中文
Announcement
More
Progress in Chemistry 2022, Vol. 34 Issue (4): 857-869 DOI: 10.7536/PC210441 Previous Articles   Next Articles

• Review •

Study on the Mechanism of the Influence of Doping on the Properties of Cathode Materials of Sodium Ion Batteries

Jingjing Li, Hongji Li, Qiang Huang, Zhe Chen()   

  1. North China Electric Power University,Beijing 102206, China
  • Received: Revised: Online: Published:
  • Contact: Zhe Chen
Richhtml ( 120 ) PDF ( 1922 ) Cited
Export

EndNote

Ris

BibTeX

The abundance of sodium salt in the earth’s crust is 1000 times higher than that of lithium. At the same time, low-cost aluminum foil can be used as the anode of sodium ion battery instead of copper foil, and the low-temperature characteristics are more excellent, which has a good application prospect in energy storage and standby energy storage scenarios. Therefore, sodium ion battery is considered one of the ideal choices for the next generation of large-scale energy storage technology. However, compared with lithium ion, the large ion radius and mass of sodium ion greatly limit its reversible deintercalation in electrode materials, resulting in relatively low working voltage and energy density of the battery. In the sodium ion battery materials system, the research of cathode materials needs great progress. In this paper, the existing typical cathode materials for sodium ion batteries are reviewed, including layered metal oxides, polyanions and Prussian blue compounds. The effect of doping on the performance of cathode materials for sodium ion batteries is analyzed. The cycling reversibility, reversible capacity and diffusion kinetics of sodium ions can be improved by element doping, which can change the properties of the crystal lattice to a certain extent, and enhance the stability, electronic conductivity and intercalation kinetics of sodium ions. In this paper, the achievements of doping application in the existing materials are summarized, and the future research direction and development prospect of cathode materials are put forward.

Contents

1 Research background

2 Doping modification of cathode materials for sodium ion batteries

2.1 Modification of layered metal oxides by doping

2.2 Modification of Prussian Blue by doping

2.3 Modification of polyanionic compounds by doping

3 Doping modification principle of cathode materials for sodium ion batteries

3.1 Restrain phase transition and stabilize structure

3.2 Increase the layer spacing and improve the dynamics

3.3 Improving the discharge capacity of cathode materials

3.4 Improve the electronic conductivity and ionic conductivity of materials

3.5 Inhibition of Na+ Vacancy ordered structure

4 Conclusion and outlook

Table 1 Application of doping in cathode material of sodium ion battery
Type Cathode material Voltage Capacity
(mAh/g)
Cycle performance Doping method ref
Layered
metal
oxide
NaxMn0.9Co0.1O2 1.5~3.8 V 165(50 mA/g) 75% (After100 cycle) Combustion synthesis 29
NaxFe1/2Mn1/2O2 1.5~4.3 V 190(0.05 C) 79% (After 30 cycle) Solid-state reaction 30
NaxMn2/3Ni1/3O2 2.3~4.5 V 134(1.7 mA/g ) 64% (After 10 cycle) Co-precipitation technique 31
Na0.5Mn0.48Co0.5Al0.02O2 1.5~4.3 V 134 (85 mA/g ) 83% (After 100 cycle) Sol-gel method 32
Na0.9[Cu0.22Fe0.30Mn0.48]O2 2.5~4.05 V 100(0.1 C) 97% (After 100 cycle) Solid-state reaction 33
NaCr1/3Fe1/3Mn1/3O2 1.5~4.2 V 186(0.05 C) 54% (After 35 cycle) Solid-state reaction 34
Na0.67Mn0.67Ni0.28Mg0.05O2 2.5~4.35 V 123(0.1 C) 85% (After 50 cycle) Sol-gel method 35
Prussian blue NayFe0.4Mn0.1[Fe(CN)6] 2.0~4.2 V 119(1 C) 65% (After 350 cycle) Ball-milling method 36
NaxNi0.3Fey[Fe(CN)6] 2.0~4.0 V 117(10 mA/g) 86.3% (After 90 cycle) Co-precipitation technique 37
Na2Mn0.15Co0.15Ni0.1Fe0.6Fe(CN)6 2.0~4.0 V 111(1 C) 78.7% (After 1500 cycle) Co-precipitation technique 38
Na1.76Ni0.12Mn0.88
[Fe(CN)6]0.98
2.0~4.0 V 118(10 mA/g) 83.8% (After 800 cycle) Co-precipitation technique 39
Na2Ni0.4Co0.6Fe(CN)6 2.0~4.2 V 92(50 mA/g) 89.5% (After 100 cycle) Co-precipitation technique 40
Na2CoFe(CN)6 2.0~4.1 V 150(10 mA/g) 90% (After 200 cycle) Citrate-assisted controlled crystallization method 41
Na0.39Fe0.77Ni0.23
[Fe(CN)6]0.79·3.45H2O
2.0~4.0 V 106(10 mA/g) 96% (After 100 cycle) Co-precipitation technique 42
Polyanionic
compounds
NaFePO4@C 1.5~4.5 V 145(0.2 C) 89% (After 6300 cycle) Electrospinning technique 43
Br/N/a-C@Na3V2(PO4)3 2.5~4.3 V 83(0.1 C) 80% (After 500 cycle) Sol-gel assisted
hydrothermal
44
Na3Mn1.6Fe0.4P3O11@C 1.8~4.3 V 84.9(0.1 C) 74% (After 100 cycle) Citric based sol-gel method and carbothermal reduction methods 45
Na3V1.9Co0.1(PO4)2F3 1.6~4.6 V 111.3(0.1 C) 70% (After 80 cycle) Sol-gel method 46
Na3MnTi(PO4)3/C 1.5~4.2 V 160(0.2 C) 92% (After 500 cycle) Spray-drying method 47
Na4MnCr(PO4)3 1.4~4.6 V 160.5(0.05 C) 74% (After 50 cycle) Sol-gel method 48
Na4Mn3(PO4)2(P2O7) 1.7~4.5 V 121(0.05 C) 86% (After 100 cycle) Solid-state reaction 49
Fig. 1 Structure diagram and phase transition process of layered metal oxides[8]. Copyright 2014, American Chemical Society
Fig. 2 (a) The first and second constant current charge discharge curves of Na0.9[Cu0.22Fe0.30Mn0.48]O2 electrode were cycled between 2.5~4.05 V at the rate of 0.1 C (10 mA/g); (b) the relationship between the capacity, coulomb efficiency and energy conversion efficiency at the rate of 0.1 C and the number of cycles; (c) the rate performance[33]. Copyright 2015, John Wiley and Sons
Fig. 3 (a) Constant current charge discharge voltage distribution of various P2 type Na0.67Mn0.67Ni0.33-xMgxO2 electrodes (x = 0, 0.02, 0.05, 0.10 and 0.15) at 0.1 C;(b) cycling performance of various P2 type Na0.67Mn0.67Ni0.33-xMgxO2 electrodes (x = 0, 0.02, 0.05, 0.10 and 0.15) in 50 cycles;(c) cycling performance of P2 type Na0.67Mn0.67Ni0.33-xMgxO2 electrodes (x = 0.10 and 0.15) in 100 cycles[35]. Copyright 2016, John Wiley and Sons
Fig. 4 (a) The relationship between the constant current cyclic curve and Na+/Na of NaCr1/3Fe1/3Mn1/3O2 electrode at 0.03 C (5 mA/g); (b) the relationship between the constant current cyclic curve and Na+/Na of NaCr1/3Fe1/3Mn1/3O2 electrode at 0.05 C (10 mA/g) in the potential range of 1.5~4.2 V; (c) The first three cycles of cyclic voltammetry of NaCr1/3Fe1/3Mn1/3O2 electrode between 1.5~4.1 V[34]. Copyright 2017, The Royal Society of Chemistry
Fig. 5 Structure of Prussian blue analogues[62]. Copyright 2012, The Royal Society of Chemistry
Fig. 6 (a) Constant current curve of NixFe-PBAs at current density of 10 mA/g; (b) cyclic voltammetry curve of NixFe-PBAs at scanning rate of 0.1 mV/s[37]. Copyright 2017, The Royal Society of Chemistry
Fig. 7 (a) The galvanostatic charge-discharge profiles of PBM, PBN and PBMN; (b) cyclic performances of PBM, PBN and PBMN[39]. Copyright 2014, The Royal Society of Chemistry
Fig. 8 NaFePO4@C rate performance of cathode materials[43]. Copyright 2018, John Wiley and Sons
Fig. 9 (a, b) Rate performance of Br/N/a-C@NVP-1, Br/N/a-C@NVP-2, Br/N/a-C@NVP-3, pure NVP and NVP/C cathode[44]. Copyright 2020, The Royal Society of Chemistry
Fig. 10 (a) Rate capability of Na3V2-xMgx(PO4)3/C at different current densities; (b) cycling stability of Na3V2-xMgx(PO4)3/C at 10 C; (c) cycling stability of Na3V2-xMgx(PO4)3/C at 20 C[86]. Copyright 2015, The Royal Society of Chemistry
Fig. 11 Schematic diagram of the phase structure transformation of Na0.66Ni0.33Mn0.67O2 doped materials[87]. Copyright 2016, American Chemical Society
Table 2 Conductivity of three cathode materials
Fig. 12 (a) Trajectories of Na+ in P2-Na0.57NMT simulated at a temperature of 800 K; (b) Arrhenius plot of Na+ diffusion coefficients[92]. Copyright 2018, American Association for the Advancement of Science
[1]
Nagelberg A S, Worrell W L. J. Solid State Chem., 1979, 29(3): 345.

doi: 10.1016/0022-4596(79)90191-9
[2]
Whittingham M S. Prog. Solid State Chem., 1978, 12(1): 41.

doi: 10.1016/0079-6786(78)90003-1
[3]
Abraham K M. Solid State Ion., 1982, 7(3): 199.

doi: 10.1016/0167-2738(82)90051-0
[4]
Johnson W B, Worrell W L. Synth. Met., 1982, 4(3): 225.

doi: 10.1016/0379-6779(82)90015-7
[5]
Hwang J Y, Myung S T, Sun Y K. Chem. Soc. Rev., 2017, 46(12): 3529.

doi: 10.1039/C6CS00776G
[6]
Slater M D, Kim D, Lee E, Johnson C S. Adv. Funct. Mater., 2013, 23(8): 947.

doi: 10.1002/adfm.201200691
[7]
Kundu D P, Talaie E, Duffort V, Nazar L F. Angew. Chem. Int. Ed., 2015, 54(11): 3431.

doi: 10.1002/anie.201410376
[8]
Yabuuchi N, Kubota K, Dahbi M, Komaba S. Chem. Rev., 2014, 114(23): 11636.

doi: 10.1021/cr500192f pmid: 25390643
[9]
Ning Z, Liu Y, Chen C, Tao Z, Chen J. Chin. J. Inorg. Chem., 2015, 31(9): 1739.
[10]
Armand M, Tarascon J M. Nature, 2008, 451(7179): 652.

doi: 10.1038/451652a
[11]
Dunn B, Kamath H, Tarascon J M. Science, 2011, 334(6058): 928.

doi: 10.1126/science.1212741
[12]
Pan H L, Hu Y S, Chen L Q. Energy Environ. Sci., 2013, 6(8): 2338.

doi: 10.1039/c3ee40847g
[13]
Yang Z G, Zhang J L, Kintner-Meyer M C W, Lu X C, Choi D, Lemmon J P, Liu J. Chem. Rev., 2011, 111(5): 3577.

doi: 10.1021/cr100290v
[14]
Kim H, Kim H, Ding Z, Lee M H, Lim K, Yoon G, Kang K. Adv. Energy Mater., 2016, 6(19): 1600943.

doi: 10.1002/aenm.201600943
[15]
Ong S P, Chevrier V L, Hautier G, Jain A, Moore C, Kim S, Ma X H, Ceder G. Energy Environ. Sci., 2011, 4(9): 3680.

doi: 10.1039/c1ee01782a
[16]
Tang Y C, Zhao Z B, Wang Y W, Dong Y F, Liu Y, Wang X Z, Qiu J S. Electrochimica Acta, 2017, 225: 369.

doi: 10.1016/j.electacta.2016.12.176
[17]
Zhao C T, Yu C, Zhang M D, Sun Q, Li S F, Norouzi Banis M, Han X T, Dong Q, Yang J, Wang G, Sun X L, Qiu J S. Nano Energy, 2017, 41: 66.

doi: 10.1016/j.nanoen.2017.08.030
[18]
Qian J F. Doctoral Dissertation of Wuhan University, 2012.
[19]
Zhao L W. Master Dissertation of Soochow University, 2013.
[20]
Qi Y R. Doctoral Dis sertation of University of Chinese Academy of Sciences. 2019.
(戚钰若. 中国科学院大学博士论文. 2019.).
[21]
Xiang X D, Zhang K, Chen J. Adv. Mater., 2015, 27(36): 5343.

doi: 10.1002/adma.201501527
[22]
Li W J, Han C, Wang W L, Gebert F, Chou S L, Liu H K, Zhang X H, Dou S X. Adv. Energy Mater., 2017, 7(24): 1700274.

doi: 10.1002/aenm.201700274
[23]
Cai Y, Cao X, Luo Z, Fang G, Liang S. Adv Sci, 2018, 5(9), 1800680.

doi: 10.1002/advs.201800680
[24]
Lin C, Fiore M, Ji E W, Ruffo R, Do-Kyung Kim, Longoni G. Adv. Sustainable Syst., 2018, 2(3): 1700153.

doi: 10.1002/adsu.201700153
[25]
Skundin A M, Kulova T L, Yaroslavtsev A B. Russ. J. Electrochem., 2018, 54(2): 113.

doi: 10.1134/S1023193518020076
[26]
Liang Y R, Lai W H, Miao Z C, Chou S L. Small, 2018, 14(5): 1702514.

doi: 10.1002/smll.201702514
[27]
Kubota K, Dahbi M, Hosaka T, Kumakura S, Komaba S. Chem. Rec., 2018, 18(4): 459.

doi: 10.1002/tcr.201700057
[28]
Wang Y, Liu W, Guo R, Luo Y, Xie J. Chem. Ind. Eng. Prog., 2018, 37(8): 3056.
[29]
Bucher N, Hartung S, Franklin J B, Wise A M, Madhavi S. Chem. Mater., 2016, 28(7): 2041.

doi: 10.1021/acs.chemmater.5b04557
[30]
Yabuuchi N, Kajiyama M, Yamada Y, Komaba S. Nature Mater., 2012, 11(6): 512.

doi: 10.1038/nmat3309
[31]
Lee D H, Xu J, Meng Y S. Phys. Chem. Chem. Phys., 2013, 15(9): 3304.

doi: 10.1039/c2cp44467d
[32]
Ramasamy H V, Kaliyappan K, Thangavel R, Seong W M, Kang K, Chen Z W, Lee Y S. J. Phys. Chem. Lett., 2017, 8(20): 5021.

doi: 10.1021/acs.jpclett.7b02012 pmid: 28915055
[33]
Mu L Q, Xu S Y, Li Y M, Hu Y S, Li H, Chen L Q, Huang X J. Adv. Mater., 2015, 27(43): 6928.

doi: 10.1002/adma.201502449
[34]
Cao M H, Wang Y, Shadike Z, Yue J L, Hu E Y, Bak S M, Zhou Y N, Yang X Q, Fu Z W. J. Mater. Chem. A, 2017, 5(11): 5442.

doi: 10.1039/C6TA10818K
[35]
Wang P F, You Y, Yin Y X, Wang Y S. Angew Chem., 2016, 55(26): 7445.

doi: 10.1002/anie.201602202
[36]
Gong W Z, Zeng R, Su S, Wan M, Rao Z X, Xue L H, Zhang W X. J. Nanoparticle Res., 2019, 21(12): 1.

doi: 10.1007/s11051-018-4445-6
[37]
Fu H Y, Liu C F, Zhang C K, Ma W D, Wang K, Li Z Y, Lu X M, Cao G Z. J. Mater. Chem. A, 2017, 5(20): 9604.

doi: 10.1039/C7TA00132K
[38]
Xie B X, Zuo P J, Wang L G, Wang J J, Huo H, He M X, Shu J, Li H F, Lou S F, Yin G P. Nano Energy, 2019, 61: 201.

doi: 10.1016/j.nanoen.2019.04.059
[39]
Yang D Z, Xu J, Liao X Z, He Y S, Liu H M, Ma Z F. Chem. Commun., 2014, 50(87): 13377.

doi: 10.1039/C4CC05830E
[40]
Man X, Xu M, Huang Y, Chen R, Feng W. Electrochem Commun., 2015, 59: 91.

doi: 10.1016/j.elecom.2015.07.014
[41]
Wu X, Wu C, Wei C, Ling H, Yang H. ACS Appl. Mater. Interfaces, 2016, 8(8): 5393.

doi: 10.1021/acsami.5b12620
[42]
Yu S L, Li Y, Lu Y H, Xu B, Wang Q T, Yan M, Jiang Y Z. J. Power Sources, 2015, 275: 45.

doi: 10.1016/j.jpowsour.2014.10.196
[43]
Liu Y C, Zhang N, Wang F F, Liu X B, Jiao L F, Fan L Z. Adv. Funct. Mater., 2018, 28(30): 1801917.

doi: 10.1002/adfm.201801917
[44]
Wang Z Y, Liu J M, Du Z J, Tao H Z, Yue Y Z. Inorg. Chem. Front., 2020, 7(5): 1289.

doi: 10.1039/C9QI01690B
[45]
Chen L, Jin S, Liu H, Chen S, Chen L,. J. Alloys Compd., 2019, 821: 153206.

doi: 10.1016/j.jallcom.2019.153206
[46]
Gao F, Yang K, Lv Y Y, Zhao L N, Fan M S, Liu H, Geng M M, Zhang M J, Wang K F. Synthetic Materials Aging and Application, 2019, 48 (3): 54.
(高飞, 杨凯, 吕扬阳, 赵丽娜, 范茂松, 刘皓, 耿萌萌, 张明杰, 王凯丰. 合成材料老化与应用, 2019, 48 (3): 54.).
[47]
Zhu T, Hu P, Wang X P, Liu Z H, Luo W, Owusu K A, Cao W W, Shi C W, Li J T, Zhou L, Mai L Q. Adv. Energy Mater., 2019, 9(9): 1803436.

doi: 10.1002/aenm.201803436
[48]
Zhang J, Liu Y, Zhao X, He L, Chen J. Adv. Mater., 2020, 32(11):1906348.1.
[49]
Kim H, Yoon G, Park I, Park K Y, Lee B, Kim J, Park Y U, Jung S K, Lim H D, Ahn D, Lee S, Kang K. Energy Environ. Sci., 2015, 8(11): 3325.

doi: 10.1039/C5EE01876E
[50]
Mu L Q, Qi X G, Hu Y S, Li H, Chen L Q, Huang X J. Energy Storage and Technol, 2016, 5(3): 324.
[51]
Delmas C, Fouassier C, Hagenmuller P. Phys. B+C, 1980, 99(1/4): 81.
[52]
Xia X, Dahn J R. Electrochem. Solid-State Lett., 2012, 15(1): A1.

doi: 10.1149/2.002201esl
[53]
Sun Y, Guo S H, Zhou H S. Energy Environ. Sci., 2019, 12(3): 825.

doi: 10.1039/C8EE01006D
[54]
Yang L F, Li X, Liu J, Xiong S, Ma X T, Liu P, Bai J M, Xu W Q, Tang Y Z, Hu Y Y, Liu M L, Chen H L. J. Am. Chem. Soc., 2019, 141(16): 6680.

doi: 10.1021/jacs.9b01855
[55]
Komaba S, Yabuuchi N, Nakayama T, Ogata A, Ishikawa T, Nakai I. Inorg. Chem., 2012, 51(11): 6211.

doi: 10.1021/ic300357d
[56]
Yue J L, Zhou Y N, Yu X Q, Bak S M, Yang X Q, Fu Z W. J. Mater. Chem. A, 2015, 3(46): 23261.

doi: 10.1039/C5TA05769H
[57]
Guo H, Wang Y S, Han W Z, Yu Z X, Qi X G, Sun K, Hu Y S, Liu Y T, Chen D F, Chen L Q. Electrochimica Acta, 2015, 158: 258.

doi: 10.1016/j.electacta.2015.01.118
[58]
Wang H, Yang B J, Liao X Z, Xu J, Yang D Z, He Y S, Ma Z F. Electrochimica Acta, 2013, 113: 200.

doi: 10.1016/j.electacta.2013.09.098
[59]
Xu J, Lee D H, ClÉment R J, Yu X Q, Leskes M, Pell A J, Pintacuda G, Yang X Q, Grey C P, Meng Y S. Chem. Mater., 2014, 26(2): 1260.

doi: 10.1021/cm403855t
[60]
Kataoka R, Mukai T, Yoshizawa A, Sakai T. J. Electrochem. Soc., 2013, 160(6): A933.

doi: 10.1149/2.125306jes
[61]
Carlier D, Cheng J H, Berthelot R, Guignard M, Yoncheva M, Stoyanova R, Hwang B J, Delmas C. Dalton Trans., 2011, 40(36): 9306.

doi: 10.1039/c1dt10798d pmid: 21842107
[62]
Lu Y H, Wang L, Cheng J G, Goodenough J B. Chem. Commun., 2012, 48(52): 6544.

doi: 10.1039/c2cc31777j
[63]
Wessells C D, Huggins R A, Cui Y. Nat. Commun., 2011, 2: 550.

doi: 10.1038/ncomms1563 pmid: 22109524
[64]
Wang L, Lu Y H, Liu J, Xu M W, Cheng J G, Zhang D W, Goodenough J B. Angew. Chem., 2013, 125(7): 2018.

doi: 10.1002/ange.201206854
[65]
Matsuda T, Takachi M, Moritomo Y. Chem. Commun., 2013, 49(27): 2750.

doi: 10.1039/c3cc38839e
[66]
Zhou M, Qian J F, Ai X P, Yang H X. Adv. Mater., 2011, 23(42): 4913.

doi: 10.1002/adma.201102867
[67]
Lee H, Kim Y I, Park J K, Choi J W. Chem. Commun., 2012, 48(67): 8416.

doi: 10.1039/c2cc33771a
[68]
Okubo M, Asakura D, Mizuno Y, Kim J D, Mizokawa T, Kudo T, Honma I. J. Phys. Chem. Lett., 2010, 1(14): 2063.

doi: 10.1021/jz100708b
[69]
Pasta M, Wessells C D, Huggins R A, Cui Y. Nat. Commun., 2012, 3: 1149.

doi: 10.1038/ncomms2139
[70]
Mizuno Y, Okubo M, Kagesawa K, Asakura D, Kojima N. Inorg Chem, 2012, 51(19): 10311.

doi: 10.1021/ic301361h
[71]
Mizuno Y, Okubo M, Hosono E, Kudo T, Zhou H S, Oh-Ishi K. J. Phys. Chem. C, 2013, 117(21): 10877.

doi: 10.1021/jp311616s
[72]
Minowa H, Yui Y, Ono Y, Hayashi M, Hayashi K, Kobayashi R, Takahashi K. Solid State Ion., 2014, 262: 216.

doi: 10.1016/j.ssi.2013.12.024
[73]
Moritomo Y, Urase S, Shibata T. Electrochimica Acta, 2016, 210: 963.

doi: 10.1016/j.electacta.2016.05.205
[74]
Jiang X L, Liu H J, Song J, Yin C F, Xu H Y. J. Mater. Chem. A, 2016, 4(41): 16205.

doi: 10.1039/C6TA06658E
[75]
Shen C, Long H, Wang G C, Lu W, Shao L, Xie K Y. J. Mater. Chem. A, 2018, 6(14): 6007.

doi: 10.1039/C8TA00990B
[76]
Shi Z C, Yang Y. Progress in Chemistry, 2005, 17(4): 604.
[77]
Chen J. Doctoral Dissertation of Jilin University, 2013.
[78]
Padhi A K, Manivannan V, Goodenough J B. J. Electrochem. Soc., 1998, 145(5): 1518.

doi: 10.1149/1.1838513
[79]
Barpanda P, Lander L, Nishimura S I, Yamada A. Adv. Energy Mater., 2018, 8(17): 1703055.

doi: 10.1002/aenm.201703055
[80]
Masquelier C, Croguennec L. Chem. Rev.. 2013, 113(8):6552.

doi: 10.1021/cr3001862 pmid: 23742145
[81]
Pan W L, Guan W H, Jiang Y Z. Acta Phys-Chim Sin, 2020, 36(5): 1905017.
[82]
Padhi A K. J. Electrochem. Soc., 1997, 144(4):1188.

doi: 10.1149/1.1837571
[83]
Yamada A, Chung S C, Hinokuma K. ChemInform, 2010, 32(29):17.
[84]
Huang H, Yin S C, Nazar L F. Electrochem. Solid-State Lett., 2001, 4(10): A170.

doi: 10.1149/1.1396695
[85]
Zhu Y J, Xu Y H, Liu Y H, Luo C, Wang C S. Nanoscale, 2013, 5(2): 780.

doi: 10.1039/C2NR32758A
[86]
Li H, Yu X Q, Bai Y, Wu F, Wu C, Liu L Y, Yang X Q. J. Mater. Chem. A, 2015, 3(18): 9578.

doi: 10.1039/C5TA00277J
[87]
Wu X H, Xu G L, Zhong G M, Gong Z L, McDonald M J, Zheng S Y, Fu R Q, Chen Z H, Amine K, Yang Y. ACS Appl. Mater. Interfaces, 2016, 8(34): 22227.

doi: 10.1021/acsami.6b06701
[88]
Wang L, Wang Y, Zhao J, Li Y, Yang X. Ionics, 2019, 25 (10).
[89]
Li Z Y, Gao R, Sun L M, Hu Z B, Liu X F. Electrochimica Acta, 2017, 223: 92.

doi: 10.1016/j.electacta.2016.12.019
[90]
ClÉment R J, Bruce P G, Grey C P. J. Electrochem. Soc., 2015, 162(14): A2589.

doi: 10.1149/2.0201514jes
[91]
Tie D, Gao G F, Xia F, Yue R Y, Wang Q J, Qi R J, Wang B, Zhao Y F. ACS Appl. Mater. Interfaces, 2019, 11(7): 6978.

doi: 10.1021/acsami.8b19134
[92]
Wang P F, Yao H R, Liu X Y, Yin Y X, Zhang J N, Wen Y R, Yu X Q, Gu L, Guo Y G. Sci. Adv., 2018, 4(3): 6018.
[1] Yong Zhang, Hui Zhang, Yi Zhang, Lei Gao, Jianchen Lu, Jinming Cai. Surface Synthesis of Heteroatoms-Doped Graphene Nanoribbons [J]. Progress in Chemistry, 2023, 35(1): 105-118.
[2] Meng Pengfei, Zhang Xiaorong, Liao Shijun, Deng Yijie. Enhancing the Performance of Atomically Dispersed Carbon-Based Catalysts Through Metallic/Nonmetallic Elements Co-Doping Towards Oxygen Reduction [J]. Progress in Chemistry, 2022, 34(10): 2190-2201.
[3] Yun Lu, Hongjuan Shi, Yuefeng Su, Shuangyi Zhao, Lai Chen, Feng Wu. Application of Element-Doped Carbonaceous Materials in Lithium-Sulfur Batteries [J]. Progress in Chemistry, 2021, 33(9): 1598-1613.
[4] Jinhuo Gao, Jiafeng Ruan, Yuepeng Pang, Hao Sun, Junhe Yang, Shiyou Zheng. High Temperature Properties of LiNi0.5Mn1.5O4 as Cathode Materials for High Voltage Lithium-Ion Batteries [J]. Progress in Chemistry, 2021, 33(8): 1390-1403.
[5] Yifan Zhao, Qiyun Mao, Xiaoya Zhai, Guoying Zhang. Structural Defects Regulation of Bismuth Molybdate Photocatalyst [J]. Progress in Chemistry, 2021, 33(8): 1331-1343.
[6] Xiujun Cao, Lei Zhang, Yuanxin Zhu, Xin Zhang, Chaonan Lv, Changmin Hou. Design and Synthesis of Sillenite-Based Micro/Nanomaterials and Their Applications in Photocatalysis [J]. Progress in Chemistry, 2020, 32(2/3): 262-273.
[7] Zhiyuan Lu, Yanni Liu, Shijun Liao. Enhancing the Stability of Lithium-Rich Manganese-Based Layered Cathode Materials for Li-Ion Batteries Application [J]. Progress in Chemistry, 2020, 32(10): 1504-1514.
[8] Xiaohui Ma, Liqun Yang, Shijian Zheng, Qilin Dai, Cong Chen, Hongwei Song. All-Inorganic Perovskite Solar Cells: Status and Future [J]. Progress in Chemistry, 2020, 32(10): 1608-1632.
[9] Yijia Shao, Bin Huang, Quanbing Liu, Shijun Liao. Preparation and Modification of Ni-Co-Mn Ternary Cathode Materials [J]. Progress in Chemistry, 2018, 30(4): 410-419.
[10] Rong Yang, Lan Li, Bing Ren, Dan Chen, Liping Chen, Yinglin Yan. Doped-Graphene in Lithium-Sulfur Batteries [J]. Progress in Chemistry, 2018, 30(11): 1681-1691.
[11] Min Li, Yanli Wang, Xiaoyan Wu, Lei Duan, Chunming Zhang, Dannong He. The Mechanism of Ion-Doping, Surface Coating, Surface Oxygen Vacancy Modification and Their Joint Mechanism in Lithium-Rich Material for Li-Ion Battery [J]. Progress in Chemistry, 2017, 29(12): 1526-1536.
[12] Chen Xiaoyan, Sun Yiran, Yu Fei, Chen Junhong, Ma Jie. The Catalytic Properties for Reduction of Graphene-Based Aerogels and Their Applications [J]. Progress in Chemistry, 2015, 27(11): 1542-1554.
[13] Wang Gang, Chen Jinwei, Zhu Shifu, Zhang Jie, Liu Xiaojiang, Wang Ruilin. Activation of Carbon Electrodes for All-Vanadium Redox Flow Battery [J]. Progress in Chemistry, 2015, 27(10): 1343-1355.
[14] Huang Zhao, Wang Dan, Zhang Chunming, He Dannong. Effects of Different Doping Sites on the Structure and Performance of Li4Ti5O12 Material [J]. Progress in Chemistry, 2014, 26(12): 1914-1923.
[15] Wang Guiqiang, Duan Yandong, Zhang Juan, Lin Yuan, Zhuo Shuping. Doped Titania Nanocrystalline Photoanodes for Efficiency Improvement of Dye-Sensitized Solar Cells [J]. Progress in Chemistry, 2014, 26(07): 1255-1264.