中文
Announcement
More
Progress in Chemistry 2020, Vol. 32 Issue (10): 1608-1632 DOI: 10.7536/PC200313 Previous Articles   

All-Inorganic Perovskite Solar Cells: Status and Future

Xiaohui Ma1, Liqun Yang1, Shijian Zheng1, Qilin Dai2, Cong Chen1,3,**(), Hongwei Song3,**()   

  1. 1. School of Material Science and Engineering, Hebei University of Technology, Tianjin 300130, China
    2. Department of Chemistry, Physics, and Atmospheric Sciences, Jackson State University, Jackson, Mississippi 39217, U.S.A.
    3. State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
  • Received: Revised: Online: Published:
  • Contact: Cong Chen, Hongwei Song
  • About author:
    **e-mail:(Cong Chen)
    (Hongwei Song)
  • Supported by:
    National Natural Science Foundation of China(51771201); National Key Research and Development Plan of China(2016YFC0207101)
Richhtml ( 197 ) PDF ( 3271 ) Cited
Export

EndNote

Ris

BibTeX

In recent years, organic-inorganic hybrid perovskite materials based on the ABX3 structure have attracted worldwide attention due to their excellent optoelectronic properties and cheap manufacturing costs. However, the organic components in the system are elementary to be resolved under the influence of light, heat, humidity, and other external conditions, which greatly limits the industrialization of the PSCs(Perovskite solar cells). All-inorganic perovskite materials prepared by using pure inorganic cations to replace the A-site organic cations in ABX3 structure have been developed rapidly due to their excellent thermal stability and environmental stability. At present, the efficiency of all-inorganic perovskite solar cells(I-PSCs) has exceeded 19% with broad application prospects. The research progress of inorganic perovskite materials and the different types of inorganic perovskite materials are reviewed. Meanwhile, the ways to improve the stability of devices from the aspects of films forming process, doping engineering, post-processing engineering, etc. are summarized Finally, we introduced the large-area preparation and flexible application of I-PSCs, reveals the challenges faced by I-PSCs and summarizes the prospect of the field.

Contents

1 Introduction

2 Basic of I-PSCs

2.1 Crystal structure of inorganic perovskite

2.2 Working principle of I-PSCs

2.3 Device structure of I-PSCs

3 Preparation process of inorganic perovskite

3.1 Solution processing technology

3.2 Vacuum preparation technology

3.3 Other preparation methods

4 Inorganic Pb-based perovskite and devices

4.1 CsPbI3

4.2 CsPbBr3

4.3 CsPbI3-xBrx

4.4 Cs1+xPbI3+x

5 Inorganic Sn/Ge-based perovskite and devices

5.1 CsSnI3

5.2 CsSnBr3

5.3 CsSnI3-xBrx

5.4 CsGeI3

6 Perovskite derivatives and devices

7 Functional application of inorganic perovskite

8 Stability of inorganic perovskite

8.1 Phase stability

8.2 Light and thermal stability

9 Large-area preparation and flexible application

10 Conclusion and outlook

Fig.1 The development of CsPbX3 PSCs
Fig.2 (a) Crystal structure of inorganic perovskite[38]; (b) energy level diagram of I-PSCs[39]; (c) device structure of I-PSCs[40]; (d) one-step solution method[39]; (e) two-step solution method[39]; (f) vacuum processing technique[39]; (g) vapor assisted/spray assisted solution approach[41]
Fig.3 (a) Crystal structure of CsPbI3[43]; (b) Schematic diagram of zwitterionic stabilized α-CsPbI3[46]; (c) Schematic diagram of CsPbI3·xDETAI3 PSCs[47]; (d) J-V curve of CsPbI3·xDETAI3 PSCs[47]; (e) Stability test curves of CsPbI3·0.05DETAI3 PSCs in dark dry box[47]
Fig.4 (a) Stabilization of α-CsPbI3 by adding HI or Bi3+ in the precursor solution[49]; (b) Schematic diagram of CsPbI3 film surface passivation principle[50]; (c) Cross section SEM image of PTABr-CsPbI3 PSCs[50]; (d) CsPbI3 crack filling interface engineering schematic[53]; (e) Forward and reverse scanning J-V curve and (f) stability test curve of CHI-CsPbI3 PSCs[53]
Fig.5 (a) Schematic of the film deposition process and AX salt posttreatmnet[55]; (b) Schematic drawing of the charge transport process and stabilization mechanism for the μGR/CsPbI3 film based PSCs[57]; (c) Photographs of CsPbI3 QD solutions with increasing Yb-doping concentrations and solutions under UV illumination[59]; (d) J-V curve and (e) stability test curve of 20% Yb-CsPbI3 quantum dots PSCs[59]
Fig.6 (a) J-V curves of different all-inorganic PSCs[62]; (b) SEM images of CsPbIBr2 film surface treated with guanidinium iodide at different concentrations[67]; (c) J-V curve and (d) stability test curve of CsPbIBr2 PSCs[67]; (e) The scheme of device architecture of I-PSCs, LiF was used to modify the SnO2 surface[75]; (f) Energy band alignment for each layer in CsPbI3-xBrx PSCs[75]
Table 1 Structure and performance of CsPbX3 (X=I, Br or I and Br) PSCs
Device configuration Voc
(V)
Jsc
(mA·cm-2)
FF
(%)
PCE
(%)
Year ref
FTO/TiO2/CsPbI3/Spiro-OMeTAD/Au 2.90 2015 19
FTO/TiO2/CsPbI3/Spiro-OMeTAD/Ag 0.66 11.92 52.47 4.13 2016 78
FTO/TiO2/CsPbI3 QDs/Spiro-OMeTAD/MoOx/Al 1.23 13.47 65.00 10.77 2016 23
FTO/TiO2/CsPbI3 QDs/Spiro-OMeTAD/MoOx/Al 1.16 15.24 76.63 13.43 2017 55
FTO/TiO2/CsPbI3·0.025EDAPbI4/Spiro-OMeTAD/Ag 1.15 14.53 71.00 11.86 2017 79
FTO/c-TiO2/CsPb0.96Bi0.04I3/CuI/Au 0.97 18.76 72.59 13.21 2017 49
FTO/c-TiO2/CsPbI3·xDETAI3/P3HT/Au 1.06 12.20 61.00 7.89 2018 47
FTO/TiO2/CsPbI3/PTAA/Au 1.05 18.95 74.90 15.07 2018 44
FTO/TiO2/PTABr-CsPbI3/Spiro-OMeTAD/Ag 1.10 19.15 80.60 17.06 2018 50
FTO/TiO2/γ-CsPbI3/P3HT/Au 1.04 16.53 65.70 11.30 2018 51
N-GQD/FTO/TiO2/γ-CsPbI3/PTAA/Au 1.10 19.15 75.60 16.02 2019 80
FTO/c-TiO2/β-CsPbI3/Spiro-OMeTAD/Ag 1.11 20.23 82.00 18.40 2019 53
FTO/m-TiO2/CsPbBr3/PTAA/Au 1.28 6.24 74.00 5.95 2015 31
FTO/TiO2/CsPbBr3/C 1.24 7.40 73.00 6.70 2016 81
FTO/c-TiO2/m-TiO2/CsPb0.97Sm0.03Br3/C 1.59 7.48 85.10 10.14 2018 61
FTO/c-TiO2/m-TiO2/CsPb0.97Tb0.03Br3/SnS:ZnS/NiOx/C 1.57 8.21 79.60 10.26 2018 62
FTO/TiO2/PTI-CsPbBr3/Spiro-OMeTAD/Ag 1.49 9.78 74.47 10.91 2019 60
FTO/m-TiO2/CsPbIBr2/Spiro-OMeTAD/Al 1.12 7.80 72.00 6.30 2016 29
ITO/PEDOT:PSS/CsPbI2Br/PCBM/BCP/Al 6.80 2016 63
FTO/c-TiO2/Cs0.925K0.075PbI2Br/Spiro-OMeTAD/Au 1.18 11.60 73.00 10.00 2017 68
FTO/mp-TiO2/CsPb0.98Sr0.02I2Br/P3HT/Au 1.04 15.30 69.90 11.30 2017 69
FTO/m-TiO2/CsPb0.9Sn0.1IBr2/C 1.26 14.30 63.00 11.33 2017 70
ITO/Ca/C60/CsPbI2Br/TAPC/TAPC:MoO3/Ag 1.17 15.50 68.00 11.80 2017 82
ITO/TiO2/CsPbI2Br/P3HT/Au 1.30 13.13 70.40 12.02 2018 74
ITO/SnO2/CsPbI2Br/Spiro-OMeTAD/Ag 1.06 15.99 77.12 13.09 2018 66
FTO/TiO2/CsPbBrI2/CsPbI2Br QDs/PTAA/Au 1.22 15.10 80.30 14.81 2018 65
FTO/NiOx/InCl3:CsPbI2Br/ZnO@C60/Ag 1.14 15.70 77.00 13.74 2018 71
ITO/SnO2/ZnO/CsPbI2Br/Spiro-OMeTAD/MoO3/Ag 1.23 15.00 78.80 14.60 2018 73
ITO/SnO2/CsPbI2Br/PTAA/MoO3/Al 1.19 15.66 74.10 13.80 2019 83
ITO/TiO2/CsPbI2Br/PTAA/Au 1.31 14.55 78.58 14.86 2019 84
ITO/SnO2/LiF/CsPbI3-xBrx/Spiro-OMeTAD/Au 1.22 18.20 80.97 18.64 2019 75
Fig.7 (a) Crystal structure of CsSnI3 (The red balls represent "I", the yellow balls represent "Sn", and the blue balls represent "Cs")[87]; (b) Cross sectional SEM image of CsSnI3 PSCs[91]; (c) J-V curves of photovoltaic devices fabricated with different amounts of SnF2 addition[91]; (d) Schematic diagram of CsSnI3 PSCs[92]; (e) J-V curves of CsSnI3 PSCs after annealing at different temperatures[92]; (f) J-V curve of CsSnI3 PSCs with optimum performance[92]
Fig.8 (a) Energy band positions of CsSnBr3 under different conditions[99]; (b) Tauc plots of the CsSnI3-xBrx with different x values[101]; (c) Relation of the band gap of CsSnI3-xBrx with x values[101]; (d) Energy level diagram of each material and charge transportation within a PSC[103]; (e) The crystal structure of CeGeI3 (R3m on the left, Pmmm on the right)[108]; (f) TEM images of CsGeI3 nanocrystals under different exposure times[110]
Table 2 Structure and performance of CsSnX3 (X=I, Br or I and Br) PSCs
Fig.9 (a) XRD patterns of Cs2SnI6 powder after being left in air for different times[117]; (b) J-V curves of Cs2SnI6-xBrx PSCs, inset shows IPCE values for Cs2SnI6 (black) and Cs2SnBr2I4 (green)[112]; (c) SEM images of Cs2SnI6 powder synthesized with different proportions of precursors in different solvents, CsI∶SnI2 is 1∶1 (two pictures above), CsI∶SnI4 is 3∶2 (two pictures below)[118]; (d) UV-vis absorption and PL spectra of Cs2AgBiBr6 film[122]; (e) J-V curves of Cs2AgBiBr6 PSCs prepared by solution method and vacuum deposition method[16]; (f) SEM images of (Cs1-xRbx)2AgB6[125]
Table 3 Structure and performance of Cs2AgBiBr6 PSCs
Fig.10 (a) Schematic diagram of PSCs structure modified by nanocrystals, where CsPbBr3 was introduced into the devices[129]; (b) J-V curve of CsPbBr3@SiO2 PSCs[129]; (c) Schematic architecture of the modi?ed PSCs[130]; (d) J-V curves and (e) the stability of PSCs with and without Al2O3 encapsulation layer[130]
Fig.11 (a) Schematic diagram of CsPbBrCl2 quantum dots film deposition principle[132]; (b) Schematic diagram of improving the performance of silicon-based solar cells with perovskite film[133]; (c) J-V curves of the devices with different amounts of Nb doping[148]; (d) EDX analysis revealing the evolution of the iodine-to-lead atomic ratio in the CsPbI3 films when exposed to light[161]; (e) Comparison of photochemical degradation of the hybrid MAPbBr3 and all-inorganic CsPbBr3 perovskite material[161]
Fig.12 (a) Schematic diagram of improving perovskite film properties by blade-coating method and the physical diagram of the large area CsPbI2Br film[164]; (b) J-V curves of the CsPbI2Br PSCs based on different effective areas[165]; (c) J-V characteristics evolution of the flexible device upon increasing bending cycles at a fixed bending radius of 10 mm[167]; (d) J-V curve of the ?exible GAI-DEE-CsPbIBr2 (20 mg/mL) PSC based on the PET substrate[67]; (e) PCEs and photographs of GAI-CsPbIBr2 (20 mg/mL) PSC based on the FTO substrate with different active areas[67]
[1]
Kojima A, Teshima K, Shirai Y, Miyasaka T. Journal of the American Chemical Society, 2009,131:6050. doi: 10.1021/ja809598r

pmid: 19366264
[2]
Kim H S, Lee C R, Im J H, Lee K B, Moehl T, Marchioro A, Moon S J, Humphry-Baker R, Yum J H, Moser J E, Graetzel M, Park N G. Sci. Rep., 2012,2:591. doi: 10.1038/srep00591

pmid: 22912919
[3]
Yang J, Kelly T L. Inorg. Chem., 2017,56:92.

pmid: 27504538
[4]
Smecca E, Numata Y, Deretzis I, Pellegrino G, Boninelli S, Miyasaka T, La Magna A, Alberti A. Phys. m. Chem. Phys., 2016,18:13413.
[5]
Lee J W, Kim D H, Kim H S, Seo S W, Cho S M, Park N G. Advanced Energy Materials, 2015,5:1501310. doi: 10.1002/aenm.201501310
[6]
Aristidou N, Sanchez-Molina I, Chotchuangchutchaval T, Brown M, Martinez L, Rath T, Haque S A. Angew. Chem. Int. Edit., 2015,54:8208. doi: 10.1002/anie.201503153
[7]
Boyd C C, Cheacharoen R, Leijtens T, McGehee M D. Chem. Rev., 2019,119:3418.

pmid: 30444609
[8]
Xiao C, Li Z, Guthrey H, Moseley J, Yang Y, Wozny S, Moutinho H, To B, Berry J J, Gorman B, Yan Y, Zhu K, Al-Jassimt M. Journal of Physical Chemistry C, 2015,119:26904.
[9]
De Roo J, Ibanez M, Geiregat P, Nedelcu G, Walravens W, Maes J, Martins J C, Van Driessche I, Koyalenko M V, Hens Z. ACS Nano, 2016,10:2071. doi: 10.1021/acsnano.5b06295

pmid: 26786064
[10]
Chen Z, Wang J J, Ren Y H, Yu C L, Shum K. Appl. Phys. Lett, 2012,101:4.
[11]
Wang Y, Liu X, Zhang T, Wang X, Kan M, Shi J, Zhao Y. Angew. Chem. Int. Edit., 2019,58:16691.
[12]
Fu L, Zhang Y, Chang B, Li B, Zhou S, Zhang L, Yin L. Journal of Materials Chemistry A, 2018,6:13263. doi: 10.1039/C8TA02899K
[13]
Travis W, Glover E N K, Bronstein H, Scanlon D O, Palgrave R G. Chemical Science, 2016,7:4548.

pmid: 30155101
[14]
Chen M, Ju M G, Carl A D, Zong Y X, Grimm R L, Gu J J, Zeng X C, Zhou Y Y, Padture N P. Joule, 2018,2:558.
[15]
Bai F, Hu Y, Hu Y, Qiu T, Miao X, Zhang S. Solar Energy Materials and Solar Cells, 2018,184:15.
[16]
Igbari F, Wang R, Wang Z K, Ma X J, Wang Q, Wang K L, Zhang Y, Liao L S, Yang Y. Nano Lett., 2019,19:2066. doi: 10.1021/acs.nanolett.9b00238

pmid: 30803237
[17]
Xie C, You P, Liu Z, Li L, Yan F. Light-Science & Applications, 2017,6:17023.
[18]
Tress W. Organic-Inorganic Halide Perovskite Photovoltaics, 2016,53.
[19]
Eperon G E, Paterno G M, Sutton R J, Zampetti A, Haghighirad A A, Cacialli F, Snaith H J. Journal of Materials Chemistry A, 2015,3:19688.
[20]
Frolova L A, Anokhin D V, Piryazev A A, Luchkin S Y, Dremova N N, Stevenson K J, Troshin P A. J. Phys. Chem. Lett., 2017,8:67. doi: 10.1021/acs.jpclett.6b02594

pmid: 27936746
[21]
Bian H, Bai D, Jin Z, Wang K, Liang L, Wang H, Zhang J, Wang Q, Liu S. Joule, 2018,2:1500.
[22]
Lu M, Zhang X, Bai X, Wu H, Shen X, Zhang Y, Zhang W, Zheng W, Song H, Yu W W, Rogach A L. ACS Energy Letters, 2018,3:1571. doi: 10.1021/acsenergylett.8b00835

pmid: 30505950
[23]
Swarnkar A, Marshall A R, Sanehira E M, Chernomordik B D, Moore D T, Christians J A, Chakrabarti T, Luther J M. Science, 2016,354:92. doi: 10.1126/science.aag2700

pmid: 27846497
[24]
Yuan J, Ling X, Yang D, Li F, Zhou S, Shi J, Qian Y, Hu J, Sun Y, Yang Y, Gao X, Duhm S, Zhang Q, Ma W. Joule, 2018,2:2450.
[25]
Xiao M D, Huang F Z, Huang W C, Dkhissi Y, Zhu Y, Etheridge J, Gray-Weale A, Bach U, Cheng Y B, Spiccia L. Angew. Chem. Int. Edit., 2014,53:9898.
[26]
Jeon N J, Noh J H, Kim Y C, Yang W S, Ryu S, Seok S I. Nat. Mater, 2014,13:897.

pmid: 24997740
[27]
Ahn N, Son D Y, Jang I H, Kang S M, Choi M, Park N G. Journal of the American Chemical Society, 2015,137:8696. doi: 10.1021/jacs.5b04930

pmid: 26125203
[28]
Teng P P, Han X P, Li J W, Xu Y, Kang L, Wang Y R Q, Yang Y, Yu T. ACS Appl. Mater. Interfaces, 2018,10:9541. doi: 10.1021/acsami.8b00358

pmid: 29485858
[29]
Lau C F J, Deng X F, Ma Q S, Zheng J H, Yun J S, Green M A, Huang S J, Ho-Baillie A W Y. ACS Energy Letters, 2016,1:573.
[30]
Kulbak M, Gupta S, Kedem N, Levine I, Bendikov T, Hodes G, Cahen D. J. Phys. Chem. Lett., 2016,7:167. doi: 10.1021/acs.jpclett.5b02597

pmid: 26700466
[31]
Kulbak M, Cahen D, Hodes G. J. Phys. Chem. Lett., 2015,6:2452. doi: 10.1021/acs.jpclett.5b00968

pmid: 26266718
[32]
Duan J L, Zhao Y Y, He B L, Tang Q W. Angew. Chem. Int. Edit., 2018,57:3787. doi: 10.1002/anie.201800019
[33]
Sessolo M, Momblona C, Gil-Escrig L, Bolink H J. MRS Bull, 2015,40:660.
[34]
Momblona C, Gil-Escrig L, Bandiello E, Hutter E M, Sessolo M, Lederer K, Blochwitz-Nimoth J, Bolink H J. Energy & Environmental Science, 2016,9:3456.
[35]
Ma Q, Huang S, Wen X, Green M A, Ho-Baillie A W Y. Advanced Energy Materials, 2016,6:1502202.
[36]
Zhang W, Saliba M, Moore D T, Pathak S K, Horantner M T, Stergiopoulos T, Stranks S D, Eperon G E, Alexander-Webber J A, Abate A, Sadhanala A, Yao S H, Chen Y L, Friend R H, Estroff L A, Wiesner U, Snaith H J. Nat. Commun., 2015,6:10.
[37]
Zhou H P, Chen Q, Yang Y. MRS Bull., 2015,40:667. doi: 10.1557/mrs.2015.171
[38]
Giustino F, Snaith H J. ACS Energy Letters, 2016,1:1233. doi: 10.1021/acsenergylett.6b00499
[39]
Tai Q, Tang K C, Yan F. Energy & Environmental Science, 2019,12:2375.
[40]
Meng L, You J, Guo T F, Yang Y. Accounts of Chemical Research, 2016,49:155. doi: 10.1021/acs.accounts.5b00404

pmid: 26693663
[41]
Duan J, Dou D, Zhao Y, Wang Y, Yang X, Yuan H, He B, Tang Q. Materials Today Energy, 2018,10:146.
[42]
Swarnkar A, Mir W J, Nag A. ACS Energy Letters, 2018,3:286.
[43]
Marronnier A, Roma G, Boyer-Richard S, Pedesseau L, Jancu J M, Bonnassieux Y, Katan C, Stoumpos C C, Kanatzidis M G, Even J. ACS Nano, 2018,12:3477.

pmid: 29565559
[44]
Wang K, Jin Z W, Liang L, Bian H, Bai D L, Wang H R, Zhang J R, Wang Q, Liu S Z. Nat. Commun, 2018,9:8.

pmid: 29295990
[45]
Xiang S S, Fu Z H, Li W P, Wei Y, Liu J M, Liu H C, Zhu L Q, Zhang R F, Chen H N. ACS Energy Letters, 2018,3:1824.
[46]
Wang Q, Zheng X, Deng Y, Zhao J, Chen Z, Huang J. Joule, 2017,1:371.
[47]
Ding X H, Chen H B, Wu Y H, Ma S, Dai S Y, Yang S F, Zhu J. Journal of Materials Chemistry A, 2018,6:18258.
[48]
Liu F, Ding C, Zhang Y, Ripolles T S, Kamisaka T, Toyoda T, Hayase S, Minemoto T, Yoshino K, Dai S, Yanagida M, Noguchi H, Shen Q. Journal of the American Chemical Society, 2017,139:16708.

pmid: 29091445
[49]
Hu Y, Bai F, Liu X, Ji Q, Miao X, Qiu T, Zhang S. ACS Energy Letters, 2017,2:2219.
[50]
Wang Y, Zhang T, Kan M, Zhao Y. Journal of the American Chemical Society, 2018,140:12345. doi: 10.1021/jacs.8b07927

pmid: 30247030
[51]
Zhao B Y, Jin S F, Huang S, Liu N, Ma J Y, Xue D J, Han Q W, Ding J, Ge Q Q, Feng Y Q, Hu J S. Journal of the American Chemical Society, 2018,140:11716.
[52]
Wang K, Jin Z, Liang L, Bian H, Wang H, Feng J, Wang Q, Liu S. Nano Energy, 2019,58:175.
[53]
Wang Y, Dar M I, Ono L K, Zhang T Y, Kan M, Li Y W, Zhang L J, Wang X T, Yang Y G, Gao X Y, Qi Y B, Gratzel M, Zhao Y X. Science, 2019,365:591.

pmid: 31395783
[54]
Protesescu L, Yakunin S, Bodnarchuk M I, Krieg F, Caputo R, Hendon C H, Yang R X, Walsh A, Kovalenko M V. Nano Letters, 2015,15:3692. doi: 10.1021/nl5048779

pmid: 25633588
[55]
Sanehira E M, Marshall A R, Christians J A, Harvey S P, Ciesielski P N, Wheeler L M, Schulz P, Lin L Y, Beard M C, Luther J M. Sci. Adv, 2017,3:4204.
[56]
Wheeler L M, Sanehira E M, Marshall A R, Schulz P, Suri M, Anderson N C, Christians J A, Nordlund D, Sokaras D, Kroll T, Harvey S P, Berry J J, Lin L Y, Luther J M. Journal of the American Chemical Society, 2018,140:10504.

pmid: 30044630
[57]
Wang Q, Jin Z W, Chen D, Bai D L, Bian H, Sun J, Zhu G, Wang G, Liu S Z. Advanced Energy Materials, 2018,8:8.
[58]
Ling X, Zhou S, Yuan J, Shi J, Qian Y, Larson B W, Zhao Q, Qin C, Li F, Shi G, Stewart C, Hu J, Zhang X, Luther J M, Duhm S, Ma W. Advanced Energy Materials, 2019,9:1900721.
[59]
Shi J W, Li F C, Yuan J Y, Ling X F, Zhou S J, Qian Y L, Ma W L. Journal of Materials Chemistry A, 2019,7:20936.
[60]
Tong G Q, Chen T T, Li H, Qiu L B, Liu Z H, Dang Y Y, Song W T, Ono L K, Jiang Y, Qi Y B. Nano Energy, 2019,65:10.
[61]
Duan J, Zhao Y, Yang X, Wang Y, He B, Tang Q. Advanced Energy Materials, 2018,8:1802346.
[62]
Yuan H, Zhao Y, Duan J, Wang Y, Yang X, Tang Q. Journal of Materials Chemistry A, 2018,6:24324.
[63]
Beal R E, Slotcavage D J, Leijtens T, Bowring A R, Belisle R A, Nguyen W H, Burkhard G F, Hoke E T, McGehee M D. J. Phys. Chem. Lett., 2016,7:746.
[64]
Sutton R J, Eperon G E, Miranda L, Parrott E S, Kamino B A, Patel J B, Horantner M T, Johnston M B, Haghighirad A A, Moore D T, Snaith H J. Advanced Energy Materials, 2016,6:1502458.
[65]
Bai D L, Bian H, Jin Z W, Wang H R, Meng L N, Wang Q, Liu S Z. Nano Energy, 2018,52:408.
[66]
Gao Y X, Dong Y N, Huang K Q, Zhang C J, Liu B, Wang S T, Shi J, Xie H P, Huang H, Xiao S, He J, Gao Y L, Hatton R A, Yang J L. ACS Photonics, 2018,5:4104.
[67]
Zhang B, Bi W, Wu Y, Chen C, Li H, Song Z, Dai Q, Xu L, Song H. ACS Appl. Mater. Interfaces, 2019,11:33868. doi: 10.1021/acsami.9b09171

pmid: 31441638
[68]
Nam J K, Chai S U, Cha W, Choi Y J, Kim W, Jung M S, Kwon J, Kim D, Park J H. Nano Letters, 2017,17:2028. doi: 10.1021/acs.nanolett.7b00050

pmid: 28170276
[69]
Lau C F J, Zhang M, Deng X F, Zheng J H, Bing J M, Ma Q S, Kim J, Hu L, Green M A, Huang S J, Ho-Baillie A. ACS Energy Letters, 2017,2:2319.
[70]
Liang J, Zhao P, Wang C, Wang Y, Hu Y, Zhu G, Ma L, Liu J, Jin Z. Journal of the American Chemical Society, 2017,139:14009.

pmid: 28933843
[71]
Liu C, Li W, Li H, Wang H, Zhang C, Yang Y, Gao X, Xue Q, Yip H L, Fan J, Schropp R E I, Mai Y. Advanced Energy Materials, 2019,9:1803572.
[72]
Xiang W, Wang Z, Kubicki D J, Tress W, Luo J, Prochowicz D, Akin S, Emsley L, Zhou J, Dietler G, Graetzel M, Hagfeldt A. Joule, 2019,3:205.
[73]
Yan L, Xue Q, Liu M, Zhu Z, Tian J, Li Z, Chen Z, Chen Z, Yan H, Yip H L, Cao Y. Adv. Mater., 2018,30:1802509.
[74]
Zeng Q, Zhang X, Feng X, Lu S, Chen Z, Yong X, Redfern S A T, Wei H, Wang H, Shen H, Zhang W, Zheng W, Zhang H, Tse J S, Yang B. Adv. Mater., 2018,30:1705393.
[75]
Ye Q F, Zhao Y, Mu S Q, Ma F, Gao F, Chu Z M, Yin Z G, Gao P Q, Zhang X W, You J B. Adv. Mater, 2019,31:6.
[76]
Wang H, Cao S, Yang B, Li H, Wang M, Hu X, Sun K, Zang Z. Solar Rrl, 2020,4:1900363. doi: 10.1002/solr.v4.1
[77]
Bai F, Zhang J, Yuan Y, Liu H, Li X, Chueh C C, Yan H, Zhu Z, Jen A K Y. Adv. Mater., 2019,31:1904735.
[78]
Luo P F, Xia W, Zhou S W, Sun L, Cheng J G, Xu C X, Lu Y W. J. Phys. Chem. Lett., 2016,7:3603.

pmid: 27569604
[79]
Zhang T Y, Dar M I, Li G, Xu F, Guo N J, Gratzel M, Zhao Y X. Sci. Adv, 2017,3:6.
[80]
Bian H, Wang Q, Yang S, Yan C, Wang H, Liang L, Jin Z, Wang G, Liu S. Journal of Materials Chemistry A, 2019,7:5740.
[81]
Liang J, Wang C X, Wang Y R, Xu Z R, Lu Z P, Ma Y, Zhu H F, Hu Y, Xiao C C, Yi X, Zhu G Y, Lv H L, Ma L B, Chen T, Tie Z X, Jin Z, Liu J. Journal of the American Chemical Society, 2016,138:15829.

pmid: 27960305
[82]
Chen C Y, Lin H Y, Chiang K M, Tsai W L, Huang Y C, Tsao C S, Lin H W. Adv. Mater, 2017,29:1605290.
[83]
Wang Z, Liu X, Lin Y, Liao Y, Wei Q, Chen H, Qiu J, Chen Y, Zheng Y. Journal of Materials Chemistry A, 2019,7:2773.
[84]
Kim D H, Heo J H, Im S H. ACS Appl. Mater. Interfaces, 2019,11:19123. doi: 10.1021/acsami.9b03413

pmid: 31070346
[85]
Shum K, Chen Z, Qureshi J, Yu C, Wang J J, Pfenninger W, Vockic N, Midgley J, Kenney J T. Appl. Phys. Lett., 2010,96:221903.
[86]
Xu P, Chen S, Xiang H J, Gong X G, Wei S H. Chemistry of Materials, 2014,26:6068.
[87]
Zhang J, Yu C, Wang L, Li Y, Ren Y, Shum K. Sci. Rep., 2014,4:6954.

pmid: 25378076
[88]
Xing G, Kumar M H, Chong W K, Liu X, Cai Y, Ding H, Asta M, Gratzel M, Mhaisalkar S, Mathews N, Sum T C. Adv. Mater., 2016,28:8191. doi: 10.1002/adma.201601418

pmid: 27417520
[89]
Chung I, Lee B, He J Q, Chang R P H, Kanatzidis M G. Nature, 2012,485:486.

pmid: 22622574
[90]
Chung I, Song J H, Im J, Androulakis J, Malliakas C D, Li H, Freeman A J, Kenney J T, Kanatzidis M G. Journal of the American Chemical Society, 2012,134:8579.

pmid: 22578072
[91]
Kumar M H, Dharani S, Leong W L, Boix P P, Prabhakar R R, Baikie T, Shi C, Ding H, Ramesh R, Asta M, Graetzel M, Mhaisalkar S G, Mathews N. Adv. Mater., 2014,26:7122.

pmid: 25212785
[92]
Wang N, Zhou Y, Ju M G, Garces H F, Ding T, Pang S, Zeng X C, Padture N P, Sun X W. Advanced Energy Materials, 2016,6:1601130
[93]
Marshall K P, Walker M, Walton R I, Hatton R A. Nature Energy, 2016,1:16178.
[94]
Chen M, Ju M G, Garces H F, Carl A D, Ono L K, Hawash Z, Zhang Y, Shen T, Qi Y, Grimm R L, Pacifici D, Zeng X C, Zhou Y, Padture N P. Nat. Commun, 2019,10:16.

pmid: 30604757
[95]
Wang Y, Tu J, Li T, Tao C, Deng X, Li Z. Journal of Materials Chemistry A, 2019,7:7683. doi: 10.1039/C8TA10901J
[96]
Chen L J, Lee C R, Chuang Y J, Wu Z H, Chen C. J. Phys. Chem. Lett., 2016,7:5028. doi: 10.1021/acs.jpclett.6b02344

pmid: 27973874
[97]
Moghe D, Wang L, Traverse C J, Redoute A, Sponseller M, Brown P R, Bulovic V, Lunt R R. Nano Energy, 2016,28:469.
[98]
Gupta S, Bendikov T, Hodes G, Cahen D. ACS Energy Letters, 2016,1:1028.
[99]
Gupta S, Hodes G. SN Applied Sciences, 2019,1:1066.
[100]
Song T B, Yokoyama T, Stoumpos C C, Logsdon J, Cao D H, Wasielewski M R, Aramaki S, Kanatzidis M G. Journal of the American Chemical Society, 2017,139:836. doi: 10.1021/jacs.6b10734

pmid: 27977193
[101]
Sabba D, Mulmudi H K, Prabhakar R R, Krishnamoorthy T, Baikie T, Boix P P, Mhaisalkar S, Mathews N. Journal of Physical Chemistry C, 2015,119:1763.
[102]
Li W, Li J, Li J, Fan J, Mai Y, Wang L. Journal of Materials Chemistry A, 2016,4:17104.
[103]
Xu H, Duan J, Zhao Y, Jiao Z, He B, Tang Q. Journal of Power Sources, 2018,399:76.
[104]
Stoumpos C C, Malliakas C D, Kanatzidis M G. Inorg. Chem, 2013,52:9019. doi: 10.1021/ic401215x

pmid: 23834108
[105]
Li W, Wang Z, Deschler F, Gao S, Friend R H, Cheetham A K. Nature Reviews Materials, 2017,2:16099.
[106]
Krishnamoorthy T, Ding H, Yan C, Leong W L, Baikie T, Zhang Z, Sherburne M, Li S, Asta M, Mathews N, Mhaisalkar S G. Journal of Materials Chemistry A, 2015,3:23829.
[107]
Liu D, Li Q, Jing H, Wu K. RSC Advances, 2019,9:3279. doi: 10.1039/C8RA10251A
[108]
Tang L C, Chang C S, Huang J. J. Phys.: Condens. Matter., 2000,12:9129.
[109]
Roknuzzaman M, Ostrikov K, Wang H, Du A, Tesfamichael T. Sci. Rep., 2017,7:14025. doi: 10.1038/s41598-017-13172-y

pmid: 29070848
[110]
Wu X, Song W, Li Q, Zhao X, He D, Quan Z. Chemistry-an Asian Journal, 2018,13:1654.
[111]
Heo J H, Kim J, Kim H, Moon S H, Im S H, Hong K H. J. Phys. Chem. Lett., 2018,9:6024.

pmid: 30259748
[112]
Lee B, Krenselewski A, Baik S I, Seidman D N, Chang R P H. Sustainable Energy & Fuels, 2017,1:710.
[113]
Kim Y, Yang Z Y, Jain A, Voznyy O, Kim G H, Liu M, Quan L N, de Arquer F P G, Comin R, Fan J Z, Sargent E H, Angew. Chem. Int. Edit., 2016,55:9586.
[114]
Liang G X, Chen X Y, Chen E H, Lan H B, Zheng Z H, Pan P, Tian X Q, Duan J Y, Wei Y D, Su Z H. J. Phys. Chem. C, 2019,123:27423.
[115]
Dolzhnikov D S, Wang C, Xu Y, Kanatzidis M G, Weiss E A. Chemistry of Materials, 2017,29:7901.
[116]
Qiu X, Cao B, Yuan S, Chen X, Qiu Z, Jiang Y, Ye Q, Wang H, Zeng H, Liu J, Kanatzidis M G. Solar Energy Materials and Solar Cells, 2017,159:227.
[117]
Jiang Y, Zhang H, Qiu X, Cao B. Materials Letters, 2017,199:50.
[118]
Xiao N, Tang N, Qiu Y, Liu D, Wang K. Sol. Energy, 2020,204:429.
[119]
Johansson M B, Zhu H, Johansson E M J. J. Phys. Chem. Lett., 2016,7:3467.

pmid: 27538852
[120]
Slavney A H, Hu T, Lindenberg A M, Karunadasa H I. Journal of the American Chemical Society, 2016,138:2138. doi: 10.1021/jacs.5b13294

pmid: 26853379
[121]
Gao W, Ran C, Xi J, Jiao B, Zhang W, Wu M, Hou X, Wu Z. ChemPhysChem, 2018,19:1696.

pmid: 29667287
[122]
Ning W, Wang F, Wu B, Lu J, Yan Z, Liu X, Tao Y, Liu J M, Huang W, Fahlman M, Hultman L, Sum T C, Gao F. Adv. Mater., 2018,30: doi: 10.1002/adma.201804470

pmid: 30393893
[123]
Wu C, Zhang Q, Liu Y, Luo W, Guo X, Huang Z, Ting H, Sun W, Zhong X, Wei S, Wang S, Chen Z, Xiao L. Advanced Science, 2018,5:1700759.

pmid: 29593974
[124]
Greul E, Petrus M L, Binek A, Docampo P, Bein T. Journal of Materials Chemistry A, 2017,5:19972.
[125]
Zhang Z, Wu C, Wang D, Liu G, Zhang Q, Luo W, Qi X, Guo X, Zhang Y, Lao Y, Qu B, Xiao L, Chen Z. Organic Electronics, 2019,74:204. doi: 10.1016/j.orgel.2019.06.037
[126]
Pantaler M, Cho K T, Queloz V I E, Benito I G, Fettkenhauer C, Anusca I, Nazeeruddin M K, Lupascu D C, Grancini G. ACS Energy Letters, 2018,3:1781.
[127]
Zai H, Zhu C, Xie H, Zhao Y, Shi C, Chen Z, Ke X, Sui M, Chen C, Hu J, Zhang Q, Gao Y, Zhou H, Li Y, Chen Q. ACS Energy Letters, 2018,3:30.
[128]
Akin S, Altintas Y, Mutlugun E, Sonmezoglu S. Nano Energy, 2019,60:557.
[129]
Chen C, Wu Y, Liu L, Gao Y, Chen X, Bi W, Chen X, Liu D, Dai Q, Song H. Advanced Science, 2019,6:1802046. doi: 10.1002/advs.201802046

pmid: 31179207
[130]
Jin J, Li H, Bi W, Chen C, Zhang B, Xu L, Dong B, Song H, Dai Q. Solar Energy, 2020,198:187. doi: 10.1016/j.solener.2020.01.048
[131]
Gao Y, Wu Y, Lu H, Chen C, Liu Y, Bai X, Yang L, Yu W W, Dai Q, Zhang Y. Nano Energy, 2019,59:517.
[132]
Zheng X, Troughton J, Gasparini N, Lin Y, Wei M, Hou Y, Liu J, Song K, Chen Z, Yang C, Turedi B, Alsalloum A Y, Pan J, Chen J, Zhumekenov A A, Anthopoulos T D, Han Y, Baran D, Mohammed O F, Sargent E H, Bakr O M. Joule, 2019,3:1963.
[133]
Zhou D, Liu D, Pan G, Chen X, Li D, Xu W, Bai X, Song H. Adv. Mater., 2017,29:1704149.
[134]
Li Y N, Duan J L, Yuan H W, Zhao Y Y, He B L, Tang Q W. Solar Rrl, 2018,2:8.
[135]
Guo Y, Zhao F, Tao J, Jiang J, Zhang J, Yang J, Hu Z, Chu J. ChemSusChem, 2019,12:983.

pmid: 30614214
[136]
Xiang S, Li W, Wei Y, Liu J, Liu H, Zhu L, Yang S, Chen H. iScience, 2019,15:156. doi: 10.1016/j.isci.2019.04.025

pmid: 31059998
[137]
Tan X, Liu X, Liu Z, Sun B, Li J, Xi S, Shi T, Tang Z, Liao G. Applied Surface Science, 2020,499:143990.
[138]
Li F, Pei Y, Xiao F, Zeng T, Yang Z, Xu J, Sun J, Peng B, Liu M. Nanoscale, 2018,10:6318. doi: 10.1039/c8nr00758f

pmid: 29589862
[139]
Jiang Y, Yuan J, Ni Y, Yang J, Wang Y, Jiu T, Yuan M, Chen J. Joule, 2018,2:1356. doi: 10.1016/j.joule.2018.05.004
[140]
Wang Y, Zhang T, Kan M, Li Y, Wang T, Zhao Y. Joule, 2018,2:2065. doi: 10.1016/j.joule.2018.06.013
[141]
Tsai H, Nie W, Blancon J C, Toumpos C C S, Asadpour R, Harutyunyan B, Neukirch A J, Verduzco R, Crochet J J, Tretiak S, Pedesseau L, Even J, Alam M A, Gupta G, Lou J, Ajayan P M, Bedzyk M J, Kanatzidis M G, Mohite A D. Nature, 2016,536:312. doi: 10.1038/nature18306

pmid: 27383783
[142]
Zhang X, Ren X, Liu B, Munir R, Zhu X, Yang D, Li J, Liu Y, Smilgies D M, Li R, Yang Z, Niu T, Wang X, Amassian A, Zhao K, Liu S. Energy & Environmental Science, 2017,10:2095.
[143]
Bai D, Zhang J, Jin Z, Bian H, Wang K, Wang H, Liang L, Wang Q, Liu S F. ACS Energy Letters, 2018,3:970. doi: 10.1021/acsenergylett.8b00270
[144]
Lau C F J, Deng X, Zheng J, Kim J, Zhang Z, Zhang M, Bing J, Wilkinson B, Hu L, Patterson R, Huang S, Ho-Baillie A. Journal of Materials Chemistry A, 2018,6:5580. doi: 10.1039/C7TA11154A
[145]
Yang F, Hirotani D, Kapil G, Kamarudin M A, Ng C H, Zhang Y, Shen Q, Hayase S. Angew. Chem. Int. Edit., 2018,57:12745. doi: 10.1002/anie.201807270
[146]
Fang Z, Shang M, Hou X, Zheng Y, Du Z, Yang Z, Chou K C, Yang W, Wang Z L, Yang Y. Nano Energy, 2019,61:389. doi: 10.1016/j.nanoen.2019.04.084
[147]
Jena A K, Kulkarni A, Sanehira Y, Ikegami M, Miyasaka T. Chemistry of Materials, 2018,30:6668. doi: 10.1021/acs.chemmater.8b01808
[148]
Guo Z, Zhao S, Liu A, Kamata Y, Teo S, Yang S, Xu Z, Hayase S, Ma T. ACS Appl. Mater. Interfaces, 2019,11:19994.

pmid: 31083899
[149]
Sharma S, Weiden N, Weiss A. Zeitschrift für Physikalische Chemie, 1992,175:63. doi: 10.1524/zpch.1992.175.Part_1.063
[150]
Ma Q, Huang S, Chen S, Zhang M, Lau C F J, Lockrey M N, Mulmudi H K, Shan Y, Yao J, Zheng J, Deng X, Catchpole K, Green M A, Ho-Baillie A W Y. Journal of Physical Chemistry C, 2017,121:19642. doi: 10.1021/acs.jpcc.7b06268
[151]
Amudhavalli A, Padmavathy R, Rajeswarapalanichamy R, Iyakutti K. Indian Journal of Physics, 2019,1.
[152]
Padmavathy R, Amudhavalli A, Manikandan M, Rajeswarapalanichamy R, Iyakutti K, Kushwaha A K. Journal of Electronic Materials, 2018,48:1243. doi: 10.1007/s11664-018-06850-8
[153]
Bella F, Sacco A, Salvador G P, Bianco S, Tresso E, Pirri C F, Bongiovanni R. Journal of Physical Chemistry C, 2013,117:20421. doi: 10.1021/jp405363x
[154]
Jiang Q, Rebollar D, Gong J, Piacentino E L, Zheng C, Xu T. Angew. Chem. Int. Edit., 2015,54:7617. doi: 10.1002/anie.201503038
[155]
Daub M, Hillebrecht H. Angew. Chem. Int. Edit., 2015,54:11016. doi: 10.1002/anie.201506449
[156]
Yao Z, Jin Z, Zhang X, Wang Q, Zhang H, Xu Z, Ding L, Liu S. Journal of Materials Chemistry C, 2019,7:13736. doi: 10.1039/C9TC04851K
[157]
Zhao H, Han Y, Xu Z, Duan C, Yang S, Yuan S, Yang Z, Liu Z, Liu S. Advanced Energy Materials, 2019,9:1902279. doi: 10.1002/aenm.v9.40
[158]
Ye L, Wang H, Wei Y, Guo P, Yang X, Ye Q, Wang H. ACS Applied Energy Materials, 2020,3:658. doi: 10.1021/acsaem.9b01859
[159]
Heo J H, Im S H, Noh J H, Mandal T N, Lim C S, Chang J A, Lee Y H, Kim H J, Sarkar A, Nazeeruddin M K, Graetzel M, Seok S I. Nature Photonics, 2013,7:487.
[160]
Eperon G E, Burlakov V M, Docampo P, Goriely A, Snaith H J. Advanced Functional Materials, 2014,24:151. doi: 10.1002/adfm.v24.1
[161]
Akbulatov A F, Luchkin S Y, Frolova L A, Dremova N N, Gerasimov K L, Zhidkov I S, Anokhin D V, Kurmaev E Z, Stevenson K J, Troshin P A. J. Phys. Chem. Lett., 2017,8:1211. doi: 10.1021/acs.jpclett.6b03026

pmid: 28220700
[162]
Sanchez S, Christoph N, Grobety B, Phung N, Steiner U, Saliba M, Abate A. Advanced Energy Materials, 2018,8:1802060. doi: 10.1002/aenm.v8.30
[163]
Barrows A T, Pearson A J, Kwak C K, Dunbar A D F, Buckley A R, Lidzey D G. Energy & Environmental Science, 2014,7:2944.
[164]
Fan Y, Fang J, Chang X, Tang M C, Barrit D, Xu Z, Jiang Z, Wen J, Zhao H, Niu T, Smilgies D M, Jin S, Liu Z, Li E Q, Amassian A, Liu S, Zhao K. Joule, 2019,3:2485. doi: 10.1016/j.joule.2019.07.015
[165]
Liu X, Xiao Y, Zeng Q, Jiang J, Li Y. J. Phys. Chem. Lett., 2019,10:6382. doi: 10.1021/acs.jpclett.9b02644

pmid: 31593470
[166]
Liu D, Lin Q, Zang Z, Wang M, Wangyang P, Tang X, Zhou M, Hu W. ACS Appl. Mater. Interfaces, 2017,9:6171. doi: 10.1021/acsami.6b15149

pmid: 28112895
[167]
Rao H, Ye S, Gu F, Zhao Z, Liu Z, Bian Z, Huang C. Advanced Energy Materials, 2018,8:1800758. doi: 10.1002/aenm.v8.23
[168]
Hu Y, Zhang S, Shu T, Qiu T, Bai F, Ruan W, Xu F. Journal of Materials Chemistry A, 2018,6:20365. doi: 10.1039/C8TA06719H
[1] Shuyang Yu, Wenlei Luo, Jingying Xie, Ya Mao, Chao Xu. Review on Mechanism and Model of Heat Release and Safety Modification Technology of Lithium-Ion Batteries [J]. Progress in Chemistry, 2023, 35(4): 620-642.
[2] Yong Zhang, Hui Zhang, Yi Zhang, Lei Gao, Jianchen Lu, Jinming Cai. Surface Synthesis of Heteroatoms-Doped Graphene Nanoribbons [J]. Progress in Chemistry, 2023, 35(1): 105-118.
[3] Jingjing Li, Hongji Li, Qiang Huang, Zhe Chen. Study on the Mechanism of the Influence of Doping on the Properties of Cathode Materials of Sodium Ion Batteries [J]. Progress in Chemistry, 2022, 34(4): 857-869.
[4] Wei Zhang, Kang Xie, Yunhao Tang, Chuan Qin, Shan Cheng, Ying Ma. Application of Transition Metal Based MOF Materials in Selective Catalytic Reduction of Nitrogen Oxides [J]. Progress in Chemistry, 2022, 34(12): 2638-2650.
[5] Meng Pengfei, Zhang Xiaorong, Liao Shijun, Deng Yijie. Enhancing the Performance of Atomically Dispersed Carbon-Based Catalysts Through Metallic/Nonmetallic Elements Co-Doping Towards Oxygen Reduction [J]. Progress in Chemistry, 2022, 34(10): 2190-2201.
[6] Zehao Hu, Ting Chen, Yanqiao Xu, Weihui Jiang, Zhixiang Xie. Surface Coating Strategy: From Improving the Luminescence Stability to Lighting and Display Applications of All-Inorganic Cesium Lead Halide Perovskite Nanocrystals [J]. Progress in Chemistry, 2021, 33(9): 1614-1626.
[7] Yun Lu, Hongjuan Shi, Yuefeng Su, Shuangyi Zhao, Lai Chen, Feng Wu. Application of Element-Doped Carbonaceous Materials in Lithium-Sulfur Batteries [J]. Progress in Chemistry, 2021, 33(9): 1598-1613.
[8] Yifan Zhao, Qiyun Mao, Xiaoya Zhai, Guoying Zhang. Structural Defects Regulation of Bismuth Molybdate Photocatalyst [J]. Progress in Chemistry, 2021, 33(8): 1331-1343.
[9] Jinhuo Gao, Jiafeng Ruan, Yuepeng Pang, Hao Sun, Junhe Yang, Shiyou Zheng. High Temperature Properties of LiNi0.5Mn1.5O4 as Cathode Materials for High Voltage Lithium-Ion Batteries [J]. Progress in Chemistry, 2021, 33(8): 1390-1403.
[10] Gaojie Yan, Qiong Wu, Linghua Tan. Design, Synthesis and Applications of Nitrogen-Rich Azole-Based Energetic Metal Complexes [J]. Progress in Chemistry, 2021, 33(4): 689-712.
[11] Huirong Peng, Molang Cai, Shuang Ma, Xiaoqiang Shi, Xuepeng Liu, Songyuan Dai. Fabrication and Stability of All-Inorganic Perovskite Solar Cells [J]. Progress in Chemistry, 2021, 33(1): 136-150.
[12] Yi Zhou, Jingjing Hu, Fanning Meng, Caiyun Liu, Liguo Gao, Tingli Ma. Energy Band Regulation in 2D Perovskite Solar Cells [J]. Progress in Chemistry, 2020, 32(7): 966-977.
[13] Fanning Meng, Caiyun Liu, Liguo Gao, Tingli Ma. Strategies for Interfacial Modification in Perovskite Solar Cells [J]. Progress in Chemistry, 2020, 32(6): 817-835.
[14] Xiujun Cao, Lei Zhang, Yuanxin Zhu, Xin Zhang, Chaonan Lv, Changmin Hou. Design and Synthesis of Sillenite-Based Micro/Nanomaterials and Their Applications in Photocatalysis [J]. Progress in Chemistry, 2020, 32(2/3): 262-273.
[15] Zhiyuan Lu, Yanni Liu, Shijun Liao. Enhancing the Stability of Lithium-Rich Manganese-Based Layered Cathode Materials for Li-Ion Batteries Application [J]. Progress in Chemistry, 2020, 32(10): 1504-1514.