English
新闻公告
More
化学进展 2022, Vol. 34 Issue (7): 1619-1625 DOI: 10.7536/PC220534 前一篇   后一篇

• 综述 •

蛋白质凝聚作用在神经退行性疾病中的作用机制研究

张沐雅, 刘嘉琪, 陈旺, 王利强, 陈杰, 梁毅*()   

  1. 武汉大学生命科学学院 武汉大学泰康生命医学中心 武汉 430072
  • 收稿日期:2022-05-04 修回日期:2022-06-30 出版日期:2022-07-24 发布日期:2022-07-15
  • 通讯作者: 梁毅
  • 基金资助:
    国家自然科学基金项目(32071212); 国家自然科学基金项目(31770833); 国家自然科学基金项目(31570779); 中国博士后科学基金项目(2021TQ0252); 中国博士后科学基金项目(2021M700103)

The Mechanism of Protein Condensation in Neurodegenerative Diseases

Muya Zhang, Jiaqi Liu, Wang Chen, Liqiang Wang, Jie Chen, Yi Liang()   

  1. College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University,Wuhan 430072, China
  • Received:2022-05-04 Revised:2022-06-30 Online:2022-07-24 Published:2022-07-15
  • Contact: Yi Liang
  • Supported by:
    National Natural Science Foundation of China(32071212); National Natural Science Foundation of China(31770833); National Natural Science Foundation of China(31570779); China Postdoctoral Science Foundation(2021TQ0252); China Postdoctoral Science Foundation(2021M700103)

蛋白质和RNA通过液-液相分离组装成无膜细胞器。无膜细胞器与液滴具有相似的融合性质,当浓度超过饱和浓度时,生物大分子会形成液滴,接着向凝胶态进行转化,最终形成固态凝聚体。传染性海绵状脑病、肌萎缩侧索硬化症和阿尔茨海默病等神经退行性疾病共同的病理特征是,错误折叠的蛋白质(包括朊蛋白、TDP-43和Tau蛋白)形成有毒性的寡聚体或淀粉样纤维。大量研究表明,这些蛋白质都可以发生液-液相分离形成凝聚体。本文综述了蛋白质凝聚作用在传染性海绵状脑病、TDP-43蛋白病以及 Tau蛋白病中的作用机制,重点阐述了相分离如何诱导神经退行性疾病中错误折叠朊蛋白、TDP-43和Tau蛋白形成寡聚体和淀粉样纤维,并讨论和展望了蛋白质凝聚作用与神经退行性疾病关联研究中存在的挑战和机遇。

Protein and RNA molecules tend to form supramolecular assemblies called membrane-less organelles via liquid-liquid phase separation of proteins in cells. These organelles have fusion properties similar to liquid droplets formed by biological macromolecules when their concentrations are higher than saturation concentrations. Upon aging, these dynamic droplets change their material properties and transform into gels, followed by formation of solid condensates. It is well known that proteins with low-complexity domains undergo liquid-liquid phase separation. The common pathological feature of neurodegenerative diseases such as transmissible spongiform encephalopathy, amyotrophic lateral sclerosis, and Alzheimer’s disease is toxic oligomers or amyloid aggregates formed by misfolded proteins including prion protein, DNA- and RNA-binding protein TDP-43, and Tau protein. A large number of studies have shown that prion protein, TDP-43, and Tau protein all undergo liquid-liquid phase separation and form protein condensates. This review summarizes the role of protein phase separation and condensation in neurodegenerative diseases, elaborates the mechanism of protein condensation modulating transmissible spongiform encephalopathies, TDP-43 proteinopathies, and tauopathies, and focuses on the initiation effect of phase separation on aggregation and toxicity of misfolded proteins in neurodegenerative diseases. Finally, we discuss and prospect the challenges and opportunities of association study between protein condensation and neurodegenerative diseases.

Contents

1 Introduction

2 Liquid-liquid phase separation and condensation of prion proteins

3 Liquid-liquid phase separation and condensation of TDP-43

4 Liquid-liquid phase separation and condensation of Tau protein

5 Discussion

6 Challenge and outlook

()
图1 全长野生型PrP纤维(a)、病理突变体E196K纤维(b)和263K朊病毒纤维(c)结构比较,纤维即固态凝聚体
Fig. 1 Comparison of the structures of full-length wild-type prion protein (PrP) fibril, the E196K fibril, and the 263K prion fibril
图2 蛋白质和RNA的液-液相分离和液-固相变
Fig. 2 Liquid-liquid phase separation and liquid-to-solid phase transition of protein and RNA molecules
[1]
Palomo G M, Manfredi G. Brain Res., 2015, 1607: 36.

doi: 10.1016/j.brainres.2014.09.065     URL    
[2]
Weber S C, Brangwynne C P. Cell, 2012, 149(6): 1188.

doi: 10.1016/j.cell.2012.05.022     URL    
[3]
Mitrea D M, Kriwacki R W. Cell Commun. Signal., 2016, 14: 1.

doi: 10.1186/s12964-015-0125-7     pmid: 26727894
[4]
Bergeron-Sandoval L P, Safaee N, Michnick S W. Cell, 2016, 165(5): 1067.

doi: S0092-8674(16)30574-8     pmid: 27203111
[5]
Hong K, Song D, Jung Y. Nat. Commun., 2020, 11: 5554.

doi: 10.1038/s41467-020-19391-8     URL    
[6]
Boeynaems S, Alberti S, Fawzi N L, Mittag T, Polymenidou M, Rousseau F, Schymkowitz J, Shorter J, Wolozin B, van den Bosch L, Tompa P, Fuxreiter M. Trends Cell Biol., 2018, 28(6): 420.

doi: S0962-8924(18)30028-X     pmid: 29602697
[7]
Brangwynne C P, Eckmann C R, Courson D S, Rybarska A, Hoege C, Gharakhani J, Jülicher F, Hyman A A. Science, 2009, 324(5935): 1729.

doi: 10.1126/science.1172046     pmid: 19460965
[8]
Shimobayashi S F, Ronceray P, Sanders D W, Haataja M P, Brangwynne C P. Nature, 2021, 599(7885): 503.

doi: 10.1038/s41586-021-03905-5     URL    
[9]
Shin Y, Brangwynne C P. Science, 2017, 357(6357): eaaf4382.

doi: 10.1126/science.aaf4382     URL    
[10]
Molliex A, Temirov J, Lee J H, Coughlin M, Kanagaraj A P, Kim H J, Mittag T, Taylor J P. Cell, 2015, 163(1): 123.

doi: 10.1016/j.cell.2015.09.015     URL    
[11]
Wegmann S, Eftekharzadeh B, Tepper K, Zoltowska K M, Bennett R E, Dujardin S, Laskowski P R, MacKenzie D, Kamath T, Commins C, Vanderburg C, Roe A D, Fan Z Y, Molliex A M, Hernandez-Vega A, Muller D, Hyman A A, Mandelkow E, Taylor J P, Hyman B T. EMBO J., 2018, 37(7): e98049.
[12]
Mathieu C, Pappu R V, Taylor J P. Science, 2020, 370(6512): 56.

doi: 10.1126/science.abb8032     pmid: 33004511
[13]
Banani S F, Lee H O, Hyman A A, Rosen M K. Nat. Rev. Mol. Cell Biol., 2017, 18(5): 285.

doi: 10.1038/nrm.2017.7     URL    
[14]
Scheckel C, Aguzzi A. Nat. Rev. Genet., 2018, 19(7): 405.

doi: 10.1038/s41576-018-0011-4     pmid: 29713012
[15]
Ayers J I, Borchelt D R. Acta Neuropathol., 2021, 142(1): 41.

doi: 10.1007/s00401-020-02222-x     URL    
[16]
Wang Y P, Mandelkow E. Nat. Rev. Neurosci., 2016, 17(1): 22.

doi: 10.1038/nrn.2015.1     URL    
[17]
Agarwal A, Mukhopadhyay S. J. Mol. Biol., 2022, 434(1): 167368.

doi: 10.1016/j.jmb.2021.167368     URL    
[18]
Kostylev M A, Tuttle M D, Lee S, Klein L E, Takahashi H, Cox T O, Gunther E C, Zilm K W, Strittmatter S M. Mol. Cell, 2018, 72(3): 426.

doi: S1097-2765(18)30841-4     pmid: 30401430
[19]
Huang J J, Li X N, Liu W L, Yuan H Y, Gao Y, Wang K, Tang B, Pang D W, Chen J, Liang Y. J. Mol. Biol., 2020, 432(4): 828.

doi: 10.1016/j.jmb.2019.11.020     URL    
[20]
Matos C O, Passos Y M, Amaral M J, Macedo B, Tempone M H, Bezerra O C L, Moraes M O, Almeida M S, Weber G, Missailidis S, Silva J L, Uversky V N, Pinheiro A S, Cordeiro Y. FASEB J., 2020, 34(1): 365.

doi: 10.1096/fj.201901897R     URL    
[21]
Tange H, Ishibashi D, Nakagaki T, Taguchi Y, Kamatari Y O, Ozawa H, Nishida N. J. Biol. Chem., 2021, 296: 100367.

doi: 10.1016/j.jbc.2021.100367     URL    
[22]
Agarwal A, Rai S K, Avni A, Mukhopadhyay S. PNAS, 2021, 118(45): e2100968118.
[23]
M Passos Y, J do Amaral M, C Ferreira N, Macedo B, Chaves J A P, de Oliveira V E, P B Gomes M, L Silva J, Cordeiro Y. Int. J. Biol. Macromol., 2021, 173: 34.

doi: 10.1016/j.ijbiomac.2021.01.097     pmid: 33476618
[24]
Kamps J, Lin Y H, Oliva R, Bader V, Winter R, Winklhofer K F, Tatzelt J. J. Biol. Chem., 2021, 297(1): 100860.

doi: 10.1016/j.jbc.2021.100860     URL    
[25]
Agarwal A, Arora L, Rai S K, Avni A, Mukhopadhyay S. Nat. Commun., 2022, 13: 1154.

doi: 10.1038/s41467-022-28797-5     URL    
[26]
Li H R, Chiang W C, Chou P C, Wang W J, Huang J R. J. Biol. Chem., 2018, 293(16): 6090.

doi: 10.1074/jbc.AC117.001037     URL    
[27]
Hallegger M, Chakrabarti A M, Lee F C Y, Lee B L, Amalietti A G, Odeh H M, Copley K E, Rubien J D, Portz B, Kuret K, Huppertz I, Rau F, Patani R, Fawzi N L, Shorter J, Luscombe N M, Ule J. Cell, 2021, 184(18): 4680.

doi: 10.1016/j.cell.2021.07.018     pmid: 34380047
[28]
Conicella A E, Dignon G L, Zerze G H, Schmidt H B, D’Ordine A M, Kim Y C, Rohatgi R, Ayala Y M, Mittal J, Fawzi N L. PNAS, 2020, 117(11): 5883.

doi: 10.1073/pnas.1912055117     URL    
[29]
Pantoja-Uceda D, Stuani C, Laurents D V, McDermott A E, Buratti E, Mompeán M. PLoS Biol., 2021, 19(4): e3001198.
[30]
Wang A L, Conicella A E, Schmidt H B, Martin E W, Rhoads S N, Reeb A N, Nourse A, Ramirez Montero D, Ryan V H, Rohatgi R, Shewmaker F, Naik M T, Mittag T, Ayala Y M, Fawzi N L. EMBO J., 2018, 37(5): e97452.
[31]
Wang C, Duan Y, Duan G, Wang Q, Zhang K, Deng X, Qian B, Gu J, Ma Z, Zhang S, Guo L, Liu C, Fang Y. Mol. Cell, 2020, 79(3): 443.

doi: 10.1016/j.molcel.2020.06.019     URL    
[32]
Gasset-Rosa F, Lu S, Yu H Y, Chen C, Melamed Z, Guo L, Shorter J, da Cruz S, Cleveland D W. Neuron, 2019, 102(2): 339.

doi: S0896-6273(19)30173-4     pmid: 30853299
[33]
Yu H, Lu S, Gasior K, Singh D, Vazquez-Sanchez S, Tapia O, Toprani D, Beccari M S, Yates J R 3rd, Da Cruz S, Newby J M, Lafarga M, Gladfelter A S, Villa E, Cleveland D W. Science, 2021, 371(6529): eabb4309.

doi: 10.1126/science.abb4309     URL    
[34]
MacKenzie I R, Nicholson A M, Sarkar M, Messing J, Purice M D, Pottier C, Annu K, Baker M, Perkerson R B, Kurti A, Matchett B J, Mittag T, Temirov J, Hsiung G Y R, Krieger C, Murray M E, Kato M, Fryer J D, Petrucelli L, Zinman L, Weintraub S, Mesulam M, Keith J, Zivkovic S A, Hirsch-Reinshagen V, Roos R P, Züchner S, Graff-Radford N R, Petersen R C, Caselli R J, Wszolek Z K, Finger E, Lippa C, Lacomis D, Stewart H, Dickson D W, Kim H J, Rogaeva E, Bigio E, Boylan K B, Taylor J P, Rademakers R. Neuron, 2017, 95(4): 808.

doi: 10.1016/j.neuron.2017.07.025     URL    
[35]
Krainer G, Welsh T J, Joseph J A, Espinosa J R, Wittmann S, Sridhar A, Toprakcioglu Z, Gudiškyt?G, Czekalska M A, Arter W E, GuillÉn-Boixet J, Franzmann T M, Qamar S, George-Hyslop P S, Hyman A A, Collepardo-Guevara R, Alberti S, Knowles T P J. Nat. Commun., 2021, 12: 1085.

doi: 10.1038/s41467-021-21181-9     pmid: 33597515
[36]
da Silva L A G, Simonetti F, Hutten S, Riemenschneider H, Sternburg E L, Pietrek L M, Gebel J, Dötsch V, Edbauer D, Hummer G, Stelzl L S, Dormann D. EMBO J., 2022, 41(8): e108443.
[37]
Garcia Morato J, Hans F, von Zweydorf F, Feederle R, Elsässer S J, Skodras A A, Gloeckner C J, Buratti E, Neumann M, Kahle P J. Nat. Commun., 2022, 13: 1223.

doi: 10.1038/s41467-022-28822-7     pmid: 35264561
[38]
Duan Y J, Du A Y, Gu J G, Duan G, Wang C, Gui X R, Ma Z W, Qian B T, Deng X, Zhang K, Sun L, Tian K L, Zhang Y Y, Jiang H, Liu C, Fang Y S. Cell Res., 2019, 29(3): 233.

doi: 10.1038/s41422-019-0141-z     URL    
[39]
McGurk L, Gomes E, Guo L, Mojsilovic-Petrovic J, Tran V, Kalb R G, Shorter J, Bonini N M. Mol. Cell, 2018, 71(5): 703.

doi: 10.1016/j.molcel.2018.07.002     URL    
[40]
Fang M Y, Markmiller S, Vu A Q, Javaherian A, Dowdle W E, Jolivet P, Bushway P J, Castello N A, Baral A, Chan M Y, Linsley J W, Linsley D, Mercola M, Finkbeiner S, Lecuyer E, Lewcock J W, Yeo G W. Neuron, 2019, 103(5): 802.

doi: S0896-6273(19)30524-0     pmid: 31272829
[41]
Babinchak W M, Dumm B K, Venus S, Boyko S, Putnam A A, Jankowsky E, Surewicz W K. Nat. Commun., 2020, 11: 5574.

doi: 10.1038/s41467-020-19211-z     pmid: 33149109
[42]
Boyko S, Surewicz K, Surewicz W K. PNAS, 2020, 117(50): 31882.

doi: 10.1073/pnas.2012460117     URL    
[43]
Ambadipudi S, Biernat J, Riedel D, Mandelkow E, Zweckstetter M. Nat. Commun., 2017, 8: 275.

doi: 10.1038/s41467-017-00480-0     pmid: 28819146
[44]
Ambadipudi S, Reddy J G, Biernat J, Mandelkow E, Zweckstetter M. Chem. Sci., 2019, 10(26): 6503.

doi: 10.1039/c9sc00531e     pmid: 31341602
[45]
Lin Y X, Fichou Y, Zeng Z K, Hu N Y, Han S. ACS Chem. Neurosci., 2020, 11(4): 615.

doi: 10.1021/acschemneuro.9b00627     URL    
[46]
Ferreon J, Jain A, Choi K J, Tsoi P, MacKenzie K, Jung S, Ferreon A. Int. J. Mol. Sci., 2018, 19(5): 1360.

doi: 10.3390/ijms19051360     URL    
[47]
Lin Y, McCarty J, Rauch J N, Delaney K T, Kosik K S, Fredrickson G H, Shea J E, Han S. Elife, 2019, 8: e42571.

doi: 10.7554/eLife.42571     URL    
[48]
Ukmar-Godec T, Hutten S, Grieshop M P, Rezaei-Ghaleh N, Cima-Omori M S, Biernat J, Mandelkow E, Söding J, Dormann D, Zweckstetter M. Nat. Commun., 2019, 10: 2909.

doi: 10.1038/s41467-019-10792-y     pmid: 31266957
[49]
Rane J S, Kumari A, Panda D. ACS Chem. Neurosci., 2020, 11(3): 291.

doi: 10.1021/acschemneuro.9b00455     URL    
[50]
Singh V, Xu L, Boyko S, Surewicz K, Surewicz W K. J. Biol. Chem., 2020, 295(18): 5850.

doi: 10.1074/jbc.AC120.013166     URL    
[51]
Gao Y Y, Zhong T, Wang L Q, Zhang N, Zeng Y, Hu J Y, Dang H B, Chen J, Liang Y. Int. J. Biol. Macromol., 2022, 209: 703.

doi: 10.1016/j.ijbiomac.2022.04.034     URL    
[52]
Wang K, Liu J Q, Zhong T, Liu X L, Zeng Y, Qiao X H, Xie T, Chen Y Z, Gao Y Y, Tang B, Li J, Zhou J, Pang D W, Chen J, Chen C, Liang Y. J. Mol. Biol., 2020, 432(7): 2141.

doi: S0022-2836(20)30163-7     pmid: 32087196
[53]
Dai B, Zhong T, Chen Z X, Chen W, Zhang N, Liu X L, Wang L Q, Chen J, Liang Y. J. Biol. Chem., 2021, 297(4): 101222.

doi: 10.1016/j.jbc.2021.101222     URL    
[54]
Zhang X M, Lin Y X, Eschmann N A, Zhou H J, Rauch J N, Hernandez I, Guzman E, Kosik K S, Han S. PLoS Biol., 2017, 15(7): e2002183.

doi: 10.1371/journal.pbio.2002183     URL    
[55]
Majumdar A, Dogra P, Maity S, Mukhopadhyay S. J. Phys. Chem. Lett., 2019, 10(14): 3929.

doi: 10.1021/acs.jpclett.9b01731     pmid: 31260322
[56]
Kanaan N M, Hamel C, Grabinski T, Combs B. Nat. Commun., 2020, 11: 2809.

doi: 10.1038/s41467-020-16580-3     URL    
[57]
Jonchhe S, Pan W, Pokhrel P, Mao H B. Angewandte Chemie Int. Ed., 2022, 61(23): e202113156.
[58]
Prasad A, Bharathi V, Sivalingam V, Girdhar A, Patel B K. Front. Mol. Neurosci., 2019, 12: 25.
[59]
Verdile V, de Paola E, Paronetto M P. Front. Genet., 2019, 10: 173.

doi: 10.3389/fgene.2019.00173     URL    
[60]
Prusiner S B. PNAS, 1998, 95(23): 13363.

pmid: 9811807
[61]
Prusiner S B. Trends Biochem. Sci., 1996, 21(12): 482.

pmid: 9009832
[62]
Pan K M, Baldwin M, Nguyen J, Gasset M, Serban A, Groth D, Mehlhorn I, Huang Z, Fletterick R J, Cohen F E. PNAS, 1993, 90(23): 10962.

pmid: 7902575
[63]
Diaz-Espinoza R, Soto C. Nat. Struct. Mol. Biol., 2012, 19(4): 370.

doi: 10.1038/nsmb.2266     pmid: 22472622
[64]
Kraus A, Hoyt F, Schwartz C L, Hansen B, Artikis E, Hughson A G, Raymond G J, Race B, Baron G S, Caughey B. Mol. Cell, 2021, 81(21): 4540.

doi: 10.1016/j.molcel.2021.08.011     URL    
[65]
Wang L Q, Zhao K, Yuan H Y, Wang Q, Guan Z Y, Tao J, Li X N, Sun Y P, Yi C W, Chen J, Li D, Zhang D L, Yin P, Liu C, Liang Y. Nat. Struct. Mol. Biol., 2020, 27(6): 598.

doi: 10.1038/s41594-020-0441-5     pmid: 32514176
[66]
Wang L Q, Zhao K, Yuan H Y, Li X N, Dang H B, Ma Y Y, Wang Q, Wang C, Sun Y P, Chen J, Li D, Zhang D L, Yin P, Liu C, Liang Y. Sci. Adv., 2021, 7(37): eabg9676.

doi: 10.1126/sciadv.abg9676     URL    
[67]
Polymenidou M, Cleveland D W. Cell, 2011, 147(3): 498.

doi: 10.1016/j.cell.2011.10.011     pmid: 22036560
[68]
Xu W C, Liang J Z, Li C, He Z X, Yuan H Y, Huang B Y, Liu X L, Tang B, Pang D W, Du H N, Yang Y, Chen J, Wang L, Zhang M, Liang Y. Cell Death Dis., 2018, 9(2): 67.

doi: 10.1038/s41419-017-0106-4     URL    
[69]
Wang L Q, Ma Y, Yuan H Y, Zhao K, Zhang M Y, Wang Q, Huang X, Xu W C, Dai B, Chen J, Li D, Zhang D, Wang Z, Zou L, Yin P, Liu C, Liang Y. Nat. Commun., 2022, 13(1): 3491.

doi: 10.1038/s41467-022-31240-4     URL    
[70]
Buratti E, Baralle F E. Trends Biochem. Sci., 2012, 37(6): 237.

doi: 10.1016/j.tibs.2012.03.003     URL    
[71]
Neumann M, Sampathu D M, Kwong L K, Truax A C, Micsenyi M C, Chou T T, Bruce J, Schuck T, Grossman M, Clark C M, McCluskey L F, Miller B L, Masliah E, MacKenzie I R, Feldman H, Feiden W, Kretzschmar H A, Trojanowski J Q, Lee V M Y. Science, 2006, 314(5796): 130.

doi: 10.1126/science.1134108     URL    
[72]
Kuo P H, Chiang C H, Wang Y T, Doudeva L G, Yuan H S. Nucleic Acids Res., 2014, 42(7): 4712.

doi: 10.1093/nar/gkt1407     URL    
[73]
Boyko S, Qi X, Chen T H, Surewicz K, Surewicz W K. J. Biol. Chem., 2019, 294(29): 11054.

doi: 10.1074/jbc.AC119.009198     URL    
[1] 林业竣, 李艳梅. 翻译后修饰Tau蛋白及其化学全/半合成[J]. 化学进展, 2022, 34(8): 1645-1660.
[2] 师腾瑞, 杨玉洁, 刘琼, 李楠*. 硒蛋白R——一个独特的甲硫氨酸亚砜还原酶[J]. 化学进展, 2018, 30(10): 1496-1502.
[3] 张世炳,汪英,刘长林. 基于金属的神经退行性疾病治疗策略*[J]. 化学进展, 2009, 21(05): 903-910.
[4] 刘倩,吴为辉,李人望,郑一哲,赵玉芬,李艳梅. 载脂蛋白E与阿尔兹海默病的相关研究进展*[J]. 化学进展, 2007, 19(012): 2006-2012.
[5] 杨雯隽,温龙平. 小分子细胞自噬诱导剂用于治疗神经退行性疾病[J]. 化学进展, 2007, 19(012): 2013-2016.
[6] 刘琴,张俊勇,郭子建,唐雯霞. 神经生物系统中的配位化学问题*[J]. 化学进展, 2002, 14(04): 292-.