English
新闻公告
More
化学进展 2020, Vol. 32 Issue (7): 989-1002 DOI: 10.7536/PC191202 前一篇   后一篇

• 综述 •

印迹复合膜

汪润田1,2, 柳春丽1,2,**(), 陈振斌1,2,**()   

  1. 1. 兰州理工大学 材料科学与工程学院 兰州 730050
    2. 兰州理工大学 省部共建有色金属先进加工与再利用国家重点实验室 兰州 730050
  • 收稿日期:2019-12-05 出版日期:2020-07-24 发布日期:2020-07-10
  • 通讯作者: 柳春丽, 陈振斌
  • 基金资助:
    沈阳材料科学国家研究中心-有色金属加工与再利用国家重点实验室联合基金(18LHZD003); 沈阳材料科学国家研究中心-有色金属加工与再利用国家重点实验室联合基金(18LHPY004)

Imprinted Composite Membranes

Runtian Wang1,2, Chunli Liu1,2,**(), Zhenbin Chen1,2,**()   

  1. 1. College of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
    2. State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China
  • Received:2019-12-05 Online:2020-07-24 Published:2020-07-10
  • Contact: Chunli Liu, Zhenbin Chen
  • About author:
    ** e-mail: (Chunli Liu);
    (Zhenbin Chen)
  • Supported by:
    joint fund between Shenyang National Laboratory for Materials Science and State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals(18LHZD003); joint fund between Shenyang National Laboratory for Materials Science and State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals(18LHPY004)

印迹复合膜由于兼具分离膜的高效分离性能与印迹聚合物的特异识别性分离性能,可实现对目标物质的精准分离而引起极大关注,相关研究报道也逐年增加。然而,尚无关于印迹复合膜相关研究进展的总结及对存在问题和未来发展趋势的分析和展望。本文首先总结了印记复合膜的研究发展历程,随后从印迹复合膜制备技术的研究进展出发,根据印迹复合膜的结构,将其分为单层结构印迹复合膜、双层结构印迹复合膜、多层结构印迹复合膜、基于三维大孔基底的印迹复合膜以及智能印迹复合膜,并分别综述了各类印迹复合膜的结构特征、制备方法、识别/分离性能以及它们各自存在的问题,最后对其未来发展方向进行展望。

Imprinted composite membranes(IcMs) not only possess the efficient separation performance of membranes, but also possess the selective separation performance of imprinted polymers, which have attracted extensive attention all over the world for their well and precise separation property for target substances and high membrane flux. However, the research progress on IcMs has not been summarized yet, and problems existed in research process and the future perspective of IcMs are not analyzed and forecast. This paper summarizes the research and development process of IcMs and the research progress in preparation technology of IcMs, then classify IcMs according to their structure to several categories, namely, IcMs of a single-layer structure, IcMs of a dual-layer structure, IcMs of a multi-layer structure, IcMs of 3D macroporous structure and IcMs with smart sensing and separation properties. Finally, the preparation methods, structural characteristics and identification/separation properties of IcMs, and the potential problems coupled with those aspects are summarized and a future developing direction of this field is prospected.

Contents

1 Introduction

2 Imprinted membranes

2.1 History of imprinted membranes

2.2 Recognition mechanism and transfer mechanism of imprinted composite membranes

3 Classification of imprinted composite membranes based on structural differences

3.1 Single-layer structure imprinted composite membranes

3.2 Dual-layer structure imprinted composite membranes

3.3 Multi-layer structure imprinted composite membranes

3.4 3D macroporous imprinted composite membranes

4 Smart imprinted composite membranes

4.1 Switch-smart imprinted composite membrane

4.2 Integrated-smart imprinted composite membrane

5 Conclusion and outlook

()
图1 印迹过程及其识别机理示意图
Fig.1 The preparation route of imprinted separation layer and recognition mechanism
图2 印迹膜溶解-扩散模型[31]
Fig.2 Mass transfer mechanism solution-diffusion model of imprinting membranes[31] Copyright 2001, Elsevier
图3 “门”模型[30]
Fig.3 “Gate”model[30] Copyright 1999, Elsevier
图4 底物中模板在印迹复合膜中的扩散柱坐标图[34]
Fig.4 Schedule of diffusion of template imprinting composite membrane[34]
图5 氯唑西林印迹复合膜的制备过程示意图[39]
Fig.5 Schematic illustration of constructing IcMs for Cloxicillin[39]. Copyright 2018, Elsevier
图6 D-色氨酸制备过程示意图[10]
Fig.6 Schematic illustration of constructing IcMs for D-Tryptophan[10].Copyright 2017, Elsevier
图7 铜离子印迹复合膜的制备过程示意图[13]
Fig.7 Schematic illustration of constructing IcMs for Cu2+[13]. Copyright 2018, Elsevier
图8 青蒿素印迹复合膜的制备过程示意图[46]
Fig.8 Schematic illustration of constructing IcMs for artemisinin[46]. Copyright 2014, Elsevier
图9 布洛芬印迹复合膜制备示意图[47]
Fig.9 Schematic illustration of constructing IcMs for ibuprofen[47]. Copyright 2018, Elsevier
图10 恩诺沙星的印迹复合膜制备示意图[48]
Fig.10 Schematic illustration of constructing IcMs for enrofloxacin[48]. Copyright 2019, Elsevier
图11 青蒿素印迹复合膜的制备过程示意图[51]
Fig.11 Schematic illustration of constructing IcMs for artemisinin[51]. Copyright 2016, Wiley
图12 Mo(Ⅵ)印迹复合膜制备示意图[52]
Fig.12 Schematic illustration of constructing IcMs for Mo(Ⅵ)[52].Copyright 2016, Elsevier
图13 诺氟沙星印迹复合膜的制备示意图[53]
Fig.13 Schematic illustration of constructing IcMs for norfloxacin[53]. Copyright 2018, Elsevier
图14 诺氟沙星印迹复合膜制备示意图[54]
Fig.14 Schematic illustration of constructing IcMs for norfloxacin[54].Copyright 2017, Royal Society of Chemistry
图15 布洛芬印迹复合膜制备示意图[55]
Fig.15 Schematic illustration of constructing IcMs for ibuprofen[55].Copyright 2018, Elsevier
图16 依诺沙星印迹复合膜制备示意图[56]
Fig.16 Schematic illustration of constructing IcMs for enoxacin[56].Copyright 2019, Elsevier
图17 青蒿素印迹复合膜的制备过程示意图[57]
Fig.17 Schematic illustration of constructing IcMs for artemisinin[57]. Copyright 2015, Elsevier
图18 Li+的印迹复合膜制备示意图[58]
Fig.18 Schematic illustration of constructing IcMs for Li+[58]. Copyright 2018, Elsevier
图19 卵清蛋白印迹复合膜的制备示意图[59]
Fig.19 Schematic illustration of constructing IcMs for ovalbumin[59]. Copyright 2015, Wiley
图20 青蒿素的印迹复合膜的制备示意图[60]
Fig.20 Schematic illustration of the synthesis of IcMs for artemisinin[60]. Copyright 2019, America Chemistry Society
图21 Li+的印迹复合膜的制备示意图[61]
Fig.21 Schematic illustration of the sythesis of IcMs for Li+[61]. Copyright 2019, Elsevier
图22 Pd2+的IcMs制备过程示意图[62]
Fig.22 Scheme for the preparation of IcMs for Pd2+[62]. Copyright 2020, Elsevier
图23 大黄素的IcMs制备过程示意图[63]
Fig.23 Scheme for the preparation of IcMs for emodin[63]. Copyright 2019, Elsevier
图24 Dy3+的IcMs制备过程示意图[64]
Fig.24 Scheme for the preparation of IcMs for Dy3+[64]. Copyright 2017, Elsevier
图25 环丙沙星的印迹复合膜制备示意图[23]
Fig.25 Scheme for the preparation of IcMs for ciprofloxacin[23]. Copyright 2017, Elsevier
图26 Eu3+的印迹复合膜制备示意图[66]
Fig.26 Scheme for the preparation of IcMs for Eu3+[66]. Copyright 2018, Elsevier
[1]
Chen A , Zeng G , Chen G , Hu X , Yan M , Guan S , Shang C , Lu L , Zou Z , Xie G . Chem. Eng. J., 2012,191:85. doi: 10.1016/j.cej.2012.02.071 https://linkinghub.elsevier.com/retrieve/pii/S138589471200304X
[2]
Fu J , Chen L , Li J , Zhang Z . J. Mater. Chem. A, 2015,3:13598. doi: 10.1039/C5TA02421H http://xlink.rsc.org/?DOI=C5TA02421H
[3]
Yoshikawa M , Tharpa K , Dima Ş . Chem. Rev., 2016,116, 11500. https://www.ncbi.nlm.nih.gov/pubmed/27610706

URL     pmid: 27610706
[4]
Chen L , Xu S , Li J . Chem. Soc. Rev., 2011,40:2922. https://www.ncbi.nlm.nih.gov/pubmed/21359355

URL     pmid: 21359355
[5]
Qiu X , Xu X , Liang Y , Hua Y , Guo H . J. Chromatogr. A, 2016,1429:79. doi: 10.1016/j.chroma.2015.12.025 https://www.ncbi.nlm.nih.gov/pubmed/26709022

URL     pmid: 26709022
[6]
Shi C , Liu X , Song L , Qiao X , Xu Z . Food Anal. Method., 2015,8:2496. doi: 10.1007/s12161-015-0141-7 http://link.springer.com/10.1007/s12161-015-0141-7
[7]
Zhang R , Guo X , Shi X , Sun A , Wang L , Xiao T , Tang Z , Pan D , Li D , Chen J . Anal. Chem., 2014,86:11705. doi: 10.1021/ac503049s https://www.ncbi.nlm.nih.gov/pubmed/25381696

URL     pmid: 25381696
[8]
Wu Y , Zhang Y , Zhang M , Liu F , Wan Y , Huang Z , Ye L , Zhou Q , Shi Y , Lu B . Food Chem., 2014,164:527. https://www.ncbi.nlm.nih.gov/pubmed/24996366

URL     pmid: 24996366
[9]
DíaZ-Álvarez M , Barahona F , Turiel E , Martín-Esteban A . J. Chromatogr. A, 2014,1357:158. doi: 10.1016/j.chroma.2014.04.038 https://www.ncbi.nlm.nih.gov/pubmed/24780262

URL     pmid: 24780262
[10]
Zhou Z , He L , Mao Y , Chai W , Ren Z . Chem. Eng. J., 2017,310:63. doi: 10.1016/j.cej.2016.10.070 https://linkinghub.elsevier.com/retrieve/pii/S1385894716314802
[11]
Sánchez-González J , García-Carballal S , Cabarcos P , Tabernero M J , Bermejo-Barrera P , Moreda-Piñeiro A . J. Chromatogr. A, 2016,1451:15. doi: 10.1016/j.chroma.2016.05.003 https://www.ncbi.nlm.nih.gov/pubmed/27207577

URL     pmid: 27207577
[12]
Liu Q , Zhao Y , Pan J , Bruggen B V , Shen J . Sep. Purif. Technol., 2016,164:70. doi: 10.1016/j.seppur.2016.03.020 https://linkinghub.elsevier.com/retrieve/pii/S1383586616301241
[13]
Wang Z , Kong D , Qiao N , Wang N , Wang Q , Liu H , Zhou Z , Ren Z . Appl. Surf. Sci., 2018,457:981. doi: 10.1016/j.apsusc.2018.07.031 https://linkinghub.elsevier.com/retrieve/pii/S0169433218319056
[14]
Zhang J , Wang C , Niu Y , Li S , Luo R . Sensor. Actuat. B-Chem., 2017,249:747. doi: 10.1016/j.snb.2016.02.068 https://linkinghub.elsevier.com/retrieve/pii/S0925400516302179
[15]
Yu J , Hu X , Li D , Jiao C . Front. Earth Sci. China, 2009,3(4):480. doi: 10.1007/s11707-009-0055-z http://link.springer.com/10.1007/s11707-009-0055-z
[16]
Liu Z , Lv Y , Gao J , Li X , Zhai X , Zhao J , Xu X . J. Appl. Polym. Sci., 2012,126:1247. doi: 10.1002/app.v126.4 http://doi.wiley.com/10.1002/app.v126.4
[17]
Chen J H , Li G P , Liu Q L , Ni J C , Wu W B , Lin J M . Chem. Eng. J., 2010,165:465. doi: 10.1016/j.cej.2010.09.034 https://linkinghub.elsevier.com/retrieve/pii/S1385894710008648
[18]
Du X , Zhang H , Hao X , Guan G , Abudula A . ACS Appl. Mater. Inter., 2014,6:9543. doi: 10.1021/am501926u https://pubs.acs.org/doi/10.1021/am501926u
[19]
Chen X , Wang Z , Bi S , Li K , Du R , Wu C , Chen L . Chem. Eng. J., 2016,295:518. doi: 10.1016/j.cej.2016.03.043 https://linkinghub.elsevier.com/retrieve/pii/S138589471630273X
[20]
Joshi R K , Carbone P , Wang F C , Kravets V G , Su Y , Grigorieva I V , Wu H A , Geim A K , Nair R R . Science, 2014,343:752. https://www.ncbi.nlm.nih.gov/pubmed/24531966

URL     pmid: 24531966
[21]
Yang H , Waldman R , Wu M , Hou J , Chen L , Darling S B , Xu Z . Adv. Funct. Mater., 2018,28:1705327 doi: 10.1002/adfm.201705327 http://doi.wiley.com/10.1002/adfm.201705327
[22]
Wu Y , Yan M , Liu X , Lv P , Cui J , Meng M , Dai J , Yan Y , Li C . Green Chem., 2015,17, 3338. doi: 10.1039/C5GC00453E http://xlink.rsc.org/?DOI=C5GC00453E
[23]
Wu Y , Yan M , Lu J , Wang C , Zhao J , Cui J , Li C , Yan Y . Chem. Eng. J., 2017,309, 98. doi: 10.1016/j.cej.2016.10.023 https://linkinghub.elsevier.com/retrieve/pii/S1385894716314243
[24]
Pauling L . J. Am. Chem. Soc., 1940,62:2643. doi: 10.1021/ja01867a018 https://pubs.acs.org/doi/abs/10.1021/ja01867a018
[25]
Dickey F H . J. Phys. Chem. 1955,59:695. doi: 10.1021/j150530a006 https://pubs.acs.org/doi/abs/10.1021/j150530a006
[26]
Michaels A S , Baddour R F , Bixler H J ; Choo C Y . Ind. Eng. Chem. Process Des. Dev. 1962,1:14. doi: 10.1021/i260001a003 https://pubs.acs.org/doi/abs/10.1021/i260001a003
[27]
Dzgoev A , Haupt K . Chirality, 1999,11:465. doi: 10.1002/(ISSN)1520-636X http://doi.wiley.com/10.1002/%28ISSN%291520-636X
[28]
Hong J , Anderson P E , Qian J , Martin C R . Chem. Mater., 1998,10:1029. doi: 10.1021/cm970608f https://pubs.acs.org/doi/10.1021/cm970608f
[29]
Ulbricht M . J. Chromatogr. B, 2004,804:113. doi: 10.1016/j.jchromb.2004.02.007 https://linkinghub.elsevier.com/retrieve/pii/S1570023204001345
[30]
Piletsky S A , Panasyuk T L , Piletskaya E V , Nicholls I A , Ulbricht M . J. Membrane Sci., 1999,157:263. doi: 10.1016/S0376-7388(99)00007-1 https://linkinghub.elsevier.com/retrieve/pii/S0376738899000071
[31]
Ent E M , Riet K , Keurentjes J T F , Padt A. J . Membrane Sci., 2001,185:207. doi: 10.1016/S0376-7388(00)00647-5 https://linkinghub.elsevier.com/retrieve/pii/S0376738800006475
[32]
Sellergren B , Shea K J . J. Chromatogr. A, 1993,635:31. doi: 10.1016/0021-9673(93)83112-6 https://linkinghub.elsevier.com/retrieve/pii/0021967393831126
[33]
Piletsky S A , Alcock S , Turner A P F . Trends Biotechnol., 2001,19:9. https://www.ncbi.nlm.nih.gov/pubmed/11146096

URL     pmid: 11146096
[34]
杨座国(Yang Z G) . 华东理工大学博士论文 (Doctorial Dissertation of East China University of Science and Technology), 2005
[35]
Xu G , Wang J , Li C . Chem. Eng. J., 2012,198:310.
[36]
Shawky H A . J. Appl. Polym. Sci., 2009,114:2608. doi: 10.1002/app.v114:5 http://doi.wiley.com/10.1002/app.v114%3A5
[37]
Huang K , Chen Y , Zhou F , Zhao X , Liu J , Mei S , Zhou Y , Jing T . J. Hazard. Mater., 2017,333:137. doi: 10.1016/j.jhazmat.2017.03.035 https://www.ncbi.nlm.nih.gov/pubmed/28342354

URL     pmid: 28342354
[38]
Li F , Jiang H , Zhang S . Talanta, 2007,71:1487. doi: 10.1016/j.talanta.2006.07.023 https://www.ncbi.nlm.nih.gov/pubmed/19071480

URL     pmid: 19071480
[39]
Du W , Sun M , Guo P , Chang C , Fu Q . Food Chem., 2018,259:73. doi: 10.1016/j.foodchem.2018.03.107 https://www.ncbi.nlm.nih.gov/pubmed/29680065

URL     pmid: 29680065
[40]
Liu Y , Meng M , Yao J , Da Z , Feng Y , Yan Y , Li C . Chem. Eng. J., 2016,286:622. doi: 10.1016/j.cej.2015.10.063 https://linkinghub.elsevier.com/retrieve/pii/S1385894715014746
[41]
Reis R , Zydney A . Curr. Opin. Biotech., 2001,12:208. doi: 10.1016/s0958-1669(00)00201-9 https://www.ncbi.nlm.nih.gov/pubmed/11287239

URL     pmid: 11287239
[42]
Oh J K , Min K , Matyjaszewski K . Macromolecules, 2006,39:3161. doi: 10.1021/ma060258v https://pubs.acs.org/doi/10.1021/ma060258v
[43]
Wu Y , Yan Y , Pan J , Dai X , Shi W , Meng M . Chinese Chem. Lett, 2014,252:273.
[44]
Wang C , Hu X , Guan P , Wu D , Yang L , Du C . Adsorpt. Sci. Technol., 2015,33:411. doi: 10.1260/0263-6174.33.4.411 http://journals.sagepub.com/doi/10.1260/0263-6174.33.4.411
[45]
Cui J , Xie A , Zhou S , Liu S , Wang Q , Wu Y , Meng M , Lang J , Zhou Z , Yan Y . J. Colloid. Interf. Sci., 2019,533:278. doi: 10.1016/j.jcis.2018.08.055 https://linkinghub.elsevier.com/retrieve/pii/S0021979718309718
[46]
Wu Y , Meng M , Liu X , Li C , Zhang M , Ji Y , Sun F , He Z , Yan Y . Sep. Purif. Technol., 2014,131:117. doi: 10.1016/j.seppur.2014.05.001 026593f9-608c-4e25-b85e-287cd9d20fa3 http://dx.doi.org/10.1016/j.seppur.2014.05.001
[47]
Wu X , Wu Y , Dong H , Zhao J , Wang C , Zhou S , Lu J , Yan Y , Li H . Appl. Surf. Sci., 2018,428:555. doi: 10.1016/j.apsusc.2017.09.104 https://linkinghub.elsevier.com/retrieve/pii/S0169433217327538
[48]
Wang M , Wang Y , Qiao Y , Wei M , Gao L , Wang L , Yan Y , Li H . Spectrochim. Acta. A, 2019,222:117116. doi: 10.1016/j.saa.2019.05.021 https://linkinghub.elsevier.com/retrieve/pii/S1386142519304974
[49]
韦美华(Wei M H), 王枢(Wang S), 蒋婉莹(Jiang W Y), 陈洪岩(Chen H Y), 王毅(Wang Y) . 高分子材料科学与工程 (Polymer Materials Science and Engineering), 2017,33:126.
[50]
Liu Y , Ai K , Lu L . Chem. Rev. 2014,114, 5057. doi: 10.1021/cr400407a https://www.ncbi.nlm.nih.gov/pubmed/24517847

URL     pmid: 24517847
[51]
Cui J , Wu Y , Meng M , Lu J , Wang C , Zhao J , Yan Y . J. Appl. Polym. Sci., 2016,113:43405.
[52]
Zeng J , Dong Z , Zhang Z , Liu Y . J. Hazard. Mater., 2017,333:128. doi: 10.1016/j.jhazmat.2017.03.016 https://www.ncbi.nlm.nih.gov/pubmed/28342353

URL     pmid: 28342353
[53]
Zhao J , Wu Y , Wang C , Huang H , Lu J , Wu X , Cui J , Li C , Yan Y , Dong H . J. Taiwan Inst. Chem. E., 2018,89:198. doi: 10.1016/j.jtice.2018.03.015 https://linkinghub.elsevier.com/retrieve/pii/S1876107018301536
[54]
Zhao J , Wu Y , Zhou S , Yan L , Dong H , Chen L , Meng M , Li C , Yan Y . New J. Chem., 2017,41:14966. doi: 10.1039/C7NJ03402D http://xlink.rsc.org/?DOI=C7NJ03402D
[55]
Wu X , Wu Y , Chen L , Yan L , Zhou S , Zhang Q , Li C , Yan Y , Li H . J. Membrane Sci., 2018,553:151. doi: 10.1016/j.memsci.2018.02.043 https://linkinghub.elsevier.com/retrieve/pii/S0376738817329423
[56]
Gao J , Zhou S , Hou Z , Zhang Q , Meng M , Li C , Wu Y , Yan Y . Sep. Purif. Technol., 2019,218:59. doi: 10.1016/j.seppur.2019.01.079 https://linkinghub.elsevier.com/retrieve/pii/S1383586618336712
[57]
Wu Y , Liu X , Meng M , Lv P , Yan M , Wei X , Li H , Yan Y , Li C . J. Membrane Sci., 2015,490:169. doi: 10.1016/j.memsci.2015.04.023 https://linkinghub.elsevier.com/retrieve/pii/S037673881500352X
[58]
Lu J , Qin Y , Zhang Q , Wu Y , Cui J , Li C , Wang L , Yan Y . Appl. Surf. Sci., 2018,427:931. doi: 10.1016/j.apsusc.2017.08.016 https://linkinghub.elsevier.com/retrieve/pii/S0169433217323395
[59]
Wu Y , Yan M , Cui J , Yan Y , Li C . Adv. Funct. Mater., 2015,25:5823. doi: 10.1002/adfm.201502465 http://doi.wiley.com/10.1002/adfm.201502465
[60]
Zhang Y , Tan X , Liu X , Li C , Zeng S , Wang H , Zhang S . ACS Sustain. Chem. Eng., 2019,7:3127. doi: 10.1021/acssuschemeng.8b04908 https://pubs.acs.org/doi/10.1021/acssuschemeng.8b04908
[61]
Cui J , Zhou Z , Xie A , Liu S , Wang Q , Wu Y , Yan Y , Li C . Carbohyd. Polym., 2019,205:492. doi: 10.1016/j.carbpol.2018.10.094 https://linkinghub.elsevier.com/retrieve/pii/S0144861718312943
[62]
Lu J , Qin Y , Yu C , Lin X , Meng M , Yan Y , Fan H , Wu Y , Li C . Sep. Purif. Technol., 2020,235:116220. doi: 10.1016/j.seppur.2019.116220 https://linkinghub.elsevier.com/retrieve/pii/S1383586619309438
[63]
Lu J , Qin Y , Zhang Q , Yu C , Wu Y , Yan Y , Fan H , Meng M , Li C . Chem. Eng. J., 2019,360, 483. doi: 10.1016/j.cej.2018.12.014 https://linkinghub.elsevier.com/retrieve/pii/S1385894718324860
[64]
Liu E , Xu X , Zheng X , Zhang F , Liu E , Li C . Sep. Purif. Technol., 2017,189:288. doi: 10.1016/j.seppur.2017.06.079 https://linkinghub.elsevier.com/retrieve/pii/S1383586617309462
[65]
Tanaka T , Fillmore D J . J. Chem. Phys., 1979,70:1214. doi: 10.1063/1.437602 http://aip.scitation.org/doi/10.1063/1.437602
[66]
Lu J , Wu Y , Lin X , Dong H , Chen L , Qin Y , Wang L , Yan Y . J. Hazard. Mater., 2018,353:244. doi: 10.1016/j.jhazmat.2018.04.014 https://www.ncbi.nlm.nih.gov/pubmed/29674099

URL     pmid: 29674099
[67]
Cheng H , Zhu X , Yang S , Wu Y , Cao Q , Ding Z . J. Appl. Polym. Sci., 2013,128:363. doi: 10.1002/app.38144 http://doi.wiley.com/10.1002/app.38144
[68]
Tomicki F , Krix D , Nienhaus H , Ulbricht M . J. Membrane Sci., 2011,377:124. doi: 10.1016/j.memsci.2011.04.028 8c375807-9f55-49b9-ba11-bc94ba226dd9 http://dx.doi.org/10.1016/j.memsci.2011.04.028
[69]
Aoki T , Yamagiwa K , Yoshino E , Oikawa E . Polymer, 1993,34:1538. doi: 10.1016/0032-3861(93)90876-C https://linkinghub.elsevier.com/retrieve/pii/003238619390876C
[70]
Hester J F , Olugebefola S C , Mayes A M . J. Membrane Sci., 2002,208:375. doi: 10.1016/S0376-7388(02)00317-4 https://linkinghub.elsevier.com/retrieve/pii/S0376738802003174
[71]
Ying L , Zhai G Q , Winata A , Kang E T , Neoh K G . J. Colloid Interf. Sci., 2003,265:396. doi: 10.1016/S0021-9797(03)00507-1 https://linkinghub.elsevier.com/retrieve/pii/S0021979703005071
[1] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[2] 牛文辉, 张达, 赵振刚, 杨斌, 梁风. 钠基-海水电池的发展:“关键部件及挑战”[J]. 化学进展, 2023, 35(3): 407-420.
[3] 杨英, 马书鹏, 罗媛, 林飞宇, 朱刘, 郭学益. 多维CsPbX3无机钙钛矿材料的制备及其在太阳能电池中的应用[J]. 化学进展, 2021, 33(5): 779-801.
[4] 陈怡峰, 王聪, 任科峰, 计剑. 生物医用高通量研究中的微液滴阵列[J]. 化学进展, 2021, 33(4): 543-554.
[5] 杨英, 罗媛, 马书鹏, 朱从潭, 朱刘, 郭学益. 钙钛矿太阳能电池电子传输层的制备及应用[J]. 化学进展, 2021, 33(2): 281-302.
[6] 吴贤文, 龙凤妮, 向延鸿, 蒋剑波, 伍建华, 熊利芝, 张桥保. 中性或弱酸性体系下锌基水系电池负极材料研究进展[J]. 化学进展, 2021, 33(11): 1983-2001.
[7] 彭会荣, 蔡墨朗, 马爽, 时小强, 刘雪朋, 戴松元. 全无机钙钛矿太阳电池的制备及稳定性[J]. 化学进展, 2021, 33(1): 136-150.
[8] 穆蒙, 宁学文, 罗新杰, 冯玉军. 刺激响应性聚合物微球的制备、性能及应用[J]. 化学进展, 2020, 32(7): 882-894.
[9] 吕维扬, 孙继安, 姚玉元, 杜淼, 郑强. 层状双金属氢氧化物的控制合成及其在水处理中的应用[J]. 化学进展, 2020, 32(12): 2049-2063.
[10] 李巍, 杨子煜, 侯仰龙, 高松. 二维磁性纳米材料的可控合成及磁性调控[J]. 化学进展, 2020, 32(10): 1437-1451.
[11] 贾强, 宋洪伟, 唐盛, 王静, 彭银仙. 功能化多孔材料的制备及其在特异性识别分离中的应用[J]. 化学进展, 2019, 31(8): 1148-1158.
[12] 裴强, 丁爱祥. 四重氢键自组装体系的设计与应用[J]. 化学进展, 2019, 31(2/3): 258-274.
[13] 王俊莲, 刘新宇, 谢美英, 王化军. 体离子印迹材料的制备方法[J]. 化学进展, 2018, 30(7): 989-1012.
[14] 张成江, 袁晓艳, 袁泽利, 钟永科, 张卓旻, 李攻科. 基于席夫碱反应的共价有机骨架材料[J]. 化学进展, 2018, 30(4): 365-382.
[15] 贾潞, 马建中, 高党鸽, 吕斌. 层状双氢氧化物/聚合物纳米复合材料[J]. 化学进展, 2018, 30(2/3): 295-303.
阅读次数
全文


摘要

印迹复合膜