English
新闻公告
More
化学进展 2022, Vol. 34 Issue (11): 2417-2431 DOI: 10.7536/PC220302 前一篇   后一篇

• 综述 •

氨/醛基金属有机骨架材料合成及其在吸附分离中的应用

闫保有1, 李旭飞2,1, 黄维秋1,*(), 王鑫雅2,1, 张镇1, 朱兵1   

  1. 1 常州大学 油气储运技术省重点实验室 油气回收工程技术研究中心 常州 213164
    2 常州大学 材料科学与工程学院 常州 213164
  • 收稿日期:2022-03-02 修回日期:2022-05-06 出版日期:2022-11-24 发布日期:2022-06-25
  • 通讯作者: 黄维秋
  • 作者简介:

    黄维秋 常州大学石油工程学院教授(二级),博士生导师,江苏省“油气回收基础理论及其应用”科技创新团队带头人,江苏省“333工程”中青年科技领军人才,江苏省有机废气资源化工程技术中心主任,常州大学油气回收工程技术研究中心主任。目前主要研究方向:油气回收基础理论及应用、石油储存工艺和新型纳米功能材料及其在有机废气治理中应用。

  • 基金资助:
    国家自然科学基金项目(52174058); 江苏省重点研发计划(产业前瞻与共性关键技术)(BE2018065); 江苏省研究生科研与实践创新计划项目(KYCX22_3104)

Synthesis of Metal-Organic Framework-NH2/CHO and Its Application in Adsorption Separation

Baoyou Yan1, Xufei Li2,1, Weiqiu Huang1(), Xinya Wang2,1, Zhen Zhang1, Bing Zhu1   

  1. 1 Jiangsu Provincial Key Laboratory of Oil & Gas Storage and Transportation Technology, Engineering Technology Research Center for Oil Vapor Recovery, Changzhou University,Changzhou 213164, China
    2 College of Materials Science & Engineering, Changzhou University,Changzhou 213164, China
  • Received:2022-03-02 Revised:2022-05-06 Online:2022-11-24 Published:2022-06-25
  • Contact: Weiqiu Huang
  • About author:
    The authors contribute equally to this review
  • Supported by:
    National Natural Science Foundation of China(52174058); Key Research and Development Program of Jiangsu Province (Industry Foresight and Common Key Technology)(BE2018065); Postgraduate Research & Practice Innovation Program of Jiangsu Province(KYCX22_3104)

吸附分离过程具有高效率、低能耗等特点,广泛用于石油、化工、制药、环保等诸多领域。其中,吸附分离材料的结构特点(如比表面积、孔径、孔体积、表面官能团等)对吸附分离效果起决定性作用。金属有机骨架(MOF)材料具有优异的孔结构特点,同时其表面还具有丰富的官能团(—NH2、—CHO等),易于后修饰功能化并赋予其特定的功能,从而增强MOF材料与吸附质之间的相互作用,实现较高的吸附容量和分离选择性。以此为导向,本文首先概括了氨/醛基MOF材料的合成策略,总结了亚胺共价后修饰MOF (ICPSM-MOF)材料的研究进展,并重点介绍了这类材料在气、液相吸附分离领域的应用,最后分析了当前ICPSM-MOF材料面临的困难与挑战,并对其未来研究方向进行了展望。

Adsorptive separation has been widely used in petroleum, chemical, pharmaceutical, environmental protection and many other fields due to the advantages of high efficiency and low-energy consumption. Therein, the structural characteristics (such as specific surface area, pore size, pore volume, surface functional groups, etc.) of the adsorbent are the key factors that affect the adsorption capacity and separation efficiency. Metal-organic framework (MOF) materials have excellent pore structures and abundant functional groups (—NH2, —CHO, etc.), which can be easily post-modified and functionalized with specific functions, thus enhancing the interaction between MOFs and adsorbates and achieving high adsorption capacity and separation selectivity. In this context, the synthesis strategies of MOF-NH2/CHO materials were firstly outlined, then the research progress of imine covalently post-modified MOF (ICPSM-MOF) materials was summarized, and their applications in gas and liquid adsorption separation were emphasized. In addition, the difficulties and challenges faced by the current ICPSM-MOFs were finally analyzed, and the future research trend of ICPSM-MOFs was also put forward.

Contents

1 Introduction

2 Synthesis strategies of MOF-NH2/CHO materials

2.1 Synthesis strategies of MOF-NH2 materials

2.2 Synthesis strategies of MOF-CHO materials

3 MOF-NH2/CHO materials are modified by imine covalent post synthetic modification

3.1 Imine covalent post synthetic modification of MOF-NH2 materials (MOF—N=C—R)

3.2 Imine covalent post synthetic modification of MOF-CHO materials (MOF—C=N—R)

4 Adsorption and separation application of ICPSM-MOF materials

4.1 Gas phase adsorption separation

4.2 Liquid phase adsorption separation

5 Conclusion and outlook

()
图1 以“Metal-organic frameworks”和“Metal-organic frameworks+adsorption/separation”为关键词检索到的每年文献出版数
Fig. 1 Number of publications per year retrieved with keywords “Metal-organic frameworks” and “Metal-organic frameworks + adsorption/separation”
图2 MOF-NH2/CHO材料的构筑以及亚胺共价后修饰示意图
Fig. 2 Schematic diagram of MOF-NH2/CHO materials construction and ICPSM
表1 MOF-NH2材料的配体、合成策略及其结构参数
Table 1 Ligands, synthesis strategies and structure parameters of MOF-NH2
图3 用于合成MOF-NH2材料的部分配体: (a) 2-氨基对苯二甲酸,(b) 3-氨基-1,2,4-三唑,(c) 5-氨基四氮唑,(d) 5-(5-氨基四氮唑)-1,3-苯二甲酸,(e) 3-氨基-4-(吡啶-4-基)苯甲酸,(f) 5-氨基-1H-咪唑-4-甲腈,(g) 2-氨基-1,3,5-苯三甲酸,(h) 2-氨基苯并咪唑,(i) 腺嘌呤
Fig. 3 Partial ligands for the synthesis of MOF-NH2: (a) 2-aminoterephthalic acid (BDC-NH2), (b) 3-amino-1,2,4-triazole (HATZ), (c) 5-aminotetrazole (5-AT), (d) 5-(5-Amino-1H-tetrazol-1-yl)-1,3-benzenedicarboxylic acid (H2ATBDC), (e) 3-amino-4-(pyridin-4-yl) benzoic acid (BPA-NH2), (f) 5-Amino-1H-imidazole-4-carbonitrile (cyamIm), (g) 2-amino-1,3,5-benzenetricarboxylate (BTC-NH2), (h) 2-aminobenzimidazole (2-amBzIm), (i) adenine (ade)
图4 MIL-101合成后修饰制备MIL-101-NH2示意图
Fig. 4 Schematic diagram of MIL-101-NH2 preparation by PSM of MIL-101
图5 MIL-101的OMSs上负载melamine、ade和EDA制备MOF-NH2材料示意图
Fig. 5 Schematic diagram of MOF-NH2 prepared by loading melamine, ade and EDA on OMSs of MIL-101
图6 用于合成MOF-CHO材料的部分配体:(a) 咪唑-2-甲醛,(b) 4-甲基咪唑-5-甲醛,(c) 2-甲醛联苯-4,4'-二羧酸, (d) 咪唑-4-甲醛
Fig.6 Partial ligands for the synthesis of MOF-CHO: (a) imidazole-2-carboxaldehyde (ICA), (b) 4-methylimidazole-5-carboxaldehyde (aImeIm), (c) 2-formalbiphenyl-4,4'-dicarboxylicacid (H2BPDC-CHO), (d) imidazole-4-carboxaldehyde (AIdIm)
表2 MOF-CHO材料的配体、合成策略及其结构参数
Table 2 Ligands, synthesis strategies and structure parameters of MOF-CHO
图7 (a) 水杨醛修饰IRMOF-3,(b) 吡啶-2-甲醛修饰UMCM-1-NH2,(c) 甲醛修饰UiO-66-NH2,(d) 吡啶-2-甲醛修饰MIL-125-NH2(Ti)的示意图
Fig. 7 Schematic diagram of (a) salicylaldehyde modified IRMOF-3, (b) pyridine-2-carbaldehyde modified UMCM-1-NH2, (c) formaldehyde modified UiO-66-NH2, (d) pyridine-2-carbaldehyde modified MIL-125-NH2(Ti)
图8 MIL-68-NH2/TPA-COF杂化材料合成示意图
Fig. 8 Schematic diagram of the synthesis of MIL-68-NH2/TPA-COF hybrid material
图9 (a) 乙醇胺修饰ZIF-90和(b) ZIF-90/COF-42-B合成示意图
Fig. 9 Schematic diagram of (a) ZIF-90 modification by ethanolamine, (b) ZIF-90/COF-42-B synthesis
图10 (a) 十二胺修饰SIM-1和(b) 氨基配体修饰UiO-67-CHO示意图
Fig. 10 Schematic diagram of (a) SIM-1 modified by dodecylamine, (b) UiO-67-CHO modified by amino ligands
图11 (a) PEI修饰的UiO-66-NH2的合成示意图,(b) UiO-66-NH2与PEIC96/UiO对CO2的吸附量和选择性对比
Fig. 11 (a) Schematic diagram of UiO-66-NH2 modified by PEI, (b) comparisons of adsorption capacities and selectivities on UiO-66-NH2 and PEIC96/UiO for CO2
图12 (a) 2,3,4,5,6,-五氟苄胺修饰ZIF-90示意图,(b) ZIF-90与S-ZIF-90对CO2、CH4和N2的吸附量对比
Fig. 12 (a) Schematic diagram of ZIF-90 modified by 2,3,4,5,6-pentafluorobenzonitrile, (b) comparisons of adsorption capacities on ZIF-90 and S-ZIF-90 for CO2, CH4 and N2
图13 (a) ICA修饰UiO-66-NH2示意图,(b) UiO-66-NH2与UiO-66-NH2/ICA对CO2和CH4的吸附量对比
Fig. 13 (a) Schematic diagram of UiO-66-NH2 modified by ICA, (b) comparisons of adsorption capacities on UiO-66-NH2 and UiO-66-NH2/ICA for CO2 and CH4
图14 乙醇胺修饰ZIF-90示意图以及修饰前后H2/CO2选择性对比
Fig. 14 Schematic diagram of ZIF-90 modified by EA and comparison of H2/CO2 selectivity before and after modification
表3 典型的ICPSM-MOF材料的反应条件、应用领域及作用机理
Table 3 Reaction conditions, application areas and mechanism of action of typical ICPSM-MOF
图15 (a) 盐酸羟胺修饰ZIF-90示意图,(b) U(Ⅵ)在ZIF-90-OM上吸附机理
Fig. 15 (a) Schematic diagram of ZIF-90 modified by hydroxylamine hydrochloride, (b) adsorption mechanism of U(Ⅵ) on ZIF-90-OM
图16 POSS-NH2修饰ZIF-90示意图
Fig. 16 Schematic diagram of ZIF-90 modified by POSS-NH2
表4 典型的ICPSM-MOF材料的反应条件、应用领域及作用机理
Table 4 Reaction conditions, application areas and mechanism of action of typical ICPSM-MOF
[1]
Zhou D D, Zhang X W, Mo Z W, Xu Y Z, Tian X Y, Li Y, Chen X M,. Zhang J P. EnergyChem, 2019, 1(3): 100016.

doi: 10.1016/j.enchem.2019.100016     URL    
[2]
Li Z, Song M, Zhu W Y, Zhuang W C, Du X H, Tian L. Coordin. Chem. Rev., 2021, 439: 213946.

doi: 10.1016/j.ccr.2021.213946     URL    
[3]
Patial S, Raizada P, Hasija V, Singh P, Thakur V K, Nguyen V H., Mater. Today. Energy., 2021, 19: 100589.
[4]
Tan Y. M, Meng H, Zhang X. Prog. Chem., 2019, 31(7): 980.
(谭远铭, 孟皓, 张霞. 化学进展, 2019, 31, 980.).

doi: 10.7536/PC181108    
[5]
Qazvini O T, Babarao R, Telfer S G. Nat. Commun., 2021, 12(1): 197.

doi: 10.1038/s41467-020-20489-2     pmid: 33420024
[6]
Wu D, Zhang P F, Yang G P, Hou L, Zhang W Y, Han Y F, Liu P, Wang Y Y. Coordin. Chem. Rev., 2021, 434: 213709.

doi: 10.1016/j.ccr.2020.213709     URL    
[7]
Yu F, Bai X T, Liang M X, Ma J. Chem. Eng. J. 2021, 405: 126960.

doi: 10.1016/j.cej.2020.126960     URL    
[8]
Huang W Q. Fundamental theory of oil vapour recovery and its application, China Petrochemical Press, Beijing, 2011, pp. 244-245.
(黄维秋, 油气回收基础理论及其应用, 中国石化出版社, 北京, 2011, pp. 244-245.).
[9]
Li X F, Yan B Y, Huang W Q, Fu L P, Sun X H, Lv A H. Acta Chim. Sinica, 2021, 79(4): 459.

doi: 10.6023/A20100494     URL    
(李旭飞, 闫保有, 黄维秋, 浮历沛, 孙宪航, 吕爱华. 化学学报, 2021, 79: 459.).

doi: 10.6023/A20100494    
[10]
Zhang H, Li G L, Zhang K G, Liao C Y. Acta Chim. Sinica 2017, 75(9): 841.

doi: 10.6023/A17040168    
(张贺, 李国良, 张可刚, 廖春阳. 化学学报, 2017, 75(9): 841.).

doi: 10.6023/A17040168    
[11]
Roshanfekr Rad L, Anbia M. J. Environ. Chem. Eng., 2021, 9(5): 106088.

doi: 10.1016/j.jece.2021.106088     URL    
[12]
Zhu J H, Huang W Q, Fu L P, Zhu B, Li X F, Wang X Y, Wang Y Y, Chen W H. ACS Appl. Nano Mater., 2021, 4(11): 12453.

doi: 10.1021/acsanm.1c02954     URL    
[13]
Li H L, Eddaoudi M, O’keeffe M, Yaghi O M. Nature, 1999, 402(5679): 276.

doi: 10.1038/46248     URL    
[14]
Rosi Nathaniel,. L Eckert, J Eddaoudi M, Vodak David T, Kim J, O’keeffe M, Yaghi O M. Science, 2003, 300(5622): 1127.

pmid: 12750515
[15]
Mei P, Zhang Y Y, Feng X. Acta Chim. Sinica, 2020, 78(10): 1041.

doi: 10.6023/A20060256    
(梅佩, 张媛媛, 冯霄. 化学学报, 2020, 78(10): 1041.)

doi: 10.6023/A20060256    
[16]
Liu J H, Wu X Q, Wu Y F, Yu J M. Prog. Chem., 2020, 32(1): 133.
(刘景昊, 伍学谦, 吴玉锋, 俞嘉梅. 化学进展, 2020, 32(1): 133.).

doi: 10.7536/PC190431    
[17]
Furukawa H, Cordova K E, O’keeffe M, Yaghi O M. Science, 2013, 341(6149): 1230444.

doi: 10.1126/science.1230444     URL    
[18]
Zhong M J, Zhang S, Dong A W, Sui Z Y, Feng L J, Chen Q. J. Mater. Sci., 2020, 5(24): 10388.
[19]
Gwon K, Han I, Lee S, Kim Y, Lee D N. ACS Appl. Mater. Inter., 2020, 12(18): 20234.

doi: 10.1021/acsami.0c03187     URL    
[20]
Assen A H, Yassine O, Shekhah O, Eddaoudi M, Salama K N. ACS Sensors, 2017, 2(9): 1294.

doi: 10.1021/acssensors.7b00304     URL    
[21]
Arrozi U S F, Bon V, Krause S, Lubken T, WeDS M S, Senkovska I, Kaskel S. Inorg. Chem., 2020, 59(1): 350.

doi: 10.1021/acs.inorgchem.9b02517     pmid: 31820946
[22]
Wang Z Q, Cohen S M. Chem. Soc. Rev., 2009, 38(5): 1315.

doi: 10.1039/b802258p     URL    
[23]
Cohen S M. Chem. Rev., 2012, 112(2): 970.

doi: 10.1021/cr200179u     pmid: 21916418
[24]
Mandal S, Natarajan S, Mani P, Pankajakshan A. Adv. Funct. Mater., 2020, 31(4): 2006291.

doi: 10.1002/adfm.202006291     URL    
[25]
Yuan Y, Wang M, Zhou Y Q, Wang Z, Wang J X. CIESC J., 2020, 71(2): 429.
(原野, 王明, 周云琪, 王志, 王纪孝. 化工学报, 2020, 71(2): 429.).
[26]
Haneda T, Kawano M, Kawamichi T, Fujita M. J. Am. Chem. Soc., 2008, 130(5): 1578.

doi: 10.1021/ja7111564     URL    
[27]
Morris W, Briley W E, Auyeung E, Cabezas M D, Mirkin C A. J. Am. Chem. Soc., 2014, 136(20): 7261.

doi: 10.1021/ja503215w     URL    
[28]
Wang Z Q, Cohen S M. J. Am. Chem. Soc., 2007, 129(41): 12368.

doi: 10.1021/ja074366o     URL    
[29]
Marshall R J, Griffin S L, Wilson C, Forgan R S. J. Am. Chem. Soc., 2015, 137(30): 9527.

doi: 10.1021/jacs.5b05434     pmid: 26175317
[30]
Taylor Pashow K M L, Della Rocca J, Xie Z G, Tran S, Lin W B. J. Am. Chem. Soc., 2009, 131(40): 14261.

doi: 10.1021/ja906198y     pmid: 19807179
[31]
Lin Y C, Kong C L, Chen L. RSC. Adv., 2016, 6(39): 32598.

doi: 10.1039/C6RA01536K     URL    
[32]
Emerson A J, Chahine A, Batten S R, Turner D R. Coordin. Chem. Rev., 2018, 365: 1.

doi: 10.1016/j.ccr.2018.02.012     URL    
[33]
Yoo D K, Ahmed I, Sarker M, Lee H J, Vinu A, Jhung S H. Mater. Today., 2021, 51: 566.

doi: 10.1016/j.mattod.2021.07.021     URL    
[34]
Kaur M, Kumar S, Younis S A, Yusuf M, Lee J, Weon S, Kim K H, Malik A K. Chem. Eng. J., 2021, 423: 130230.

doi: 10.1016/j.cej.2021.130230     URL    
[35]
Braun M E, Steffek C D, Kim J, Rasmussen P G, Yaghi O M. Chem. Commun., 2001, 24: 2532.
[36]
LlabrÉs I Xamena F X, Cirujano F G, Corma A. Micropor. Mesopor. Mater., 2012, 157: 112.

doi: 10.1016/j.micromeso.2011.12.058     URL    
[37]
Baudron S A. CrystEngComm, 2010, 12(8): 2288.

doi: 10.1039/c001020k     URL    
[38]
Guo H, Liu J Q, Li Y H, Caro J, Huang A S. Micropor. Mesopor. Mater., 2021, 313: 110823.

doi: 10.1016/j.micromeso.2020.110823     URL    
[39]
Kim M, Cohen S M. CrystEngComm, 2012, 14(12): 4096.

doi: 10.1039/C2CE06491J     URL    
[40]
Dhakshinamoorthy A, Heidenreich N, Lenzen D, Stock N. CrystEngComm, 2017, 19(29): 4187.

doi: 10.1039/C6CE02664H     URL    
[41]
Ahnfeldt T, Gunzelmann D, Loiseau T, Hirsemann D, Senker J, FÉrey G, Stock N. Inorg. Chem., 2009, 48(7): 3057.

doi: 10.1021/ic8023265     pmid: 19245258
[42]
Liu L L, Tai X S,; Zhou X J, Liu L J. Chem. Res. Chin. Univ., 2017, 33(2): 231.

doi: 10.1007/s40242-017-6420-7     URL    
[43]
Peng Y W, Zhao M T, Chen B, Zhang Z C, Huang Y, Dai F N, Lai Z C, Cui X Y, Tan C L, Zhang H. Adv. Mater., 2018, 30(3): 1705454.

doi: 10.1002/adma.201705454     URL    
[44]
Lv Y C, Zhang R S, Zeng S L, Liu K Y, Huang S Y, Liu Y F, Xu P F, Lin C X, Cheng Y J, Liu M H. Chem. Eng. J., 2018, 339: 359.

doi: 10.1016/j.cej.2018.01.139     URL    
[45]
Cai M K, Li Y L, Liu Q L, Xue Z Q, Wang H P, Fan Y N, Zhu K L, Ke Z F, Su C Y, Li G Q. Adv. Sci., 2019, 6(8): 1802365.

doi: 10.1002/advs.201802365     URL    
[46]
Hartmann M, Fischer M. Micropor. Mesopor. Mater., 2012, 164: 38.

doi: 10.1016/j.micromeso.2012.06.044     URL    
[47]
Dapaah M F, Liu B J, Cheng L. J. Environ. Chem. Eng., 2021, 9(4): 105275.

doi: 10.1016/j.jece.2021.105275     URL    
[48]
Wu Z Y, Huang X B, Zheng H, Wang P, Hai G T, Dong W J, Wang G. Appl. Catal. B-Environ., 2018, 224: 479.

doi: 10.1016/j.apcatb.2017.10.034     URL    
[49]
Zango Z U, Jumbri K, Sambudi N S, Hanif Abu Bakar N H, Fathihah Abdullah N A, Basheer C, Saad B. RSC. Adv., 2019, 9(71): 41490.

doi: 10.1039/C9RA08660A     URL    
[50]
Wang Z Q, Tanabe K K, Cohen S M. Inorg. Chem., 2009, 48(1): 296.

doi: 10.1021/ic801837t     URL    
[51]
Lin R B, Chen D, Lin Y Y, Zhang J P, Chen X M. Inorg. Chem., 2012, 51(18): 9950.

doi: 10.1021/ic301463z     URL    
[52]
Yan Q J, Lin Y C, Wu P Y, Zhao L, Cao L J, Peng L M, Kong C L, Chen L. ChemPlusChem, 2013, 78(1): 86.

doi: 10.1002/cplu.201200270     URL    
[53]
Hu T L, Wang H L, Li B, Krishna R, Wu H, Zhou W, Zhao Y F,; Han Y, Wang X, Zhu W D, Yao Z Z, Xiang S C, Chen B L. Nat. Commun., 2015, 6: 7328.

doi: 10.1038/ncomms8328     URL    
[54]
Ma R D, Wang F Y, Lin J Y, Guo H D, Zhou T, Liu S, Guo Z Y, Guo X M. Micropor. Mesopor. Mater., 2020, 305: 110306.

doi: 10.1016/j.micromeso.2020.110306     URL    
[55]
Morris W, Leung B, Furukawa H, Yaghi O K, He N, Hayashi H, Houndonougbo Y, Asta M, Laird B B, Yaghi O M. J. Am. Chem. Soc., 2010, 132(32): 11006.

doi: 10.1021/ja104035j     URL    
[56]
Peikert K, Hoffmann F, Froba M. Chem. Commun., 2012, 48(91): 11196.

doi: 10.1039/c2cc36220a     URL    
[57]
Kleist W, Maciejewski M, Baiker A. Thermochim. Acta., 2010, 499(1-2): 71.

doi: 10.1016/j.tca.2009.10.012     URL    
[58]
Marx S, Kleist W, Huang J, Maciejewski M, Baiker A. Dalton Trans., 2010, 39(16): 3795.

doi: 10.1039/c002483j     URL    
[59]
Tu B B, Diestel L, Shi Z L, Bandara W, Chen Y, Lin W M, Zhang Y B, Telfer S G, Li Q W. Angew. Chem. Int. Ed., 2019, 58(16): 5348.

doi: 10.1002/anie.201900863     URL    
[60]
Vaidhyanathan R, Iremonger S S, Dawson K W, Shimizu G K. Chem. Commun., 2009, 35: 5230.
[61]
Lan J W, Qu Y, Zhang X, Ma H R, Xu P, Sun J M. J. CO2 Util., 2020, 35: 216.
[62]
Vaidhyanathan R, Iremonger S S, Shimizu G K, Boyd P G, Alavi S, Woo T K. Angew. Chem. Int. Ed., 2012, 51(8): 1826.

doi: 10.1002/anie.201105109     pmid: 22213592
[63]
Xiang L, Sheng L Q, Wang C Q, Zhang L X, Pan Y C, Li Y S. Adv. Mater., 2017, 29(32): 1606999.

doi: 10.1002/adma.201606999     URL    
[64]
Bernt S, Guillerm V, Serre C, Stock N. Chem. Commun., 2011, 47(10): 2838.

doi: 10.1039/c0cc04526h     URL    
[65]
Deria P, Mondloch J E, Karagiaridi O, Bury W, Hupp J T, Farha O K. Chem. Soc. Rev., 2014, 43(16): 5896.

doi: 10.1039/C4CS00067F     URL    
[66]
Thompson J A, Brunelli N A, Lively R P, Johnson J R, Jones C W, Nair S. J. Phys. Chem. C, 2013, 117(16): 8198.

doi: 10.1021/jp312590r     URL    
[67]
Cho K Y, An H S, Do X H, Choi K, Yoon H G, Jeong H K, Lee J S, Baek K Y. J. Mater. Chem. A, 2018, 6(39): 18912.

doi: 10.1039/C8TA02797H     URL    
[68]
Hwang Y K, Hong D Y, Chang J S, Jhung S H, Seo Y K, Kim J, Vimont A, Daturi M, Serre C, FÉrey G. Angew. Chem. Int. Ed., 2008, 120(32): 4029.
[69]
Seo P W, Khan N A, Hasan Z, Jhung S H. ACS Appl. Mater. Inter., 2016, 8(43): 29799.

doi: 10.1021/acsami.6b11115     URL    
[70]
Sarker M, Song J Y, Jeong A R, Min K S, Jhung S H. J. Hazard. Mater., 2018, 344: 593.

doi: 10.1016/j.jhazmat.2017.10.041     URL    
[71]
Li X F, Huang W Q, Liu X Q, Bian H. J. Solid State Chem., 2019, 278: 120890.

doi: 10.1016/j.jssc.2019.07.051     URL    
[72]
Li X F, Huang W Q, Tang B, Yu H G, Huang S L, Zhao W P. New Chem. Mater., 2020, 48(4): 10.
(李旭飞, 黄维秋, 唐波, 余浩刚, 黄顺林, 赵文蒲. 化工新型材料, 2020, 48(4): 10.).
[73]
Morris W, He N, Ray K G, Klonowski P, Furukawa H, Daniels I N, Houndonougbo Y A, Asta M, Yaghi O M, Laird B. B. J. Phys. Chem., C 2012, 116(45): 24084.
[74]
Xi F G, Liu H, Yang N N, Gao E Q. Inorg. Chem., 2016, 55(10): 4701.

doi: 10.1021/acs.inorgchem.6b00598     URL    
[75]
Jaafar A, Platas Iglesias C, Bilbeisi R A. RSC Adv., 2021, 11(27): 16192.

doi: 10.1039/d1ra02025k     pmid: 35479125
[76]
Li X F, Tang B, Huang W Q, Yu H G. Z. Anorg. Allg. Chem., 2019, 645(2): 73.

doi: 10.1002/zaac.201800303     URL    
[77]
Huang W Q, Li X F, Yan B Y, Dong S C, Zhu J H, Wang Y Y. CN. 112625259A, 2021.
(黄维秋, 李旭飞, 闫保有, 董邵灿, 朱佳慧, 王雨雨. CN. 112625259A, 2021.).
[78]
Morris W, Doonan C J, Furukawa H, Banerjee R, Yaghi O M. J. Am. Chem. Soc., 2008, 130(38): 12626.

doi: 10.1021/ja805222x     URL    
[79]
Thompson J A, Blad C R, Brunelli N A, Lydon M E, Lively R P, Jones C W, Nair S. Chem. Mater., 2012, 24(10): 1930.

doi: 10.1021/cm3006953     URL    
[80]
Ingleson M J, Barrio J P, Guilbaud J B, Khimyak Y Z, Rosseinsky M J. Chem. Commun., 2008, 23: 2680.
[81]
Doonan C J, Morris W, Furukawa H, Yaghi O M. J. Am. Chem. Soc., 2009, 131(27): 9492.

doi: 10.1021/ja903251e     URL    
[82]
Wang J T, Xia T F, Zhang X, Zhang Q, Cui Y J, Yang Y, Qian G D. RSC. Adv., 2017, 7(86): 54892.

doi: 10.1039/C7RA11162B     URL    
[83]
Waller P J, Gándara F, Yaghi O M. Accounts Chem. Res., 2015, 48(12): 3053.

doi: 10.1021/acs.accounts.5b00369     pmid: 26580002
[84]
Shan Y Y, Chen L Y, Pang H, Xu Q. Small Struct., 2020, 2(2): 2000078.

doi: 10.1002/sstr.202000078     URL    
[85]
Yusran Y, Guan X Y, Li H, Fang Q R, Qiu S L. Natl. Sci. Rev., 2020, 7(1): 170.

doi: 10.1093/nsr/nwz122     pmid: 34692030
[86]
Li Y, Karimi M, Gong Y N, Dai N, Safarifard V, Jiang H L. Matter, 2021, 4(7): 2230.

doi: 10.1016/j.matt.2021.03.022     URL    
[87]
Peng Y W, Zhao M T, Chen B, Zhang Z C, Huang Y, Dai F N, Lai Z C, Cui X Y, Tan C L, Zhang H. Adv. Mater., 2018, 30(3): 1705454.

doi: 10.1002/adma.201705454     URL    
[88]
Zhong X, Liu Y X, Liang W, Zhu Y L, Hu B W. ACS Appl. Mater. Inter., 2021, 13(1): 13883.

doi: 10.1021/acsami.1c03151     URL    
[89]
Li X F, Yan B Y, Huang W Q, Bian H, Wang X Y, Zhu J H, Dong S C, Wang Y Y, Chen W H. Chem. Eng. J., 2022, 428: 132501.

doi: 10.1016/j.cej.2021.132501     URL    
[90]
Li M M, Qiao S, Zheng Y L, Andaloussi Y H, Li X, Zhang Z J, Li A, Cheng P, Ma S Q, Chen Y. J. Am. Chem. Soc., 2020, 142(14): 6675.

doi: 10.1021/jacs.0c00285     URL    
[91]
Canivet J, Aguado S, Daniel C, Farrusseng D. ChemCatChem, 2011, 3(4): 675.

doi: 10.1002/cctc.201000386     URL    
[92]
Normile D. Science, 2020, 370(6512): 17.

doi: 10.1126/science.370.6512.17     pmid: 33004492
[93]
Zhu J J, Wu L B, Bu Z Y, Jie S Y, Li B G. ACS Omega. 2019, 4(2): 3188.

doi: 10.1021/acsomega.8b02319     URL    
[94]
Fan W, Ying Y, Peh S B, Yuan H, Yang Z, Yuan Y D, Shi D, Yu X, Kang C, Zhao D. J. Am. Chem. Soc., 2021, 143(42): 17716.

doi: 10.1021/jacs.1c08404     URL    
[95]
Liu C Y, Huang A S. Enviro. Prot. Chem. Ind., 2017, 36(5): 548.
(刘传耀, 黄爱生. 化工环保, 2017, 36(5): 548.).

doi: 10.3969/j.issn.1006-1878.2017.05.010    
[96]
Jiang Y Z, Liu C Y, Caro J, Huang A S. Micropor. Mesopor. Mater., 2019, 274: 203.

doi: 10.1016/j.micromeso.2018.08.003     URL    
[97]
Ghasemi M H, Irani V, Tavasoli A. J. Nat. Gas Sci. Eng., 2020, 74: 103110.

doi: 10.1016/j.jngse.2019.103110     URL    
[98]
Van Den Berg A W C, Areán C O. Chem. Commun. 2008, 6: 668.
[99]
Lee C H, Mun S, Lee K B. J. Power Sources, 2015, 281: 158.

doi: 10.1016/j.jpowsour.2015.01.175     URL    
[100]
Huang A S, Liu Q, Wang N Y, Caro J. Micropor. Mesopor. Mater., 2014, 192: 18.

doi: 10.1016/j.micromeso.2013.09.025     URL    
[101]
Huang A S, Caro J. Angew. Chem. Int. Ed., 2011, 50(21): 4979.

doi: 10.1002/anie.201007861     URL    
[102]
Getman R B, Bae Y S, Wilmer C E, Snurr R Q. Chem. Rev., 2012, 112(2): 703.

doi: 10.1021/cr200217c     URL    
[103]
Mohan D, Sarswat A, Ok Y S, Pittman Jr C U. Bioresource Technol., 2014, 160: 191.

doi: 10.1016/j.biortech.2014.01.120     URL    
[104]
Hashim M A, Mukhopadhyay S, Sahu J N, Sengupta B. J. Environ. Manage., 2011, 92(10): 2355.

doi: 10.1016/j.jenvman.2011.06.009     pmid: 21708421
[105]
Feng M B, Zhang P, Zhou H C, Sharma V K. Chemosphere, 2018, 209: 783.

doi: 10.1016/j.chemosphere.2018.06.114     URL    
[106]
Bhattacharjee S, Lee Y R, Ahn W S. CrystEngComm, 2015, 17(12): 2575.

doi: 10.1039/C4CE02555E     URL    
[107]
Tang J L, Chen Y B, Zhao M H, Wang S X, Zhang L B. J. Hazard. Mater., 2021, 413: 125278.

doi: 10.1016/j.jhazmat.2021.125278     URL    
[108]
Mei D C, Li H, Liu L J, Jiang L C, Zhang C H, Wu X R, Dong H X, Ma F Q. Chem. Eng. J., 2021, 425: 130468.

doi: 10.1016/j.cej.2021.130468     URL    
[109]
Qin X D, Yang W T, Yang W K, Ma Y, Li M L, Chen C, Pan Q H. Micropor. Mesopor. Mater., 2021, 323: 111231.

doi: 10.1016/j.micromeso.2021.111231     URL    
[110]
He Y P, Guo G J, Wu S, Zhang X Y, Yang S J, Lv B L. Fine. Chem., 2019, 36(9): 1910.
(何云鹏, 郭改娟, 吴双, 张晓燕, 杨水金, 吕宝兰. 精细化工, 2019, 36(9): 1910.).
[111]
Wang X Y, Huang W Q, Fu L P, Sun X H, Zhong J, Dong S C, Zhu J H. J. Coat. Technol. Res., 2021, 18(2): 285.

doi: 10.1007/s11998-020-00428-y     URL    
[112]
Wang X Y, Huang W Q, Li X F, Dong S C, Zhang Z, Zhong J. J. Water. Process. Eng., 2021, 43: 102276.

doi: 10.1016/j.jwpe.2021.102276     URL    
[113]
Firoozi M, Rafiee Z, Dashtian K. ACS Omega, 2020, 5(16): 9420.

doi: 10.1021/acsomega.0c00539     pmid: 32363294
[114]
Loganathan P, K K R D, Shanmugan S. Inorg. Chem. Front., 2021, 8(9): 2288.

doi: 10.1039/D0QI01405B     URL    
[1] 何静, 陈佳, 邱洪灯. 中药碳点的合成及其在生物成像和医学治疗方面的应用[J]. 化学进展, 2023, 35(5): 655-682.
[2] 鄢剑锋, 徐进栋, 张瑞影, 周品, 袁耀锋, 李远明. 纳米碳分子——合成化学的魅力[J]. 化学进展, 2023, 35(5): 699-708.
[3] 杨孟蕊, 谢雨欣, 朱敦如. 化学稳定金属有机框架的合成策略[J]. 化学进展, 2023, 35(5): 683-698.
[4] 王新月, 金康. 多肽及蛋白质的化学合成研究[J]. 化学进展, 2023, 35(4): 526-542.
[5] 刘雨菲, 张蜜, 路猛, 兰亚乾. 共价有机框架材料在光催化CO2还原中的应用[J]. 化学进展, 2023, 35(3): 349-359.
[6] 龚智华, 胡莎, 金学平, 余磊, 朱园园, 古双喜. 磷酸酯类前药的合成方法与应用[J]. 化学进展, 2022, 34(9): 1972-1981.
[7] 林业竣, 李艳梅. 翻译后修饰Tau蛋白及其化学全/半合成[J]. 化学进展, 2022, 34(8): 1645-1660.
[8] 宝利军, 危俊吾, 钱杨杨, 王雨佳, 宋文杰, 毕韵梅. 酶响应性线形-树枝状嵌段共聚物的合成、性能及应用[J]. 化学进展, 2022, 34(8): 1723-1733.
[9] 徐鹏, 俞飚. 聚糖化学合成的挑战和可能的凝聚态化学问题[J]. 化学进展, 2022, 34(7): 1548-1553.
[10] 李诗宇, 阴永光, 史建波, 江桂斌. 共价有机框架在水中二价汞吸附去除中的应用[J]. 化学进展, 2022, 34(5): 1017-1025.
[11] 王鹏, 刘欢, 杨妲. 烯烃的氢甲酰化串联反应研究[J]. 化学进展, 2022, 34(5): 1076-1087.
[12] 马晓清. 石墨炔在光催化及光电催化中的应用[J]. 化学进展, 2022, 34(5): 1042-1060.
[13] 赵聪媛, 张静, 陈铮, 李建, 舒烈琳, 纪晓亮. 基于电活性菌群的生物电催化体系的有效构筑及其强化胞外电子传递过程的应用[J]. 化学进展, 2022, 34(2): 397-410.
[14] 杨林颜, 郭宇鹏, 李正甲, 岑洁, 姚楠, 李小年. 钴基费托合成催化剂的表界面性质调控[J]. 化学进展, 2022, 34(10): 2254-2266.
[15] 洪俊贤, 朱旬, 葛磊, 徐鸣川, 吕文珍, 陈润锋. CsPbX3(X = Cl, Br, I) 纳米晶的制备及其应用[J]. 化学进展, 2021, 33(8): 1362-1377.