Zhu J F. J. Hazard. Mater., 2011, 196:36.

doi: 10.1016/j.jhazmat.2011.08.069     URL    
Kitao T, Zhang Y Y, Kitagawa S, Wang B, Uemura T. Chem. Soc. Rev., 2017, 46:3108.

doi: 10.1039/C7CS00041C     URL    
Tan Y M, Meng H, Zhang X. Prog. Chem., 2019, 31(07):980.
(谭远铭, 孟皓, 张霞. 化学进展, 2019, 31(07): 980.)
Heravi M M, Hosseinnejad T, Tamimi M, Zadsirjan V, Mirzaei M. J. Mol. Struct., 2020, 1205:127598.

doi: 10.1016/j.molstruc.2019.127598     URL    
Nikoonahad A, Djahed B, Norzaee S, Eslami H, Derakhshan Z, Miri M, Fakhri Y, Hoseinzadeh E, Ghasemi S M, Balarak D, Fallahzadeh R A, Zarrabi M, Taghavi M. PeerJ, 2018, 6:e5501.

doi: 10.7717/peerj.5501     URL    
Omwoma S, Gore C T, Ji Y C, Hu C W, Song Y F. Coord. Chem. Rev., 2015, 286:17.

doi: 10.1016/j.ccr.2014.11.013     URL    
Wu X, Luo B B, Chen M, Chen F F. Appl. Surf. Sci., 2020, 509:145344.

doi: 10.1016/j.apsusc.2020.145344     URL    
Rengifo-Herrera J A, Blanco M, Wist J, Florian P, Pizzio L R. Appl. Catal. B: Environ., 2016, 189:99.

doi: 10.1016/j.apcatb.2016.02.033     URL    
Gong S W, Lu J, Wang H H, Liu L J, Zhang Q. Appl. Energy, 2014, 134:283.

doi: 10.1016/j.apenergy.2014.07.099     URL    
Zhang L J, Shi Z H, Zhang L H, Zhou Y S, Hassan S U. Mater. Lett., 2012, 86:62.

doi: 10.1016/j.matlet.2012.07.028     URL    
Zhang Q Y, Wei F F, Li Q, Huang J S, Feng Y M, Zhang Y T. RSC Adv., 2017, 7:51090.

doi: 10.1039/C7RA10554A     URL    
Tan W, Li G Z, Wang T L, Yang M, Peng J H, Barrow C J, Yang W R, Wang H B. Desalination Water Treat., 2016, 57:7874.

doi: 10.1080/19443994.2015.1085455     URL    
Streb C. Dalton Trans., 2012, 41:1651.

doi: 10.1039/C1DT11220A     URL    
Endo S, Hale S E, Goss K U, Arp H P H. Environ. Sci. Technol., 2011, 45:10124.

doi: 10.1021/es202894k     URL    
Guo D J, Fu S J, Tan W, Dai Z D. J. Mater. Chem., 2010, 20:10159.

doi: 10.1039/c0jm01161d     URL    
Ali M, Nasir S, Ramirez P, Cervera J, Mafe S, Ensinger W. ACS Nano, 2012, 6:9247.

doi: 10.1021/nn303669g     URL    
Du D Y, Yan L K, Su Z M, Li S L, Lan Y Q, Wang E B. Coord. Chem. Rev., 2013, 257:702.

doi: 10.1016/j.ccr.2012.10.004     URL    
Cao Y W, Chen Q Y, Shen C R, He L. Molecules, 2019, 24:2069.

doi: 10.3390/molecules24112069     URL    
Lee A F, Wilson K. Catal. Today, 2015, 242:3.

doi: 10.1016/j.cattod.2014.03.072     URL    
Feng C G, Xu G, Liu X. J. Rare Earths, 2013, 31:44.

doi: 10.1016/S1002-0721(12)60232-4     URL    
Huang B, Yang D H, Han B H. J. Mater. Chem. A, 2020, 8:4593.

doi: 10.1039/C9TA12679A     URL    
Sun J M, Abednatanzi S, van der Voort P, Liu Y Y, Leus K. Catalysts, 2020, 10:578.

doi: 10.3390/catal10050578     URL    
Samaniyan M, Mirzaei M, Khajavian R, Eshtiagh-Hosseini H, Streb C. ACS Catal., 2019, 9:10174.

doi: 10.1021/acscatal.9b03439    
Wang X L, Chang Z H, Lin H Y, Xu C, Luan J, Liu G C, Tian A X. RSC Adv., 2015, 5:35535.

doi: 10.1039/C5RA06204G     URL    
Bo Q B, Zhang H T, Wang H Y, Miao J L, Zhang Z W. Chem. Eur. J., 2014, 20:3712.

doi: 10.1002/chem.v20.13     URL    
Wei M L, Sun J J, Wang X J. J. Sol-Gel Sci. Technol., 2014, 71:324.

doi: 10.1007/s10971-014-3370-0     URL    
Ghahramaninezhad M, Soleimani B, Niknam Shahrak M. New J. Chem., 2018, 42:4639.

doi: 10.1039/C8NJ00274F     URL    
Wasson M C, Buru C T, Chen Z J, Islamoglu T, Farha O K. Appl. Catal. A: Gen., 2019, 586:117214.

doi: 10.1016/j.apcata.2019.117214     URL    
Li J K, Zhao S H, Hu C W. Chin. J. Inorg. Chem.), 2019, 35(11):1934.
(李季坤, 赵帅恒, 胡长文. 无机化学学报, 2019, 35(11):1934.)
Wang X L, Rong X, Lin H Y, Cao J J, Liu G C, Chang Z H. Inorg. Chem. Commun., 2016, 63:30.

doi: 10.1016/j.inoche.2015.11.004     URL    
Wang B H, Yan B. J. Alloy. Compd., 2019, 777:415.

doi: 10.1016/j.jallcom.2018.10.406     URL    
Buru C T, Farha O K. ACS Appl. Mater. Interfaces, 2020, 12:5345.

doi: 10.1021/acsami.9b19785     URL    
Xia K, Zhou D, Yang Y, Yang S J, Xia Q H. Chem. J. Chin. Univ., 2018, 39(08):1624.
(夏坤, 周丹, 杨赟, 杨水金, 夏清华. 高等学校化学学报, 2018, 39(08): 1624.)
Du D Y, Qin J S, Li S L, Su Z M, Lan Y Q. Chem. Soc. Rev., 2014, 43:4615.

doi: 10.1039/C3CS60404G     URL    
Sun C Y, Liu S X, Liang D D, Shao K Z, Ren Y H, Su Z M. J. Am. Chem. Soc., 2009, 131:1883.

doi: 10.1021/ja807357r     URL    
Ma F J, Liu S X, Sun C Y, Liang D D, Ren G J, Wei F, Chen Y G, Su Z M. J. Am. Chem. Soc., 2011, 133:4178.

doi: 10.1021/ja109659k     URL    
Yan A X, Yao S, Li Y G, Zhang Z M, Lu Y, Chen W L, Wang E B. Chem. Eur. J., 2014, 20:6927.

doi: 10.1002/chem.201400175     URL    
Yang X J, Feng X J, Tan H Q, Zang H Y, Wang X L, Wang Y H, Wang E B, Li Y G. J. Mater. Chem. A, 2016, 4:3947.

doi: 10.1039/C5TA09507G     URL    
Marandi A, Bahadori M, Tangestaninejad S, Moghadam M, Mirkhani V, Mohammadpoor-Baltork I, Frohnhoven R, Mathur S, Sandleben A, Klein A. New J. Chem., 2019, 43:15585.

doi: 10.1039/C9NJ02607J     URL    
Hoseini A A, Farhadi S, Zabardasti A. Appl. Organomet. Chem., 2018, 33(2):e4656.
Férey G, Mellot-Draznieks C, Serre C, Millange F, Dutour J, Surblé S, Margiolaki I. Science, 2005, 309:2040.

pmid: 16179475
Maksimchuk N, Timofeeva M, Melgunov M, Shmakov A, Chesalov Y, Dybtsev D, Fedin V, Kholdeeva O. J. Catal., 2008, 257:315.

doi: 10.1016/j.jcat.2008.05.014     URL    
Buru C T, Li P, Mehdi B L, Dohnalkova A, Platero-Prats A E, Browning N D, Chapman K W, Hupp J T, Farha O K. Chem. Mater., 2017, 29:5174.

doi: 10.1021/acs.chemmater.7b00750     URL    
Stuckart M, Monakhov K Y. J. Mater. Chem. A, 2018, 6:17849.

doi: 10.1039/C8TA06213G     URL    
Chen C F, Wu A P, Yan H J, Xiao Y L, Tian C G, Fu H G. Chem. Sci., 2018, 9:4746.

doi: 10.1039/C8SC01454J     URL    
Jeon Y, Chi W S, Hwang J, Kim D H, Kim J H, Shul Y G. Appl. Catal. B: Environ., 2019, 242:51.

doi: 10.1016/j.apcatb.2018.09.071     URL    
Buru C T, Wasson M C, Farha O K. ACS Appl. Nano Mater., 2020, 3:658.

doi: 10.1021/acsanm.9b02176     URL    
Li R, Ren X Q, Zhao J S, Feng X, Jiang X, Fan X X, Lin Z G, Li X G, Hu C W, Wang B. J. Mater. Chem. A, 2014, 2:2168.

doi: 10.1039/C3TA14267A     URL    
Zhong X H, Lu Y, Luo F, Liu Y W, Li X H, Liu S X. Chem. Eur. J., 2018, 24:3045.

doi: 10.1002/chem.v24.12     URL    
Li G P, Zhang K, Li C B, Gao R C, Cheng Y L, Hou L, Wang Y Y. Appl. Catal. B: Environ., 2019, 245:753.

doi: 10.1016/j.apcatb.2019.01.012     URL    
Haque E, Jun J W, Jhung S H. J. Hazard. Mater., 2011, 185:507.

doi: 10.1016/j.jhazmat.2010.09.035     URL    
Tong M M, Liu D H, Yang Q Y, Devautour-Vinot S, Maurin G, Zhong C L. J. Mater. Chem. A, 2013, 1:8534.

doi: 10.1039/c3ta11807j     URL    
Lin S, Song Z L, Che G B, Ren A, Li P, Liu C B, Zhang J S. Microporous Mesoporous Mater., 2014, 193:27.

doi: 10.1016/j.micromeso.2014.03.004     URL    
He Y P, Jin X Y, Li W Z, Yan S J, Lü B L. Chin, J, Inorg, Chem , 2019, 35(06):996.
(何云鹏, 金雪阳, 李文卓, 杨水金, 吕宝兰. 无机化学学报, 2019, 35(06): 996.)
Du J J, Yuan Y P, Sun J X, Peng F M, Jiang X, Qiu L G, Xie A J, Shen Y H, Zhu J F. J. Hazard. Mater., 2011, 190:945.

doi: 10.1016/j.jhazmat.2011.04.029     URL    
Xu W T, Ma L, Ke F, Peng F M, Xu G S, Shen Y H, Zhu J F, Qiu L G, Yuan Y P. Dalton Trans., 2014, 43:3792.

doi: 10.1039/C3DT52574K     URL    
Li S T, Wu C D, Yan Y S, Lü X M, Huo P W. Prog. Chem. 2008, 05:690.
(李松田, 吴春笃, 闫永胜, 吕晓萌, 霍鹏伟. 化学进展, 2008, 05:690.).
Mansouri S, Benlounes O, Rabia C, Thouvenot R, Bettahar M M, Hocine S. J. Mol. Catal. A: Chem., 2013, 379:255.

doi: 10.1016/j.molcata.2013.08.006     URL    
Dolbecq A, Mialane P, Keita B, Nadjo L. J. Mater. Chem., 2012, 22:24509.

doi: 10.1039/c2jm33246a     URL    
Zhang J, Li C, Wang B, Cui H, Zhai J P, Li Q. Sci. China Chem., 2013, 56:1285.

doi: 10.1007/s11426-013-4889-6     URL    
Niu P, Hao J C. Langmuir, 2011, 27:13590.

doi: 10.1021/la203178s     URL    
Taghavi M, Tabatabaee M, Ehrampoush M H, Ghaneian M T, Afsharnia M, Alami A, Mardaneh J. J. Mol. Liq., 2018, 249:546.

doi: 10.1016/j.molliq.2017.11.031     URL    
Shi H F, Yan G, Zhang Y, Tan H Q, Zhou W Z, Ma Y Y, Li Y G, Chen W L, Wang E B. ACS Appl. Mater. Interfaces, 2017, 9:422.

doi: 10.1021/acsami.6b13009     URL    
Qiu W, Zheng Y, Haralampides K. Chem. Eng. J., 2007, 125:165.

doi: 10.1016/j.cej.2006.08.025     URL    
Salavati H, Saedi H. Int. J. Electrochem. Sci., 2014, 10:4208.
Liu X X, Luo J, Zhu Y T, Yang Y, Yang S J. J. Alloy. Compd., 2015, 648:986.

doi: 10.1016/j.jallcom.2015.07.065     URL    
Liu X X, Gong W P, Luo J, Zou C T, Yang Y, Yang S J. Appl. Surf. Sci., 2016, 362:517.

doi: 10.1016/j.apsusc.2015.11.151     URL    
Liu X X, Luo J, Chen X Y, Yang Y, Yang S J. Chem. Res. Chin. Univ., 2017, 33:268.

doi: 10.1007/s40242-017-6350-4     URL    
Zou F, Yu R H, Li R G, Li W. ChemPhysChem, 2013, 14:2825.

doi: 10.1002/cphc.v14.12     URL    
Ren X Q, Li R, Song Y N, Feng X, Wang B. Sci. Sin. Chim., 2014, 44(10):1521.

doi: 10.1360/N032013-00063     URL    
(任晓倩, 李锐, 宋玉娜, 冯霄, 王博. 中国科学: 化学, 2014, 44(10): 1521.)
Yi F Y, Zhu W, Dang S, Li J P, Wu D, Li Y H, Sun Z M. Chem. Commun., 2015, 51:3336.

doi: 10.1039/C4CC09569C     URL    
Zeng L, Xiao L, Long Y K, Shi X W. J. Colloid Interface Sci., 2018, 516:274.

doi: 10.1016/j.jcis.2018.01.070     URL    
Liu L, Zhang H Y, Wang H J, Chen S, Wang J H, Sun J W. Eur. J. Inorg. Chem., 2019, 2019:1839.

doi: 10.1002/ejic.201900086     URL    
Wang X L, Gong C H, Zhang J W, Liu G C, Kan X M, Xu N. CrystEngComm, 2015, 17:4179.

doi: 10.1039/C5CE00411J     URL    
Huo M, Yang W B, Zhang H L, Zhang L, Liao J Z, Lin L, Lu C Z. RSC Adv., 2016, 6:111549.

doi: 10.1039/C6RA10422C     URL    
Li X H, Guo W L, Gao X M, Yue X X. Environ. Prog. Sustainable Energy, 2017, 36:1342.

doi: 10.1002/ep.v36.5     URL    
Liang R W, Chen R, Jing F F, Qin N, Wu L. Dalton Trans., 2015, 44:18227.

doi: 10.1039/C5DT02986D     URL    
Yan J, Zhou W Z, Tan H Q, Feng X J, Wang Y H, Li Y G. CrystEngComm, 2016, 18:8762.

doi: 10.1039/C6CE02021F     URL    
Chen D M, Liu X H, Zhang N N, Liu C S, Du M. Polyhedron, 2018, 152:108.

doi: 10.1016/j.poly.2018.05.059     URL    
[1] 洪俊贤, 朱旬, 葛磊, 徐鸣川, 吕文珍, 陈润锋. CsPbX3(X = Cl, Br, I) 纳米晶的制备及其应用[J]. 化学进展, 2021, 33(8): 1362-1377.
[2] 刘晓璐, 耿钰晓, 郝然, 刘玉萍, 袁忠勇, 李伟. 环境条件下电催化氮还原的现状、挑战与展望[J]. 化学进展, 2021, 33(7): 1074-1091.
[3] 吴星辰, 梁文慧, 蔡称心. 碳量子点的荧光发射机制[J]. 化学进展, 2021, 33(7): 1059-1073.
[4] 朱泉霏, 郝俊迪, 严靖雯, 王雨, 冯钰锜. FAHFAs:生物功能、分析及合成[J]. 化学进展, 2021, 33(7): 1115-1125.
[5] 王玉冰, 陈杰, 延卫, 崔建文. 共轭微孔聚合物的制备与应用[J]. 化学进展, 2021, 33(5): 838-854.
[6] 杨宇州, 李政, 黄艳凤, 巩继贤, 乔长晟, 张健飞. MOF基水凝胶材料的制备及其应用[J]. 化学进展, 2021, 33(5): 726-739.
[7] 靳钧, 林梓恒, 石磊. 一维新型碳的同素异形体:碳链[J]. 化学进展, 2021, 33(2): 188-198.
[8] 李超, 乔瑶雨, 李禹红, 闻静, 何乃普, 黎白钰. MOFs/水凝胶复合材料的制备及其应用研究[J]. 化学进展, 2021, 33(11): 1964-1971.
[9] 王娜娜, 王官武. 机械研磨条件下凝聚态有机合成探究[J]. 化学进展, 2020, 32(8): 1076-1085.
[10] 潘迪, 刘鹏, 张宏斌, 唐颐. 沸石的连续流动相合成[J]. 化学进展, 2020, 32(7): 873-881.
[11] 穆德颖, 刘铸, 金珊, 刘元龙, 田爽, 戴长松. 废旧锂离子电池正极材料及电解液的全过程回收及再利用[J]. 化学进展, 2020, 32(7): 950-965.
[12] 吴晓晓, 马开庆. 百部生物碱的全合成[J]. 化学进展, 2020, 32(6): 752-760.
[13] 胡强强, 郭和泽, 窦红静. ZIF-8纳米颗粒的粒径调控及生物医学应用[J]. 化学进展, 2020, 32(5): 656-664.
[14] 李梁君, 邓建辉, 郭建维, 岳航勃. 金刚烷基微孔有机聚合物的合成与性能[J]. 化学进展, 2020, 32(2/3): 190-203.
[15] 罗世鹏, 黄培强. 苹果酸——天然产物对映选择性全合成和合成方法学中多用途的手性合成砌块[J]. 化学进展, 2020, 32(11): 1846-1868.