中文
Announcement
More
Progress in Chemistry 2022, Vol. 34 Issue (10): 2190-2201 DOI: 10.7536/PC220214 Previous Articles   Next Articles

• Review •

Enhancing the Performance of Atomically Dispersed Carbon-Based Catalysts Through Metallic/Nonmetallic Elements Co-Doping Towards Oxygen Reduction

Meng Pengfei1, Zhang Xiaorong1, Liao Shijun1(), Deng Yijie2()   

  1. 1 School of Chemistry and Chemical Engineering, South China University of Technology,Guangzhou 510641, China
    2 School of Resource Environment and Safety Engineering, University of South China,Hengyang 421001, China
  • Received: Revised: Online: Published:
  • Contact: Liao Shijun, Deng Yijie
  • Supported by:
    National Key Research and Development Program of China(2017YFB0102900); National Key Research and Development Program of China(2016YFB0101201); National Natural Science Foundation of China(51971094); National Natural Science Foundation of China(21476088); National Natural Science Foundation of China(21776104); Guangdong Provincial Department of Science and Technology(2015A030312007)
Richhtml ( 31 ) PDF ( 538 ) Cited
Export

EndNote

Ris

BibTeX

Metal-nitrogen-carbon (M-Nx-C), possessing prominent advantages of high reactivity, high selectivity, facile synthesis, have presented potential to replace the conventional platinum-based catalysts. However, when these catalysts are used in the oxygen reduction process of fuel cells, the low active site density and insufficient durability restrict application. It is found that modulating the electronic structure and spatial configuration of the active site by doping with various metal/nonmetal elements can significantly enhance the oxygen reduction activity and stability of M-Nx-C catalysts, which has become a popular research topic in the field. This article reviews the main research works in recent years at home and abroad on the doping of various metal/nonmetal elements to enhance the performance of M-Nx-C carbon-based catalysts, including the studies on doping of metal elements and doping of nonmetal elements. The article also summarizes and points out the problems and challenges faced by M-Nx-C carbon-based catalysts, and gives an outlook on their development prospects and future research directions.

Fig. 1 Schematic illustration of the hard template method for preparation of Fe—N—C HNS[22]
Fig. 2 Illustration of synthesis of Cr-N-C[21]
Fig. 3 Plots of catalytic activities for the ORR in alkaline media[44]
Fig. 4 Dynamic transformation process of active site[47]
Fig. 5 LSV curves of Fe-N-C and Pt1@Fe-N-C measured after 10 000 voltage cycles in the air-saturated electrolyte,0.5 mol/L H2S O 4 [ 60 ]
Fig. 6 (a) ORR LSV curves for different catalysts in 0.1 mol/L HClO4 solution. (b) H2/O2 fuel cell polarization plots[63]
Fig. 7 (a) ORR LSV curves for different catalysts in 0.1 mol/L KOH solution.(b) ORR LSV curves for different catalysts in 0.1 mol/L HClO4 solution.[67]
Fig. 8 (a) Schematic illustration of the synthesis of FeNSC. (b) ORR LSV curves for different catalysts in 0.1 mol/L KOH solution (rotation rate: 1600 r/min). Inset shows corresponding half-wave potentials and the number of transferred electrons[68]
Fig. 9 Schematic of the synthesis process of the Fe-N/P-C[73]
Fig. 10 Polarization and power density curves for a H2-O2 PEMFC with Fe-N-C-P/N,P-C, Fe-N-C/N-C, and Pt/C as the cathode catalysts[74]
Fig. 11 ORR free energy profiles of a Co-N2P2 site in PSTA-Co-1000 as compared with a Co-N4 site at zero potential and equilibrium potential (U=1.23 V)[75]
Fig. 12 (a) Synthetic procedure of the Co/N-B-doped carbon nanosheet. (b) ORR polarization curves in O2-saturated 0.1 mol/L KOH[79]
Table 1 Summary of electrochemical performance of M-Nx-C electrocatalysts
[1]
Liu J G, Mooney H, Hull V, Davis S J, Gaskell J, Hertel T, Lubchenco J, Seto K C, Gleick P, Kremen C, Li S X. Science, 2015, 347(6225): 1258832.

doi: 10.1126/science.1258832
[2]
Nørskov J K, Bligaard T, Rossmeisl J, Christensen C H. Nat. Chem., 2009, 1(1): 37.

doi: 10.1038/nchem.121 pmid: 21378799
[3]
Xia W, Mahmood A, Liang Z B, Zou R Q, Guo S J. Angew. Chem. Int. Ed., 2016, 55(8): 2650.

doi: 10.1002/anie.201504830
[4]
Debe M K. Nature, 2012, 486(7401): 43.

doi: 10.1038/nature11115
[5]
Fu J, Cano Z P, Park M G, Yu A P, Fowler M, Chen Z W. Adv. Mater., 2017, 29(7): 1604685.

doi: 10.1002/adma.201604685
[6]
Wang Z L, Xu D, Xu J J, Zhang X B. Chem. Soc. Rev., 2014, 43(22): 7746.

doi: 10.1039/C3CS60248F
[7]
Ren Q, Wang H, Lu X F, Tong Y X, Li G R. Adv. Sci., 2018, 5(3): 1700515.

doi: 10.1002/advs.201700515
[8]
Xu J H, Xia C L, Li M, Xiao R. ChemElectroChem, 2019, 6(22): 5735.

doi: 10.1002/celc.201901763
[9]
He Q, Chen X H, Jia F Q, Ding W, Zhou Y Y, Wang J, Song X Y, Jiang J X, Liao Q, Li J, Wei Z D. ChemistrySelect, 2019, 4(27): 8135.

doi: 10.1002/slct.201901329
[10]
Qin X L, Huang Y, Wang K, Xu T T, Wang Y L, Dong W H. Electrochimica Acta, 2019, 322: 134745.

doi: 10.1016/j.electacta.2019.134745
[11]
Jiao L, Wan G, Zhang R, Zhou H, Yu S H, Jiang H L. Angew. Chem. Int. Ed., 2018, 57(28): 8525.

doi: 10.1002/anie.201803262
[12]
Deng Y J, Luo J M, Chi B, Tang H B, Li J, Qiao X C, Shen Y J, Yang Y J, Jia C M, Rao P, Liao S J, Tian X L. Adv. Energy Mater., 2021, 11(37): 2101222.

doi: 10.1002/aenm.202101222
[13]
Tang T, Ding L, Jiang Z, Hu J S, Wan L J. Sci. China Chem., 2020, 63(11): 1517.

doi: 10.1007/s11426-020-9835-8
[14]
Liu L C, Corma A. Chem. Rev., 2018, 118(10): 4981.

doi: 10.1021/acs.chemrev.7b00776
[15]
Li S P, Zhang G, Tu X M, Li J H. ChemElectroChem, 2018, 5(4): 701.

doi: 10.1002/celc.201701112
[16]
Lin Y X, Yang L, Zhang Y K, Jiang H L, Xiao Z J, Wu C Q, Zhang G B, Jiang J, Song L. Adv. Energy Mater., 2018, 8(18): 1870087.

doi: 10.1002/aenm.201870087
[17]
Wang F L, Yang X D, Dong B X, Yu X, Xue H G, Feng L G. Electrochem. Commun., 2018, 92: 33.

doi: 10.1016/j.elecom.2018.05.020
[18]
Ban J J, Wen X H, Xu H J, Wang Z, Liu X H, Cao G Q, Shao G S, Hu J H. Adv. Funct. Mater., 2021, 31(19): 2010472.

doi: 10.1002/adfm.202010472
[19]
Malgras V, Tang J, Wang J, Kim J, Torad N L, Dutta S, Ariga K, Hossain M S A, Yamauchi Y, Wu K C W. J. Nanosci. Nanotechnol., 2019, 19(7): 3673.

doi: 10.1166/jnn.2019.16745 pmid: 30764925
[20]
Wan X, Liu X F, Li Y C, Yu R H, Zheng L R, Yan W S, Wang H, Xu M, Shui J L. Nat. Catal., 2019, 2(3): 259.

doi: 10.1038/s41929-019-0237-3
[21]
Jin X X, Jiang Y, Hu Q, Zhang S H, Jiang Q K, Chen L, Xu L, Xie Y, Huang J H. RSC Adv., 2017, 7(89): 56375.

doi: 10.1039/C7RA09517A
[22]
Chen Y F, Li Z J, Zhu Y B, Sun D M, Liu X E, Xu L, Tang Y W. Adv. Mater., 2019, 31(8): 1806312.

doi: 10.1002/adma.201806312
[23]
Yan S Y, Yu Z X, Liu C, Yuan Z W, Wang C J, Chen J S, Wei L, Chen Y. Chem. Asian J., 2020, 15(12): 1881.

doi: 10.1002/asia.202000399
[24]
Petkovich N D, Stein A. Chem. Soc. Rev., 2013, 42(9): 3721.

doi: 10.1039/c2cs35308c pmid: 23072972
[25]
Kang H Q, Sui L N, Wang Y T, Zhang S, Dong H Z, Yu L Y, Dong L F. J. Electrochem. Soc., 2017, 164(12): A2328.

doi: 10.1149/2.0641712jes
[26]
Yu L, Yu X Y, Lou X W D. Adv. Mater., 2018, 30(38): 1800939.

doi: 10.1002/adma.201800939
[27]
Lee J, Kim J, Hyeon T. Adv. Mater., 2006, 18(16): 2073.

doi: 10.1002/adma.200501576
[28]
Mun Y, Kim M J, Park S A, Lee E, Ye Y, Lee S, Kim Y T, Kim S, Kim O H, Cho Y H, Sung Y E, Lee J. Appl. Catal. B Environ., 2018, 222: 191.

doi: 10.1016/j.apcatb.2017.10.015
[29]
Liu J L, Zhu D D, Guo C X, Vasileff A, Qiao S Z. Adv. Energy Mater., 2017, 7(23): 1700518.

doi: 10.1002/aenm.201700518
[30]
Yin P Q, Yao T, Wu Y E, Zheng L R, Lin Y, Liu W, Ju H X, Zhu J F, Hong X, Deng Z X, Zhou G, Wei S Q, Li Y D. Angew. Chem. Int. Ed., 2016, 55(36): 10800.

doi: 10.1002/anie.201604802
[31]
Zhang H G, Hwang S, Wang M Y, Feng Z X, Karakalos S, Luo L L, Qiao Z, Xie X H, Wang C M, Su D, Shao Y Y, Wu G. J. Am. Chem. Soc., 2017, 139(40): 14143.

doi: 10.1021/jacs.7b06514
[32]
Luo E G, Zhang H, Wang X, Gao L Q, Gong L Y, Zhao T, Jin Z, Ge J J, Jiang Z, Liu C P, Xing W. Angew. Chem. Int. Ed., 2019, 58(36): 12469.

doi: 10.1002/anie.201906289
[33]
Liu S W, Wang M Y, Yang X X, Shi Q R, Qiao Z, Lucero M, Ma Q, More K L, Cullen D A, Feng Z X, Wu G. Angew. Chem. Int. Ed., 2020, 59(48): 21698.

doi: 10.1002/anie.202009331
[34]
Deng Y J, Chi B, Li J, Wang G H, Zheng L, Shi X D, Cui Z M, Du L, Liao S J, Zang K T, Luo J, Hu Y F, Sun X L. Adv. Energy Mater., 2019, 9(13): 1802856.

doi: 10.1002/aenm.201802856
[35]
Zhou Q Y, Cai J J, Zhang Z, Gao R, Chen B, Wen G B, Zhao L, Deng Y P, Dou H Z, Gong X F, Zhang Y L, Hu Y F, Yu A P, Sui X L, Wang Z B, Chen Z W. Small Methods, 2021, 5(6): 2100024.

doi: 10.1002/smtd.202100024
[36]
Qu Y T, Li Z J, Chen W X, Lin Y, Yuan T W, Yang Z K, Zhao C M, Wang J, Zhao C, Wang X, Zhou F Y, Zhuang Z B, Wu Y E, Li Y D. Nat. Catal., 2018, 1(10): 781.

doi: 10.1038/s41929-018-0146-x
[37]
Gao Y, Duan X G, Li B, Jia Q Q, Li Y, Fan X B, Zhang F B, Zhang G L, Wang S B, Peng W C. J. Mater. Chem. A, 2021, 9(26): 14793.

doi: 10.1039/D1TA02446A
[38]
Liu S W, Wang M Y, Yang X X, Shi Q R, Qiao Z, Lucero M, Ma Q, More K L, Cullen D A, Feng Z X, Wu G. Angew. Chem. Int. Ed., 2020, 59(48): 21698.

doi: 10.1002/anie.202009331
[39]
Tang C, Chen L, Li H J, Li L Q, Jiao Y, Zheng Y, Xu H L, Davey K, Qiao S Z. J. Am. Chem. Soc., 2021, 143(20): 7819.

doi: 10.1021/jacs.1c03135
[40]
Xu H X, Cheng D J, Cao D P, Zeng X C. Nat. Catal., 2018, 1(5): 339.

doi: 10.1038/s41929-018-0063-z
[41]
Nie Y, Li L, Wei Z D. Chem. Soc. Rev., 2015, 44(8): 2168.

doi: 10.1039/C4CS00484A
[42]
Li Y C, Liu X F, Zheng L R, Shang J X, Wan X, Hu R M, Guo X, Hong S, Shui J L. J. Mater. Chem. A, 2019, 7(45): 26147.

doi: 10.1039/C9TA08532G
[43]
Nørskov J K, Rossmeisl J, Logadottir A, Lindqvist L, Kitchin J R, Bligaard T, JÓnsson H. J. Phys. Chem. B, 2004, 108(46): 17886.

doi: 10.1021/jp047349j
[44]
Zagal J H, Koper M T M. Angew. Chem. Int. Ed., 2016, 55(47): 14510.

doi: 10.1002/anie.201604311 pmid: 27666439
[45]
Jiao Y, Zheng Y, Jaroniec M, Qiao S Z. J. Am. Chem. Soc., 2014, 136(11): 4394.

doi: 10.1021/ja500432h pmid: 24580116
[46]
Peng H L, Liu F F, Liu X J, Liao S J, You C H, Tian X L, Nan H X, Luo F, Song H Y, Fu Z Y, Huang P Y. ACS Catal., 2014, 4(10): 3797.

doi: 10.1021/cs500744x
[47]
Zhou W L, Su H, Li Y L, Liu M H, Zhang H, Zhang X X, Sun X, Xu Y Z, Liu Q H, Wei S Q. ACS Energy Lett., 2021, 6(9): 3359.

doi: 10.1021/acsenergylett.1c01316
[48]
Dong J C, Zhang X G, Briega-Martos V, Jin X, Yang J, Chen S, Yang Z L, Wu D Y, Feliu J M, Williams C T, Tian Z Q, Li J F. Nat. Energy, 2019, 4(1): 60.

doi: 10.1038/s41560-018-0292-z
[49]
GÓmez-Marín A M, Rizo R, Feliu J M. Catal. Sci. Technol., 2014, 4(6): 1685.

doi: 10.1039/c3cy01049j
[50]
Chen Y J, Ji S F, Wang Y G, Dong J C, Chen W X, Li Z, Shen rongan, Zheng L R, Zhuang Z B, Wang D S, Li Y D. Angew. Chem. Int. Ed., 2017, 56(24): 6937.

doi: 10.1002/anie.201702473
[51]
Liu D X, Wang B, Li H G, Huang S F, Liu M M, Wang J, Wang Q J, Zhang J J, Zhao Y F. Nano Energy, 2019, 58: 277.

doi: 10.1016/j.nanoen.2019.01.011
[52]
Choi C H, Baldizzone C, Grote J P, Schuppert A K, Jaouen F, Mayrhofer K J J. Angew. Chem. Int. Ed., 2015, 54(43): 12753.

doi: 10.1002/anie.201504903
[53]
Calle-Vallejo F, Martínez J I, Rossmeisl J. Phys. Chem. Chem. Phys., 2011, 13(34): 15639.

doi: 10.1039/c1cp21228a pmid: 21796295
[54]
Zagal J H. Coord. Chem. Rev., 1992, 119: 89.

doi: 10.1016/0010-8545(92)80031-L
[55]
van Veen J A R, van Baar J F, Kroese C J, Coolegem J G F, de Wit N, Colijn H A. Berichte Der Bunsengesellschaft Für Physikalische Chemie, 1981, 85(9): 693.

doi: 10.1002/bbpc.19810850917
[56]
Zhou Y D, Yang W, Utetiwabo W, Lian Y M, Yin X, Zhou L, Yu P W, Chen R J, Sun S R. J. Phys. Chem. Lett., 2020, 11(4): 1404.

doi: 10.1021/acs.jpclett.9b03771
[57]
Gong S P, Wang C L, Jiang P, Hu L, Lei H, Chen Q W. J. Mater. Chem. A, 2018, 6(27): 13254.

doi: 10.1039/C8TA04564J
[58]
Du C, Gao Y J, Chen H Q, Li P, Zhu S Y, Wang J G, He Q G, Chen W. J. Mater. Chem. A, 2020, 8(33): 16994.

doi: 10.1039/D0TA06485H
[59]
Li Y C, Hu R M, Chen Z B, Wan X, Shang J X, Wang F H, Shui J L. Nano Res., 2021, 14(3): 611.

doi: 10.1007/s12274-020-3072-6
[60]
Zeng X J, Shui J L, Liu X F, Liu Q T, Li Y C, Shang J X, Zheng L R, Yu R H. Adv. Energy Mater., 2018, 8(1): 1701345.

doi: 10.1002/aenm.201701345
[61]
Xiao M L, Chen Y T, Zhu J B, Zhang H, Zhao X, Gao L Q, Wang X, Zhao J, Ge J J, Jiang Z, Chen S L, Liu C P, Xing W. J. Am. Chem. Soc., 2019, 141(44): 17763.

doi: 10.1021/jacs.9b08362
[62]
Li J J, Guan Q Q, Wu H, Liu W, Lin Y, Sun Z H, Ye X X, Zheng X S, Pan H B, Zhu J F, Chen S, Zhang W H, Wei S Q, Lu J L. J. Am. Chem. Soc., 2019, 141(37): 14515.

doi: 10.1021/jacs.9b06482
[63]
Lu Z Y, Wang B, Hu Y F, Liu W, Zhao Y F, Yang R O, Li Z P, Luo J, Chi B, Jiang Z, Li M S, Mu S C, Liao S J, Zhang J J, Sun X L. Angew. Chem. Int. Ed., 2019, 58(9): 2622.

doi: 10.1002/anie.201810175
[64]
Qiao M F, Wang Y, Wågberg T, Mamat X, Hu X, Zou G A, Hu G Z. J. Energy Chem., 2020, 47: 146.

doi: 10.1016/j.jechem.2019.12.005
[65]
Zhang Q R, Kumar P, Zhu X F, Daiyan R, Bedford N M, Wu K H, Han Z J, Zhang T R, Amal R, Lu X Y. Adv. Energy Mater., 2021, 11(17): 2100303.

doi: 10.1002/aenm.202100303
[66]
Chen Z Y, Niu H, Ding J, Liu H, Chen P H, Lu Y H, Lu Y R, Zuo W B, Han L, Guo Y Z, Hung S F, Zhai Y M. Angewandte Chemie Int. Ed., 2021, 60(48): 25404.

doi: 10.1002/anie.202110243
[67]
Zheng L, Dong Y Y, Chi B, Cui Z M, Deng Y J, Shi X D, Du L, Liao S J. Small, 2019, 15(4): 1803520.

doi: 10.1002/smll.201803520
[68]
Jia Y, Xiong X Y, Wang D N, Duan X X, Sun K, Li Y J, Zheng L R, Lin W F, Dong M D, Zhang G X, Liu W, Sun X M. Nano Micro Lett., 2020, 12(1): 1.
[69]
Chen Y J, Ji S F, Zhao S, Chen W X, Dong J C, Cheong W C, Shen rongan, Wen X D, Zheng L R, Rykov A I, Cai S C, Tang H L, Zhuang Z B, Chen C, Peng Q, Wang D S, Li Y D. Nat. Commun., 2018, 9: 5422.

doi: 10.1038/s41467-018-07850-2
[70]
Yang Y, Mao K T, Gao S Q, Huang H, Xia G L, Lin Z Y, Jiang P, Wang C L, Wang H, Chen Q W. Adv. Mater., 2018, 30(28): 1801732.

doi: 10.1002/adma.201801732
[71]
Wang J, Li H G, Liu S H, Hu Y F, Zhang J, Xia M R, Hou Y L, Tse J, Zhang J J, Zhao Y F. Angew. Chem. Int. Ed., 2021, 60(1): 181.

doi: 10.1002/anie.202009991
[72]
Zhang J T, Zhang M, Zeng Y, Chen J S, Qiu L X, Zhou H, Sun C J, Yu Y, Zhu C Z, Zhu Z H. Small, 2019, 15(24): 1900307.

doi: 10.1002/smll.201900307
[73]
Yuan K, Lützenkirchen-Hecht D, Li L B, Shuai L, Li Y Z, Cao R, Qiu M, Zhuang X D, Leung M K H, Chen Y W, Scherf U. J. Am. Chem. Soc., 2020, 142(5): 2404.

doi: 10.1021/jacs.9b11852 pmid: 31902210
[74]
Yin H B, Yuan P F, Lu B A, Xia H C, Guo K, Yang G G, Qu G, Xue D P, Hu Y F, Cheng J Q, Mu S C, Zhang J N. ACS Catal., 2021, 11(20): 12754.

doi: 10.1021/acscatal.1c02259
[75]
Wei X, Zheng D, Zhao M, Chen H Z, Fan X, Gao B, Gu L, Guo Y, Qin J B, Wei J, Zhao Y L, Zhang G C. Angew. Chem. Int. Ed., 2020, 59(34): 14639.

doi: 10.1002/anie.202006175
[76]
Hu B T, Huang A J, Zhang X J, Chen Z, Tu R Y, Zhu W, Zhuang Z B, Chen C, Peng Q, Li Y D. Nano Res., 2021, 14(10): 3482.

doi: 10.1007/s12274-021-3535-4
[77]
Han Y H, Wang Y G, Xu R R, Chen W X, Zheng L R, Han A J, Zhu Y Q, Zhang J, Zhang H B, Luo J, Chen C, Peng Q, Wang D S, Li Y D. Energy Environ. Sci., 2018, 11(9): 2348.

doi: 10.1039/C8EE01481G
[78]
Xue W D, Zhou Q X, Cui X, Jia S R, Zhang J W, Lin Z Q. Nano Energy, 2021, 86: 106073.

doi: 10.1016/j.nanoen.2021.106073
[79]
Guo Y Y, Yuan P F, Zhang J N, Hu Y F, Amiinu I S, Wang X, Zhou J G, Xia H C, Song Z B, Xu Q, Mu S C. ACS Nano, 2018, 12(2): 1894.

doi: 10.1021/acsnano.7b08721
[80]
Lin Z Y, Huang H, Cheng L, Hu W, Xu P P, Yang Y, Li J M, Gao F Y, Yang K, Liu S, Jiang P, Yan W S, Chen S, Wang C L, Tong H G, Huang M X, Zheng W, Wang H, Chen Q W. Adv. Mater., 2021, 33(51): 2107103.

doi: 10.1002/adma.202107103
[81]
Cuesta A. ChemPhysChem, 2011, 12(13): 2375.

doi: 10.1002/cphc.201100164 pmid: 21732520
[82]
O’Keeffe M. Chem. Soc. Rev., 2009, 38(5): 1215.

doi: 10.1039/b802802h
[83]
Wu R, Song Y J, Huang X, Chen S G, Ibraheem S, Deng J H, Li J, Qi X Q, Wei Z D. J. Power Sources, 2018, 401: 287.

doi: 10.1016/j.jpowsour.2018.08.096
[84]
Yang L, Cheng D J, Xu H X, Zeng X F, Wan X, Shui J L, Xiang Z H, Cao D P. PNAS, 2018, 115(26): 6626.

doi: 10.1073/pnas.1800771115 pmid: 29891686
[85]
Jiao L, Jiang H L. Chem, 2019, 5(4): 786.

doi: 10.1016/j.chempr.2018.12.011
[86]
Ye W, Chen S M, Lin Y, Yang L, Chen S J, Zheng X S, Qi Z M, Wang C M, Long R, Chen M, Zhu J F, Gao P, Song L, Jiang J, Xiong Y J. Chem, 2019, 5(11): 2865.

doi: 10.1016/j.chempr.2019.07.020
[87]
Zhu X F, Zhang D T, Chen C J, Zhang Q R, Liu R S, Xia Z H, Dai L M, Amal R, Lu X Y. Nano Energy, 2020, 71: 104597.

doi: 10.1016/j.nanoen.2020.104597
[88]
Zhang H B, Zhou W, Chen T, Guan B Y, Li Z, Lou X W D. Energy Environ. Sci., 2018, 11(8): 1980.

doi: 10.1039/C8EE00901E
[89]
Zhang D Y, Chen W X, Li Z, Chen Y J, Zheng L R, Gong Y, Li Q H, Shen rongan, Han Y H, Cheong W C, Gu L, Li Y D. Chem. Commun., 2018, 54(34): 4274.

doi: 10.1039/C8CC00988K
[90]
Zhu Z J, Yin H J, Wang Y, Chuang C H, Xing L, Dong M Y, Lu Y R, Casillas-Garcia G, Zheng Y L, Chen S, Dou Y H, Liu P R, Cheng Q L, Zhao H J. Adv. Mater., 2020, 32(42): 2004670.

doi: 10.1002/adma.202004670
[1] Yuexiang Zhu, Weiyue Zhao, Chaozhong Li, Shijun Liao. Pt-Based Intermetallic Compounds and Their Applications in Cathodic Oxygen Reduction Reaction of Proton Exchange Membrane Fuel Cell [J]. Progress in Chemistry, 2022, 34(6): 1337-1347.
[2] Shujin Shen, Cheng Han, Bing Wang, Yingde Wang. Transition Metal Single-Atom Electrocatalysts for CO2 Reduction to CO [J]. Progress in Chemistry, 2022, 34(3): 533-546.
[3] Yuanju Jing, Chun Kang, Yanxin Lin, Jie Gao, Xinbo Wang. MXene-Based Single-Atom Catalysts: Synthesis and Electrochemical Catalysis [J]. Progress in Chemistry, 2022, 34(11): 2373-2385.
[4] Siyan Yu, Long Zheng, Pengfei Meng, Xiudong Shi, Shijun Liao. M-N/C Electrocatalysts Derived from MOFs for Oxygen Reduction Reaction [J]. Progress in Chemistry, 2021, 33(10): 1693-1705.
[5] Lulu Huang, Kailing Sun, Mingrui Liu, Jing Li, Shijun Liao. Carbon-Based Cathode Materials for Non-Aqueous Lithium-Air Batteries [J]. Progress in Chemistry, 2019, 31(10): 1406-1416.
[6] Miao He, Xue Yejian, Zhou Xufeng, Liu Zhaoping. Graphene-Based Oxygen Reduction Reaction Catalysts for Metal Air Batteries [J]. Progress in Chemistry, 2015, 27(7): 935-944.
[7] Zhong Yiliang, Mo Zaiyong, Yang Lijun, Liao Shijun*. Application of Modified Graphene for Cathode Catalysts in Fuel Cells [J]. Progress in Chemistry, 2013, 25(05): 717-725.
[8] Li Peng, Sun Yanping* . Positive Electrodes of Non-Aqueous Rechargeable Lithium-Oxygen Batteries [J]. Progress in Chemistry, 2012, 24(12): 2457-2471.
[9] Zhang Dong, Zhang Cunzhong*, Mu Daobin, Wu Borong, Wu Feng . Review on Lithium-Air Batteries [J]. Progress in Chemistry, 2012, 24(12): 2472-2482.
[10] Wen Yuehua, Cheng Jie, Xu Yan, Liu Xuehu, Cao Gaoping, Yang Yusheng. Studies on Nitrogen-doped Nano-carbons and Their Non-Pt Composites as Electrocatalysts [J]. Progress in Chemistry, 2010, 22(08): 1550-1555.
[11] Yuan Xianxia Xia Xiaoyun Zeng Xin Zhang Huijuan Ma Zifeng. Catalysts for Oxygen Electrode of Low Temperature Fuel Cells [J]. Progress in Chemistry, 2010, 22(01): 19-31.
[12] Zhao Dongjiang Yin Geping Wei Jie. Non-platinum Cathode Electrocatalysts in Polymer Electrolyte Membrane Fuel Cells [J]. Progress in Chemistry, 2009, 21(12): 2753-2759.