English
新闻公告
More
化学进展 2021, Vol. 33 Issue (6): 1026-1034 DOI: 10.7536/PC200662 前一篇   后一篇

• 综述 •

多酸@金属-有机骨架材料的制备及其在废水处理中的应用

胡豪1, 何云鹏1, 杨水金1,2,*()   

  1. 1 湖北师范大学化学化工学院 污染物分析与资源化技术湖北省重点实验室 黄石 435002
    2 湖北师范大学先进材料研究院 黄石 435002
  • 收稿日期:2020-06-22 修回日期:2020-07-24 出版日期:2021-06-20 发布日期:2020-12-22
  • 通讯作者: 杨水金
  • 基金资助:
    国家自然科学(21171053)

Preparation of Polyoxometalates@Metal-Organic Frameworks Materials and Their Application in Wastewater Treatment

Hao Hu1, Yunpeng He1, Shuijin Yang1,2,*()   

  1. 1 College of Chemistry and Chemical Engineering, Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, Hubei Normal University, Huangshi 435002, China
    2 Institute for Advanced Materials, Hubei Normal University, Huangshi 435002, China
  • Received:2020-06-22 Revised:2020-07-24 Online:2021-06-20 Published:2020-12-22
  • Contact: Shuijin Yang
  • About author:
    * Corresponding author e-mail:
  • Supported by:
    National Natural Science Foundation of China(21171053)

废水中的污染物由于其成分复杂、生物毒性大和难降解等特点,危害人体健康,因此,寻找开发一些能有效去除废水中的剧毒和难降解污染物的吸附剂成为亟待解决的问题。金属-有机骨架材料(MOFs)由于结构有序且多样、拓扑结构丰富、孔隙度超高、比表面积大、骨架结构稳定和易于掺杂其他组分等特点,使其在吸附领域得到了广泛的关注。多金属氧酸盐(POMs)与MOFs材料复合形成新的杂化材料POMs@MOFs,与纯MOFs材料相比不仅具有其独特的性质,同时也兼具POMs的强酸度、富氧表面和氧化还原能力,并且克服了缺点,如难以处理、比表面积小和溶解度高等特点。近年来,科研工作者发现POMs与MOFs的复合物作为吸附剂在废水处理领域具有优异的性能。本文结合本课题组的研究工作对POMs@MOFs的制备尤其是各种制备方法的优缺点进行了归纳分析,并围绕POMs@MOFs复合材料在废水处理中的应用发展进行综述,对未来研究方向和发展前景进行展望。

The pollutants in the wastewater are hazardous to human health due to their complex composition, high biological toxicity and difficult degradation. Therefore, finding and developing some adsorbents that can effectively remove highly toxic and refractory pollutants in wastewater have become an urgent problem to be solved. Metal-organic frameworks(MOFs) materials have the characteristics of orderly and diverse structure, rich topology, ultra-high porosity, large specific surface area, stable framework structure and easy doping with other components, which have attracted wide attention in the field of adsorption. Compared with pure MOFs, the new hybrid materials POMs@MOFs are created by incorporating polyoxometalates(POMs) onto metal-organic frameworks(MOFs). They not only have their unique set of properties, but also combine the strong acidity, oxygen-rich surface, and redox capability of POMs. At the same time, they have overcome shortcomings of POMs and MOFs, such as difficult handling, low surface area, and high solubility. In recent years, researchers have discovered that the composites of POMs and MOFs have excellent performance as adsorbents in the field of wastewater treatment. In this paper, the synthesis and preparation of POMs@MOFs, especially the advantages and disadvantages of various preparation methods, are summarized and analyzed based on the reported researches and the works of our group. This article focuses on the application and development of POMs@MOFs in wastewater treatment. Finally, the development direction and research prospect of POMs@MOFs composite materials are also proposed.

Contents

1 Introduction

2 Preparation of POMs@MOFs materials

2.1 The method of one-pot synthesis

2.2 The method of impregnation synthesis

2.3 The method of mechanical grinding synthesis

3 Application of POMs@MOFs materials in wastewater treatment

3.1 Application of MOFs materials in wastewater treatment

3.2 Application of POMs materials in wastewater treatment

3.3 Application of POMs@MOFs materials in wastewater treatment

4 Conclusion and outlook

()
图1 H3PW12O40@Cu3(BTC)2[64]、Co-POM@MIL-101[67]、P5W30@MIL-101(Cr)[68]的示意图
Fig.1 Schematic diagram of H3PW12O40@Cu3(BTC)2[64], Co-POM@MIL-101[67] and P5W30@MIL-101(Cr)[68]
图2 POMs@MIL-101(Cr)[69], H3PMo12O20@ZIF-67[72]的示意图
Fig.2 Schematic diagram of POMs@MIL-101(Cr)[69], H3PMo12O20@ZIF-67[72]
图3 POMs@ZIF-8[75], PW12@MFM-300(In)[77]示意图
Fig.3 Schematic diagram of POMs@ZIF-8[75], PW12@MFM-300(In)[77]
图4 POM@MIL-101对混合染料溶液的选择吸附能力
Fig.4 The selective adsorption capability of POM@MIL-101 toward the mixed dyes solution[101]
[1]
Le C, Zha Y, Li Y, Sun D, Lu H, Yin B. Environ. Manag., 2010, 45:662.

doi: 10.1007/s00267-010-9440-3     URL    
[2]
Michael I, Rizzo L, McArdell C S, Manaia C M, Merlin C, Schwartz T, Dagot C, Fatta-Kassinos D. Water Res., 2013, 47:957.

doi: 10.1016/j.watres.2012.11.027     pmid: 23266388
[3]
Bu Q W, Wang B, Huang J, Deng S B, Yu G. J. Hazard. Mater., 2013, 262:189.

doi: 10.1016/j.jhazmat.2013.08.040     URL    
[4]
Ali H, Khan E, Sajad M A. Chemosphere, 2013, 91:869.

doi: 10.1016/j.chemosphere.2013.01.075     URL    
[5]
Gallo F, Fossi C, Weber R, Santillo D, Sousa J, Ingram I, Nadal A, Romano D. Environ. Sci. Eur., 2018, 30:13.

doi: 10.1186/s12302-018-0139-z     URL    
[6]
Lee C M, Palaniandy P, Dahlan I. Environ. Earth Sci., 2017, 76:611.

doi: 10.1007/s12665-017-6924-y     URL    
[7]
Feng M B, Zhang P, Zhou H C, Sharma V K. Chemosphere, 2018, 209:783.

doi: 10.1016/j.chemosphere.2018.06.114     URL    
[8]
Fu Z Y, Guo W J, Dang Z, Hu Q, Wu F C, Feng C L, Zhao X L, Meng W, Xing B S, Giesy J P. Environ. Sci. Technol., 2017, 51:3117.

doi: 10.1021/acs.est.7b00223     URL    
[9]
Pophali G R, Hedau S, Gedam N, Rao N N, Nandy T. J. Hazard. Mater., 2011, 189:273.

doi: 10.1016/j.jhazmat.2011.02.030     pmid: 21377786
[10]
Hasan Z, Jhung S H. J. Hazard. Mater., 2015, 283:329.

doi: 10.1016/j.jhazmat.2014.09.046     URL    
[11]
Tong M M, Zhao X D, Xie L T, Liu D H, Yan Q Y, Zhong C L. Prog. Chem., 2012, 24(09):1646.
(童敏曼, 赵旭东, 解丽婷, 刘大欢, 阳庆元, 仲崇立. 化学进展, 2012, 24(09): 1646.)
[12]
Fu H, Li X B, Wang J, Lin P F, Chen C, Zhang X J, Suffet I H M. J. Environ. Sci., 2017, 56:145.

doi: 10.1016/j.jes.2016.09.010     URL    
[13]
Jiang L H, Liu Y G, Liu S B, Zeng G M, Hu X J, Hu X, Guo Z, Tan X F, Wang L L, Wu Z B. Environ. Sci. Technol., 2017, 51:6352.

doi: 10.1021/acs.est.7b00073     URL    
[14]
Khandaker S, Toyohara Y, Saha G C, Awual M R, Kuba T. J. Water Process. Eng., 2020, 33:101055.

doi: 10.1016/j.jwpe.2019.101055     URL    
[15]
Cao Y, Li X B. Adsorption, 2014, 20:713.

doi: 10.1007/s10450-014-9615-y     URL    
[16]
Hua M, Zhang S J, Pan B C, Zhang W M, Lv L, Zhang Q X. J. Hazard. Mater., 2012, 211/212:317.

doi: 10.1016/j.jhazmat.2011.10.016     URL    
[17]
Cook T R, Zheng Y R, Stang P J. Chem. Rev., 2013, 113:734.

doi: 10.1021/cr3002824     URL    
[18]
Gross A F, Sherman E, Mahoney S L, Vajo J J. J. Phys. Chem. A, 2013, 117:3771.

doi: 10.1021/jp401039k     pmid: 23586479
[19]
Liu Y, Liu J, Lin Y S. Microporous Mesoporous Mater., 2015, 214:242.

doi: 10.1016/j.micromeso.2015.05.001     URL    
[20]
Alesaadi S J, Sabzi F. Int. J. Hydrog. Energy, 2014, 39:21076.

doi: 10.1016/j.ijhydene.2014.10.064     URL    
[21]
Ethiraj J, Bonino F, Lamberti C, Bordiga S. Microporous Mesoporous Mater., 2015, 207:90.

doi: 10.1016/j.micromeso.2014.12.034     URL    
[22]
Chen Z J, Adil K, Weseliński Ł J, Belmabkhout Y, Eddaoudi M. J. Mater. Chem. A, 2015, 3:6276.

doi: 10.1039/C4TA07115H     URL    
[23]
Kayal S, Sun B C, Chakraborty A. Energy, 2015, 91:772.

doi: 10.1016/j.energy.2015.08.096     URL    
[24]
Sadakiyo M, O? kawa H, Shigematsu A, Ohba M, Yamada T, Kitagawa H. J. Am. Chem. Soc., 2012, 134:5472.

doi: 10.1021/ja300122r     pmid: 22409393
[25]
Canivet J, Fateeva A, Guo Y M, Coasne B, Farrusseng D. Chem. Soc. Rev., 2014, 43:5594.

doi: 10.1039/C4CS00078A     URL    
[26]
An Y, Li H L, Liu Y Y, Huang B B, Sun Q L, Dai Y, Qin X Y, Zhang X Y. J. Solid State Chem., 2016, 233:194.

doi: 10.1016/j.jssc.2015.10.037     URL    
[27]
Kreno L E, Leong K, Farha O K, Allendorf M, van Duyne R P, Hupp J T. Chem. Rev., 2012, 112:1105.

doi: 10.1021/cr200324t     URL    
[28]
Sun C Y, Qin C, Wang X L, Su Z M. Expert Opin. Drug Deliv., 2012, 10:89.

doi: 10.1517/17425247.2013.741583     URL    
[29]
Peng Y G, Zhang Y X, Huang H L, Zhong C L. Chem. Eng. J., 2018, 333:678.

doi: 10.1016/j.cej.2017.09.138     URL    
[30]
Haque E, Lee J E, Jang I T, Hwang Y K, Chang J S, Jegal J, Jhung S H. J. Hazard. Mater., 2010, 181:535.

doi: 10.1016/j.jhazmat.2010.05.047     URL    
[31]
Ke F, Qiu L G, Yuan Y P, Peng F M, Jiang X, Xie A J, Shen Y H, Zhu J F. J. Hazard. Mater., 2011, 196:36.

doi: 10.1016/j.jhazmat.2011.08.069     URL    
[32]
Kitao T, Zhang Y Y, Kitagawa S, Wang B, Uemura T. Chem. Soc. Rev., 2017, 46:3108.

doi: 10.1039/C7CS00041C     URL    
[33]
Tan Y M, Meng H, Zhang X. Prog. Chem., 2019, 31(07):980.
(谭远铭, 孟皓, 张霞. 化学进展, 2019, 31(07): 980.)
[34]
Heravi M M, Hosseinnejad T, Tamimi M, Zadsirjan V, Mirzaei M. J. Mol. Struct., 2020, 1205:127598.

doi: 10.1016/j.molstruc.2019.127598     URL    
[35]
Nikoonahad A, Djahed B, Norzaee S, Eslami H, Derakhshan Z, Miri M, Fakhri Y, Hoseinzadeh E, Ghasemi S M, Balarak D, Fallahzadeh R A, Zarrabi M, Taghavi M. PeerJ, 2018, 6:e5501.

doi: 10.7717/peerj.5501     URL    
[36]
Omwoma S, Gore C T, Ji Y C, Hu C W, Song Y F. Coord. Chem. Rev., 2015, 286:17.

doi: 10.1016/j.ccr.2014.11.013     URL    
[37]
Wu X, Luo B B, Chen M, Chen F F. Appl. Surf. Sci., 2020, 509:145344.

doi: 10.1016/j.apsusc.2020.145344     URL    
[38]
Rengifo-Herrera J A, Blanco M, Wist J, Florian P, Pizzio L R. Appl. Catal. B: Environ., 2016, 189:99.

doi: 10.1016/j.apcatb.2016.02.033     URL    
[39]
Gong S W, Lu J, Wang H H, Liu L J, Zhang Q. Appl. Energy, 2014, 134:283.

doi: 10.1016/j.apenergy.2014.07.099     URL    
[40]
Zhang L J, Shi Z H, Zhang L H, Zhou Y S, Hassan S U. Mater. Lett., 2012, 86:62.

doi: 10.1016/j.matlet.2012.07.028     URL    
[41]
Zhang Q Y, Wei F F, Li Q, Huang J S, Feng Y M, Zhang Y T. RSC Adv., 2017, 7:51090.

doi: 10.1039/C7RA10554A     URL    
[42]
Tan W, Li G Z, Wang T L, Yang M, Peng J H, Barrow C J, Yang W R, Wang H B. Desalination Water Treat., 2016, 57:7874.

doi: 10.1080/19443994.2015.1085455     URL    
[43]
Streb C. Dalton Trans., 2012, 41:1651.

doi: 10.1039/C1DT11220A     URL    
[44]
Endo S, Hale S E, Goss K U, Arp H P H. Environ. Sci. Technol., 2011, 45:10124.

doi: 10.1021/es202894k     URL    
[45]
Guo D J, Fu S J, Tan W, Dai Z D. J. Mater. Chem., 2010, 20:10159.

doi: 10.1039/c0jm01161d     URL    
[46]
Ali M, Nasir S, Ramirez P, Cervera J, Mafe S, Ensinger W. ACS Nano, 2012, 6:9247.

doi: 10.1021/nn303669g     URL    
[47]
Du D Y, Yan L K, Su Z M, Li S L, Lan Y Q, Wang E B. Coord. Chem. Rev., 2013, 257:702.

doi: 10.1016/j.ccr.2012.10.004     URL    
[48]
Cao Y W, Chen Q Y, Shen C R, He L. Molecules, 2019, 24:2069.

doi: 10.3390/molecules24112069     URL    
[49]
Lee A F, Wilson K. Catal. Today, 2015, 242:3.

doi: 10.1016/j.cattod.2014.03.072     URL    
[50]
Feng C G, Xu G, Liu X. J. Rare Earths, 2013, 31:44.

doi: 10.1016/S1002-0721(12)60232-4     URL    
[51]
Huang B, Yang D H, Han B H. J. Mater. Chem. A, 2020, 8:4593.

doi: 10.1039/C9TA12679A     URL    
[52]
Sun J M, Abednatanzi S, van der Voort P, Liu Y Y, Leus K. Catalysts, 2020, 10:578.

doi: 10.3390/catal10050578     URL    
[53]
Samaniyan M, Mirzaei M, Khajavian R, Eshtiagh-Hosseini H, Streb C. ACS Catal., 2019, 9:10174.

doi: 10.1021/acscatal.9b03439    
[54]
Wang X L, Chang Z H, Lin H Y, Xu C, Luan J, Liu G C, Tian A X. RSC Adv., 2015, 5:35535.

doi: 10.1039/C5RA06204G     URL    
[55]
Bo Q B, Zhang H T, Wang H Y, Miao J L, Zhang Z W. Chem. Eur. J., 2014, 20:3712.

doi: 10.1002/chem.v20.13     URL    
[56]
Wei M L, Sun J J, Wang X J. J. Sol-Gel Sci. Technol., 2014, 71:324.

doi: 10.1007/s10971-014-3370-0     URL    
[57]
Ghahramaninezhad M, Soleimani B, Niknam Shahrak M. New J. Chem., 2018, 42:4639.

doi: 10.1039/C8NJ00274F     URL    
[58]
Wasson M C, Buru C T, Chen Z J, Islamoglu T, Farha O K. Appl. Catal. A: Gen., 2019, 586:117214.

doi: 10.1016/j.apcata.2019.117214     URL    
[59]
Li J K, Zhao S H, Hu C W. Chin. J. Inorg. Chem.), 2019, 35(11):1934.
(李季坤, 赵帅恒, 胡长文. 无机化学学报, 2019, 35(11):1934.)
[60]
Wang X L, Rong X, Lin H Y, Cao J J, Liu G C, Chang Z H. Inorg. Chem. Commun., 2016, 63:30.

doi: 10.1016/j.inoche.2015.11.004     URL    
[61]
Wang B H, Yan B. J. Alloy. Compd., 2019, 777:415.

doi: 10.1016/j.jallcom.2018.10.406     URL    
[62]
Buru C T, Farha O K. ACS Appl. Mater. Interfaces, 2020, 12:5345.

doi: 10.1021/acsami.9b19785     URL    
[63]
Xia K, Zhou D, Yang Y, Yang S J, Xia Q H. Chem. J. Chin. Univ., 2018, 39(08):1624.
(夏坤, 周丹, 杨赟, 杨水金, 夏清华. 高等学校化学学报, 2018, 39(08): 1624.)
[64]
Du D Y, Qin J S, Li S L, Su Z M, Lan Y Q. Chem. Soc. Rev., 2014, 43:4615.

doi: 10.1039/C3CS60404G     URL    
[65]
Sun C Y, Liu S X, Liang D D, Shao K Z, Ren Y H, Su Z M. J. Am. Chem. Soc., 2009, 131:1883.

doi: 10.1021/ja807357r     URL    
[66]
Ma F J, Liu S X, Sun C Y, Liang D D, Ren G J, Wei F, Chen Y G, Su Z M. J. Am. Chem. Soc., 2011, 133:4178.

doi: 10.1021/ja109659k     URL    
[67]
Yan A X, Yao S, Li Y G, Zhang Z M, Lu Y, Chen W L, Wang E B. Chem. Eur. J., 2014, 20:6927.

doi: 10.1002/chem.201400175     URL    
[68]
Yang X J, Feng X J, Tan H Q, Zang H Y, Wang X L, Wang Y H, Wang E B, Li Y G. J. Mater. Chem. A, 2016, 4:3947.

doi: 10.1039/C5TA09507G     URL    
[69]
Marandi A, Bahadori M, Tangestaninejad S, Moghadam M, Mirkhani V, Mohammadpoor-Baltork I, Frohnhoven R, Mathur S, Sandleben A, Klein A. New J. Chem., 2019, 43:15585.

doi: 10.1039/C9NJ02607J     URL    
[70]
Hoseini A A, Farhadi S, Zabardasti A. Appl. Organomet. Chem., 2018, 33(2):e4656.
[71]
Férey G, Mellot-Draznieks C, Serre C, Millange F, Dutour J, Surblé S, Margiolaki I. Science, 2005, 309:2040.

pmid: 16179475
[72]
Maksimchuk N, Timofeeva M, Melgunov M, Shmakov A, Chesalov Y, Dybtsev D, Fedin V, Kholdeeva O. J. Catal., 2008, 257:315.

doi: 10.1016/j.jcat.2008.05.014     URL    
[73]
Buru C T, Li P, Mehdi B L, Dohnalkova A, Platero-Prats A E, Browning N D, Chapman K W, Hupp J T, Farha O K. Chem. Mater., 2017, 29:5174.

doi: 10.1021/acs.chemmater.7b00750     URL    
[74]
Stuckart M, Monakhov K Y. J. Mater. Chem. A, 2018, 6:17849.

doi: 10.1039/C8TA06213G     URL    
[75]
Chen C F, Wu A P, Yan H J, Xiao Y L, Tian C G, Fu H G. Chem. Sci., 2018, 9:4746.

doi: 10.1039/C8SC01454J     URL    
[76]
Jeon Y, Chi W S, Hwang J, Kim D H, Kim J H, Shul Y G. Appl. Catal. B: Environ., 2019, 242:51.

doi: 10.1016/j.apcatb.2018.09.071     URL    
[77]
Buru C T, Wasson M C, Farha O K. ACS Appl. Nano Mater., 2020, 3:658.

doi: 10.1021/acsanm.9b02176     URL    
[78]
Li R, Ren X Q, Zhao J S, Feng X, Jiang X, Fan X X, Lin Z G, Li X G, Hu C W, Wang B. J. Mater. Chem. A, 2014, 2:2168.

doi: 10.1039/C3TA14267A     URL    
[79]
Zhong X H, Lu Y, Luo F, Liu Y W, Li X H, Liu S X. Chem. Eur. J., 2018, 24:3045.

doi: 10.1002/chem.v24.12     URL    
[80]
Li G P, Zhang K, Li C B, Gao R C, Cheng Y L, Hou L, Wang Y Y. Appl. Catal. B: Environ., 2019, 245:753.

doi: 10.1016/j.apcatb.2019.01.012     URL    
[81]
Haque E, Jun J W, Jhung S H. J. Hazard. Mater., 2011, 185:507.

doi: 10.1016/j.jhazmat.2010.09.035     URL    
[82]
Tong M M, Liu D H, Yang Q Y, Devautour-Vinot S, Maurin G, Zhong C L. J. Mater. Chem. A, 2013, 1:8534.

doi: 10.1039/c3ta11807j     URL    
[83]
Lin S, Song Z L, Che G B, Ren A, Li P, Liu C B, Zhang J S. Microporous Mesoporous Mater., 2014, 193:27.

doi: 10.1016/j.micromeso.2014.03.004     URL    
[84]
He Y P, Jin X Y, Li W Z, Yan S J, Lü B L. Chin, J, Inorg, Chem , 2019, 35(06):996.
(何云鹏, 金雪阳, 李文卓, 杨水金, 吕宝兰. 无机化学学报, 2019, 35(06): 996.)
[85]
Du J J, Yuan Y P, Sun J X, Peng F M, Jiang X, Qiu L G, Xie A J, Shen Y H, Zhu J F. J. Hazard. Mater., 2011, 190:945.

doi: 10.1016/j.jhazmat.2011.04.029     URL    
[86]
Xu W T, Ma L, Ke F, Peng F M, Xu G S, Shen Y H, Zhu J F, Qiu L G, Yuan Y P. Dalton Trans., 2014, 43:3792.

doi: 10.1039/C3DT52574K     URL    
[87]
Li S T, Wu C D, Yan Y S, Lü X M, Huo P W. Prog. Chem. 2008, 05:690.
(李松田, 吴春笃, 闫永胜, 吕晓萌, 霍鹏伟. 化学进展, 2008, 05:690.).
[88]
Mansouri S, Benlounes O, Rabia C, Thouvenot R, Bettahar M M, Hocine S. J. Mol. Catal. A: Chem., 2013, 379:255.

doi: 10.1016/j.molcata.2013.08.006     URL    
[89]
Dolbecq A, Mialane P, Keita B, Nadjo L. J. Mater. Chem., 2012, 22:24509.

doi: 10.1039/c2jm33246a     URL    
[90]
Zhang J, Li C, Wang B, Cui H, Zhai J P, Li Q. Sci. China Chem., 2013, 56:1285.

doi: 10.1007/s11426-013-4889-6     URL    
[91]
Niu P, Hao J C. Langmuir, 2011, 27:13590.

doi: 10.1021/la203178s     URL    
[92]
Taghavi M, Tabatabaee M, Ehrampoush M H, Ghaneian M T, Afsharnia M, Alami A, Mardaneh J. J. Mol. Liq., 2018, 249:546.

doi: 10.1016/j.molliq.2017.11.031     URL    
[93]
Shi H F, Yan G, Zhang Y, Tan H Q, Zhou W Z, Ma Y Y, Li Y G, Chen W L, Wang E B. ACS Appl. Mater. Interfaces, 2017, 9:422.

doi: 10.1021/acsami.6b13009     URL    
[94]
Qiu W, Zheng Y, Haralampides K. Chem. Eng. J., 2007, 125:165.

doi: 10.1016/j.cej.2006.08.025     URL    
[95]
Salavati H, Saedi H. Int. J. Electrochem. Sci., 2014, 10:4208.
[96]
Liu X X, Luo J, Zhu Y T, Yang Y, Yang S J. J. Alloy. Compd., 2015, 648:986.

doi: 10.1016/j.jallcom.2015.07.065     URL    
[97]
Liu X X, Gong W P, Luo J, Zou C T, Yang Y, Yang S J. Appl. Surf. Sci., 2016, 362:517.

doi: 10.1016/j.apsusc.2015.11.151     URL    
[98]
Liu X X, Luo J, Chen X Y, Yang Y, Yang S J. Chem. Res. Chin. Univ., 2017, 33:268.

doi: 10.1007/s40242-017-6350-4     URL    
[99]
Zou F, Yu R H, Li R G, Li W. ChemPhysChem, 2013, 14:2825.

doi: 10.1002/cphc.v14.12     URL    
[100]
Ren X Q, Li R, Song Y N, Feng X, Wang B. Sci. Sin. Chim., 2014, 44(10):1521.

doi: 10.1360/N032013-00063     URL    
(任晓倩, 李锐, 宋玉娜, 冯霄, 王博. 中国科学: 化学, 2014, 44(10): 1521.)
[101]
Yi F Y, Zhu W, Dang S, Li J P, Wu D, Li Y H, Sun Z M. Chem. Commun., 2015, 51:3336.

doi: 10.1039/C4CC09569C     URL    
[102]
Zeng L, Xiao L, Long Y K, Shi X W. J. Colloid Interface Sci., 2018, 516:274.

doi: 10.1016/j.jcis.2018.01.070     URL    
[103]
Liu L, Zhang H Y, Wang H J, Chen S, Wang J H, Sun J W. Eur. J. Inorg. Chem., 2019, 2019:1839.

doi: 10.1002/ejic.201900086     URL    
[104]
Wang X L, Gong C H, Zhang J W, Liu G C, Kan X M, Xu N. CrystEngComm, 2015, 17:4179.

doi: 10.1039/C5CE00411J     URL    
[105]
Huo M, Yang W B, Zhang H L, Zhang L, Liao J Z, Lin L, Lu C Z. RSC Adv., 2016, 6:111549.

doi: 10.1039/C6RA10422C     URL    
[106]
Li X H, Guo W L, Gao X M, Yue X X. Environ. Prog. Sustainable Energy, 2017, 36:1342.

doi: 10.1002/ep.v36.5     URL    
[107]
Liang R W, Chen R, Jing F F, Qin N, Wu L. Dalton Trans., 2015, 44:18227.

doi: 10.1039/C5DT02986D     URL    
[108]
Yan J, Zhou W Z, Tan H Q, Feng X J, Wang Y H, Li Y G. CrystEngComm, 2016, 18:8762.

doi: 10.1039/C6CE02021F     URL    
[109]
Chen D M, Liu X H, Zhang N N, Liu C S, Du M. Polyhedron, 2018, 152:108.

doi: 10.1016/j.poly.2018.05.059     URL    
[1] 何静, 陈佳, 邱洪灯. 中药碳点的合成及其在生物成像和医学治疗方面的应用[J]. 化学进展, 2023, 35(5): 655-682.
[2] 鄢剑锋, 徐进栋, 张瑞影, 周品, 袁耀锋, 李远明. 纳米碳分子——合成化学的魅力[J]. 化学进展, 2023, 35(5): 699-708.
[3] 杨孟蕊, 谢雨欣, 朱敦如. 化学稳定金属有机框架的合成策略[J]. 化学进展, 2023, 35(5): 683-698.
[4] 王新月, 金康. 多肽及蛋白质的化学合成研究[J]. 化学进展, 2023, 35(4): 526-542.
[5] 刘雨菲, 张蜜, 路猛, 兰亚乾. 共价有机框架材料在光催化CO2还原中的应用[J]. 化学进展, 2023, 35(3): 349-359.
[6] 兰明岩, 张秀武, 楚弘宇, 王崇臣. MIL-101(Fe)及其复合物催化去除污染物:合成、性能及机理[J]. 化学进展, 2023, 35(3): 458-474.
[7] 杨世迎, 李乾凤, 吴随, 张维银. 铁基材料改性零价铝的作用机制及应用[J]. 化学进展, 2022, 34(9): 2081-2093.
[8] 龚智华, 胡莎, 金学平, 余磊, 朱园园, 古双喜. 磷酸酯类前药的合成方法与应用[J]. 化学进展, 2022, 34(9): 1972-1981.
[9] 林业竣, 李艳梅. 翻译后修饰Tau蛋白及其化学全/半合成[J]. 化学进展, 2022, 34(8): 1645-1660.
[10] 宝利军, 危俊吾, 钱杨杨, 王雨佳, 宋文杰, 毕韵梅. 酶响应性线形-树枝状嵌段共聚物的合成、性能及应用[J]. 化学进展, 2022, 34(8): 1723-1733.
[11] 徐鹏, 俞飚. 聚糖化学合成的挑战和可能的凝聚态化学问题[J]. 化学进展, 2022, 34(7): 1548-1553.
[12] 李诗宇, 阴永光, 史建波, 江桂斌. 共价有机框架在水中二价汞吸附去除中的应用[J]. 化学进展, 2022, 34(5): 1017-1025.
[13] 王鹏, 刘欢, 杨妲. 烯烃的氢甲酰化串联反应研究[J]. 化学进展, 2022, 34(5): 1076-1087.
[14] 马晓清. 石墨炔在光催化及光电催化中的应用[J]. 化学进展, 2022, 34(5): 1042-1060.
[15] 岳长乐, 鲍文静, 梁吉雷, 柳云骐, 孙道峰, 卢玉坤. 多酸基硫化态催化剂的加氢脱硫和电解水析氢应用[J]. 化学进展, 2022, 34(5): 1061-1075.