中文
Announcement
More
Progress in Chemistry 2020, Vol. 32 Issue (10): 1504-1514 DOI: 10.7536/PC200220 Previous Articles   Next Articles

Special Issue: 锂离子电池

Enhancing the Stability of Lithium-Rich Manganese-Based Layered Cathode Materials for Li-Ion Batteries Application

Zhiyuan Lu1, Yanni Liu1, Shijun Liao1,**()   

  1. 1. The Key Laboratory of Fuel Cells Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
  • Received: Revised: Online: Published:
  • Contact: Shijun Liao
  • About author:
  • Supported by:
    National Key Research and Development Program of China(2017YFB0102900); National Key Research and Development Program of China(2016YFB0101201); National Natural Science Foundation of China(21476088); National Natural Science Foundation of China(21776104); Guangdong Provincial Department of Science and Technology(2015B010106012); Guangzhou Science Technology and Innovation Committee(201504281614372); Guangzhou Science Technology and Innovation Committee(2016GJ006)
Richhtml ( 39 ) PDF ( 1330 ) Cited
Export

EndNote

Ris

BibTeX

Lithium-rich manganese-based layered cathode materials (xLi2MnO3·(1-x)LiMO2, M=Ni, Co, Mn, etc.), owing to their high specific capacity (≥ 250 mAh·g-1), low cost and environmental friendliness, are considered as one of the best candidate cathode materials for the new generation of lithium-ion batteries. However, these materials suffer from severe capacity/voltage fading during the cycle process and low rate capability which seriously hinder commercial development. In this paper, we analyze the structural characteristics and the reasons which lead to the deterioration of the electrochemical performance of the lithium-rich manganese-based layered cathode materials, systematically review the latest progress and achievements on improving the stability of the cathode materials, and the efforts to improve the electrochemical properties of the cathode materials through bulk doping and surface modification. In this process, the effects of bulk doping at different sites and different coating materials on the structure and electrochemical behavior of lithium-rich manganese-based layered cathode materials are further analyzed. Finally, considering the advantages and disadvantages of the two modification methods of bulk doping and surface coating, a joint modification mechanism combining bulk doping and surface coating has been suggested to improve the stability of lithium-rich cathode materials in the long cycle process, and the introduction and prospect of this mechanism are also given.

Contents

1 Introduction

2 Structural characteristic and electrochemical behaviors of lithium-rich manganese-based materials

2.1 Lithium-rich manganese-based materials and its structural characteristic

2.2 Charge-discharge reaction mechanism

2.3 Structural evolution and decay mechanism

3 Bulk doping improves the cycle stability of lith- ium-rich manganese-based materials

3.1 Li site doping

3.2 TM site doping

3.3 O site doping

4 Surface modification improves the cycle stability of lithium-rich manganese-based materials.

4.1 Surface coating

4.2 Surface treatment

5 A joint mechanism

6 Conclusion and outlook

Fig.1 Crystal structures and XRD of the (a) LiTMO2, (b) Li2MnO3-like, (c) LLi1+xNiaCobMnc[26,27,28,29,30]; (d) Aberration-corrected scanning transmission electron microscopy (STEM) image of the Li[Li0.2Ni0.2Mn0.6]O2 crystal[31]
Fig.2 Lithium-rich manganese-based layered cathode materials (a) galvanostatic charge-discharge voltage profiles measured at 0.1 C, (b) differential capacity (dQ/dV vs E) plots obtained from voltage profiles[48]
Fig.3 (a) The participation degree of different layered oxides in lattice oxygen during the electrochemical reaction process[42]. (b) Schematic of local atomic coordination and electron band structure of Li-excess cathodes, that enables the anionic redox reaction[50]
Fig.4 The mechanism of the lithium-rich layered cathode materials change during the cycle[60]
Fig.5 (a, b) The charge-discharge curves of the unmodified anode material (PLR) and modified anode material (SLR) at 0.1 C, respectively. (c, e) the charge-discharge curves and cycling stability tested at 0.2 C and (d) rate performance of PLR and SLR[68]
Fig.6 Illustration of the C-coating[78]
Table 1 Electrochemical performance of typical modification research works about lithium-rich manganese-based layered cathode materials in recent years
[1]
Ji M, Xu Y, Zhao Z, Zhang H, Liu D, Zhao C, Qian X, Zhao C. J. Power Sources, 2014,263:296.
[2]
Cao Y, Li M, Lu J, Liu J, Amine K. Nat. Nanotech., 2019,14:200.
[3]
Yuan L X, Wang Z H, Zhang W X, Hu X L, Chen J T, Huang Y H, Goodenough J B. Energ. Environ. Sci, 2011,4:269. doi: 10.1039/C0EE00029A
[4]
Yu S H, Feng X, Zhang N, Seok J, Abruna H D. Acc. Chem. Res, 2018,51:273.

pmid: 29373023
[5]
Kim T, Song W, Son D Y, Ono L K, Qi Y. J. Mater. Chem. A, 2019,7:2942.
[6]
Thackeray M M, Kang S H, Johnson C S, Vaughey J T, Benedek R, Hackney S A. J. Mater. Chem., 2007,17:3112.
[7]
Rozier P, Tarascon J M. J. Electrochem. Soc., 2015,162:A2490.
[8]
Manthiram A, Knight J C, Myung S T, Oh S M, Sun Y K. Adv. Energy Mater, 2016,6.

pmid: 27134617
[9]
Shi J L, Xiao D D, Ge M, Yu X, Chu Y, Huang X, Zhang X D, Yin Y X, Yang X Q, Guo Y G, Gu L, Wan L. J. Adv. Mater., 2018,30.
[10]
Ito A, Li D, Sato Y, Arao M, Watanabe M, Hatano M, Horie H, Ohsawa Y. J. Power Sources, 2010,195:567.
[11]
Gu M, Belharouak I, Zheng J, Wu H, Xiao J, Genc A, Amine K, Thevuthasan S, Baer D R, Zhang J G, Browning N D, Liu J, Wang C. ACS Nano, 2013,7:760.

pmid: 23237664
[12]
Gauthier M, Carney T J, Grimaud A, Giordano L, Pour N, Chang H H, Fenning D P, Lux S F, Paschos O, Bauer C, Magia F, Lupart S, Lamp P, Shao-Horn Y. J. Phys. Chem. Lett., 2015,6:4653.

pmid: 26510477
[13]
Sathiya M, Abakumov A M, Foix D, Rousse G, Ramesha K, Saubanere M, Doublet M L, Vezin H, Laisa C P, Prakash A S, Gonbeau D, VanTendeloo G, Tarascon J M. Nature Mater., 2015,14:230.
[14]
Yu H, Zhou H. J. Phys. Chem. Lett., 2013,4:1268.

pmid: 26282140
[15]
Thackeray M M, de Kock A, Rossouw M H, Liles D, Bittihn R, Hoge D. J. Electrochem. Soc., 1992,139:363.
[16]
Rossouw M H, Liles D C, Thackeray M M. J. Solid State Chem., 1993,104:464.
[17]
Numata K, Sakaki C, Yamanaka S. Chem. Lett., 1997,725.
[18]
Numata K, Sakaki C, Yamanaka S. Solid State Ionics, 1999,117:257.
[19]
Kalyani P, Chitra S, Mohan T, Gopukumar S. J. Power Sources, 1999,80:103.
[20]
Johnson C S, Kim J S, Lefief C, Li N, Vaughey J T, Thackeray M M. Electrochem. Commun, 2004,6:1085.
[21]
Jeom-Soo K, Johnson C S, Vaughey J T, Thackeray M M, Hackney S A, Wonsub Y, Grey C P. Chem. Mater, 2004,16:1996.
[22]
Thackeray M M, Johnson C S, Vaughey J T, Li N, Hackney S A. J. Mater. Chem., 2005,15:2257. doi: 10.1039/b417616m
[23]
Park C W, Kim S H, Mangani I R, Lee J H, Boo S, Kim J. Mater. Res. Bull, 2007,42:1374.
[24]
Guo X J, Li Y X, Zheng M, Zheng J M, Li J, Gong Z L, Yang Y. J. Power Sources, 2008,184:414. doi: 10.1016/j.jpowsour.2008.04.013
[25]
Jacob C, Jian J, Zhu Y, Su Q, Wang H. J.Mater. Chem. A, 2014,2:2283.
[26]
Yu H, Ishikawa R, So Y G, Shibata N, Kudo T, Zhou H, Ikuhara Y. Angew. Chem. Int. Ed. Engl, 2013,52:5969. doi: 10.1002/anie.201301236

pmid: 23616487
[27]
Huang Z D, Liu X M, Zhang B, Oh S W, Ma P C, Kim J K. Scripta Mater, 2011,64:122.
[28]
Boulineau A, Croguennec L, Delmas C, Weill F. Chem. Mater., 2009,21:4216.
[29]
Choi J W, Aurbach D. Nature Rev. Materials, 2016,1.

pmid: 29214058
[30]
Jarvis K A, Deng Z, Allard L F, Manthiram A, Ferreira P J. J. Mater. Chem., 2012,22:11550. doi: 10.1039/c2jm30575e
[31]
Jarvis K A, Deng Z, Allard L F, Manthiram A, Ferreira P J. Chem. Mater, 2011,23:3614.
[32]
Thackeray M M, Kang S H, Johnson C S, Vaughey J T, Hackney S A. Electrochem. Commun., 2006,8:1531.
[33]
Thackeray M M, Kang S H, Johnson C S, Vaughey J T, Benedek R, Hackney S A. J. Mater. Chem., 2007,17.

pmid: 19343109
[34]
Yu H, Kim H, Wang Y, He P, Asakura D, Nakamura Y, Zhou H. PCCP, 2012,14:6584.

pmid: 22456724
[35]
Mohanty D, Huq A, Payzant E A, Sefat A S, Li J, Abraham D P, Wood D L, III , Daniel C. Chem. Mater., 2013,25:4064.
[36]
Lu Z H, Chen Z H, Dahn J R. Chem. Materials, 2003,15:3214.
[37]
Johnson C S, Kim J S, Kropf A J, Kahaian A J, Vaughey J T, Fransson L M L, Edstrom K, Thackeray M M. Chem. Mater., 2003,15:2313.
[38]
Yabuuchi N, Yoshii K, Myung S T, Nakai I, Komaba S. J. Am. Chem. Soc., 2011,133:4404.

pmid: 21375288
[39]
Genevois C, Koga H, Croguennec L, Menetrier M, Delmas C, Weill F. J. Phys. Chem. C, 2015,119:75.
[40]
Assat G, Tarascon J M. Nature Energy, 2018,3:373.
[41]
Sharifi-Asl S, Lu J, Amine K, Shahbazian-Yassar R. Adv. Energy Mater, 2019,9.
[42]
Qiu B, Zhang M, Xia Y, Liu Z, Meng Y S. Chem. Mater, 2017,29:908. doi: 10.1021/acs.chemmater.6b04815
[43]
Pearce P E, Perez A J, Rousse G, Saubanere M, Batuk D, Foix D, McCalla E, Abakumov A M, Van Tendeloo G, Doublet M L, Tarascon J M. Nature Mater., 2017,16:580.
[44]
Saubanere M, McCalla E, Tarascon J M, Doublet M L. Energ. Environ. Sci., 2016,9:984.
[45]
Wu Y, Ma C, Yang J, Li Z, Allard L F, Liang C, Chi M. J. Mater. Chem. A, 2015,3:5385.
[46]
Kim J H, Sun Y K. J. Power Sources, 2003,119:166.
[47]
Hong Y S, Park Y J, Ryu K S, Chang S H, Kim M G. J. Mater.Chem., 2004,14:1424.
[48]
Nayak P K, Grinblat J, Levi M, Markovsky B, Aurbach D. J. Electrochem. Soc., 2014,161:A1534.
[49]
Zhu Z, Kushima A, Yin Z, Qi L, Amine K, Lu J, Li J. Nature Energy, 2016,1.
[50]
Seo D H, Lee J, Urban A, Malik R, Kang S, Ceder G. Nature Chem., 2016,8:692.
[51]
McCalla E, Abakumov A M, Saubanere M, Foix D, Berg E J, Rousse G, Doublet M L, Gonbeau D, Novak P, Van Tendeloo G, Dominko R, Tarascon J M. Science, 2015,350:1516. doi: 10.1126/science.aac8260

pmid: 26680196
[52]
Assat G, Iadecola A, Delacourt C, Dedryvere R, Tarascon J M. Chem. Mater., 2017,29:9714.
[53]
Assat G, Iadecola A, Foix D, Dedryvere R, Tarascon J M. ACS Energy Lett, 2018,3:2721. doi: 10.1021/acsenergylett.8b01798
[54]
Hu S, Li Y, Chen Y, Peng J, Zhou T, Pang W K, Didier C, Peterson V K, Wang H, Li Q, Guo Z. Adv. Energy Mater, 2019,9. doi: 10.1002/aenm.201803096

pmid: 31807123
[55]
Sun Z, Xu L, Dong C, Zhang H, Zhang M, Ma Y, Liu Y, Li Z, Zhou Y, Han Y, Chen Y. Nano Energy, 2019,63.
[56]
Yan P, Zheng J, Tang Z K, Devaraj A, Chen G, Amine K, Zhang J G, Liu L M, Wang C. Nature Nanotechnol., 2019,14:602.
[57]
Zhang X, Meng X, Elam J W, Belharouak I. Solid State Ionics, 2014,268:231.
[58]
Qian D, Xu B, Chi M, Meng Y S. PCCP, 2014,16:14665.

pmid: 24931734
[59]
Xu B, Fell C R, Chi M, Meng Y S. Energ. Environ. Sci, 2011,4:2223.
[60]
Mohanty D, Li J, Abraham D P, Huq A, Payzant E A, Wood D L, III , Daniel C. Chem. Mater., 2014,26:6272.
[61]
Zheng J, Shi W, Gu M, Xiao J, Zuo P, Wang C, Zhang J G. J. Electrochem. Soc., 2013,160:A2212.
[62]
Hu E, Yu X, Lin R, Bi X, Lu J, Bak S, Nam K W, Xin H L, Jaye C, Fischer D A, Amine K, Yang X Q. Nature Energy, 2018,3:690.
[63]
Li W, Song B, Manthiram A. Chem. Soc. Rev, 2017,46:3006. doi: 10.1039/c6cs00875e

pmid: 28440379
[64]
Zheng J, Myeong S, Cho W, Yan P, Xiao J, Wang C, Cho J, Zhang J G. Adv. Energy Mater, 2017,7. doi: 10.1002/aenm.201700358

pmid: 29104523
[65]
Nayak P K, Erickson E M, Schipper F, Penki T R, Munichandraiah N, Adelhelm P, Sclar H, Amalraj F, Markovsky B, Aurbach D. Adv. Energy Mater, 2018,8.
[66]
Hu E, Lyu Y, Xin H L, Liu J, Han L, Bak S M, Bai J, Yu X, Li H, Yang X Q. Nano Lett, 2016,16:5999. doi: 10.1021/acs.nanolett.6b01609

pmid: 27679872
[67]
Liu S, Liu Z, Shen X, Li W, Gao Y, Banis M N, Li M, Chen K, Zhu L, Yu R, Wang Z, Sun X, Lu G, Kong Q, Bai X, Chen L. Adv. Energy Mater, 2018,8:1802105.
[68]
Qing R P, Shi J L, Xiao D D, Zhang X D, Yin Y X, Zhai Y B, Gu L, Guo Y G. Adv. Energy Mater, 2016,6. doi: 10.1002/aenm.201501555

pmid: 27134617
[69]
Feng X, Gao Y, Ben L, Yang Z, Wang Z, Chen L. J. Power Sources, 2016,317:74.
[70]
Yan W, Xie Y, Jiang J, Sun D, Ma X, Lan Z, Jin Y. ACS Sustain Chem. Eng., 2018,6:4625. doi: 10.1021/acssuschemeng.7b03634
[71]
Bao L, Yang Z, Chen L, Su Y, Lu Y, Li W, Yuan F, Dong J, Fang Y, Ji Z, Chen S, Wu F. ChemSusChem, 2019,12:2294. doi: 10.1002/cssc.201900226

pmid: 30806010
[72]
Wang Y, Gu H T, Song J H, Feng Z H, Zhou X B, Zhou Y N, Wang K, Xie J Y. J. Phys. Chem. C, 2018,122:27836.
[73]
An J, Shi L, Chen G, Li M, Liu H, Yuan S, Chen S, Zhang D. J. Mater. Chem. A, 2017,5:19738. doi: 10.1039/C7TA05971J
[74]
Ming L, Zhang B, Cao Y, Zhang J F, Wang C H, Wang X W, Li H. Front. Chem., 2018,6. doi: 10.3389/fchem.2018.00656

pmid: 30697538
[75]
Guo B, Zhao J, Fan X, Zhang W, Li S, Yang Z, Chen Z, Zhang W. Electrochim. Acta, 2017,236:171.
[76]
Li Z, Du F, Bie X, Zhang D, Cai Y, Cui X, Wang C, Chen G, Wei Y. J. Phys. Chem. C, 2010,114:22751.
[77]
Kong S, Gong Y, Liu P, Xiao Y, Qi F, Zhao X Z. Ceram. Int, 2019,45:13011.
[78]
Lee H, Lim S B, Kim J Y, Jeong M, Park Y J, Yoon W S. ACS Appl. Mater. Interfaces, 2018,10:10804.

pmid: 29561131
[79]
Xia Q, Zhao X, Xu M, Ding Z, Liu J, Chen L, Ivey D G, Wei W. J. Mater. Chem. A, 2015,3:3995. doi: 10.1039/C4TA05848H
[80]
Ma D, Li Y, Wu M, Deng L, Ren X, Zhang P. Acta Mater., 2016,112:11. doi: 10.1016/j.actamat.2016.04.010
[81]
Li X, Zhang K, Mitlin D, Paek E, Wang M, Jiang F, Huang Y, Yang Z, Gong Y, Gu L, Zhao W, Du Y, Zheng J. Small, 2018,14. doi: 10.1002/smll.201803638

pmid: 30444578
[82]
Zhu Z, Cai F, Yu J. Ionics, 2016,22:1353. doi: 10.1007/s11581-016-1653-x
[83]
Cho J, Kim T J, Kim J, Noh M, Park B. J. Electrochem. Soc., 2004,151:A1899.
[84]
Padhi A K, Nanjundaswamy K S, Goodenough J B. J. Electrochem. Soc., 1997,144:1188.
[85]
Song J, Wang Y, Feng Z, Zhang X, Wang K, Gu H, Xie J. ACS Sustain Chem. Eng., 2018,10:27326.
[86]
Xiao B, Wang B, Liu J, Kaliyappan K, Sun Q, Liu Y, Dadheech G, Balogh M P, Yang L, Sham T K, Li R, Cai M, Sun X. Nano Energy, 2017,34:120.
[87]
Okamoto Y. J. Electrochem. Soc., 2012,159:A152.
[88]
Gu M, Genc A, Belharouak I, Wang D, Amine K, Thevuthasan S, Baer D R, Zhang J G, Browning N D, Liu J, Wang C. Chem. Mater., 2013,25:2319.
[89]
Koga H, Croguennec L, Mannessiez P, Menetrier M, Weill F, Bourgeois L, Duttine M, Suard E, Delmas C. J. Phys. Chem. C, 2012,116:13497. doi: 10.1021/jp301879x
[90]
Erickson E M, Sclar H, Schipper F, Liu J, Tian R, Ghanty C, Burstein L, Leifer N, Grinblat J, Talianker M, Shin J Y, Lampert J K, Markovsky B, Frenkel A I, Aurbach D. Adv. Energy Mater, 2017, 7(18):1700708.1.
[91]
Qiu B, Zhang M, Wu L, Wang J, Xia Y, Qian D, Liu H, Hy S, Chen Y, An K, Zhu Y, Liu Z, Meng Y S. Nature Communications, 2016,7. doi: 10.1038/ncomms13755

pmid: 28008906
[92]
Zheng F, Deng Q, Zhong W, Ou X, Pan Q, Liu Y, Xiong X, Yang C, Chen Y, Liu M. ACS Sustain Chem. Eng., 2018,6:16399. doi: 10.1021/acssuschemeng.8b03442
[93]
Lu Y, Shi S L, Yang F, Zhang T Y, Niu H Y, Wang T. J. Alloys Compd., 2018,767:23.
[1] Ruyue Cao, Jingjing Xiao, Yixuan Wang, Xiangyu Li, Anchao Feng, Liqun Zang. Cascade RAFT Polymerization of Hetero Diels-Alder Cycloaddition Reaction [J]. Progress in Chemistry, 2023, 35(5): 721-734.
[2] Xuexian Wu, Yan Zhang, Chunyi Ye, Zhibin Zhang, Jingli Luo, Xianzhu Fu. Surface Pretreatment of Polymer Electroless Plating for Electronic Applications [J]. Progress in Chemistry, 2023, 35(2): 233-246.
[3] Shiying Yang, Qianfeng Li, Sui Wu, Weiyin Zhang. Mechanisms and Applications of Zero-Valent Aluminum Modified by Iron-Based Materials [J]. Progress in Chemistry, 2022, 34(9): 2081-2093.
[4] Xuanshu Zhong, Zongjian Liu, Xue Geng, Lin Ye, Zengguo Feng, Jianing Xi. Regulating Cell Adhesion by Material Surface Properties [J]. Progress in Chemistry, 2022, 34(5): 1153-1165.
[5] Xiaolian Niu, Kejun Liu, Ziming Liao, Huilun Xu, Weiyi Chen, Di Huang. Electrospinning Nanofibers Based on Bone Tissue Engineering [J]. Progress in Chemistry, 2022, 34(2): 342-355.
[6] Shiying Yang, Junqin Liu, Qianfeng Li, Yang Li. Modification Mechanism of Zero-Valent Aluminum by Mechanical Ball Milling [J]. Progress in Chemistry, 2021, 33(10): 1741-1755.
[7] Miao Qin, Mengjie Xu, Di Huang, Yan Wei, Yanfeng Meng, Weiyi Chen. Iron Oxide Nanoparticles in the Application of Magnetic Resonance Imaging [J]. Progress in Chemistry, 2020, 32(9): 1264-1273.
[8] Hao Sun, Chengwei Song, Yuepeng Pang, Shiyou Zheng. Functional Design of Separator for Li-S Batteries [J]. Progress in Chemistry, 2020, 32(9): 1402-1411.
[9] Ruixuan Qin, Guocheng Deng, Nanfeng Zheng. Assembling Effects of Surface Ligands on Metal Nanomaterials [J]. Progress in Chemistry, 2020, 32(8): 1140-1157.
[10] Huiya Wang, Limin Zhao, Fang Zhang, Dannong He. High-Performance Lithium-Ion Secondary Battery Membranes [J]. Progress in Chemistry, 2019, 31(9): 1251-1262.
[11] Zhaoxiang Wang, Jun Ma, Yurui Gao, Shuai Liu, Xin Feng, Liquan Chen. Stabilizing Structure and Performances of Lithium Rich Layer-Structured Oxide Cathode Materials [J]. Progress in Chemistry, 2019, 31(11): 1591-1614.
[12] Ping Liu, Jing Wang, Hongye Hao, Yunfan Xue, Junjie Huang, Jian Ji. Photochemical Surface Modification of Biomedical Materials [J]. Progress in Chemistry, 2019, 31(10): 1425-1439.
[13] Dongdong Zha, Bin Guo, Bengang Li, Peng Yin, Panxin Li. Chemical and Physical Mechanism of Water Resistance for Thermoplastic Starch [J]. Progress in Chemistry, 2019, 31(1): 156-166.
[14] Wang Yali, Li Zhen, Liu Zhihong. Water Solubilization of Upconversion Nanoparticles [J]. Progress in Chemistry, 2016, 28(5): 617-627.
[15] Yang Caiyun, Cao Changqian, Cai Yao, Zhang Tongwei, Pan Yongxin. The Surface Modification of Ferritin and Its Applications [J]. Progress in Chemistry, 2016, 28(1): 91-102.