中文
Announcement
More
Progress in Chemistry 2010, Vol. 22 Issue (12): 2290-2297 Previous Articles   Next Articles

• Review •

Cu2O-Based Photocatalysis

Xu Chenhong, Han You, Chi Mingyang   

  1. School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, China
  • Online: Published:
PDF ( 1647 ) Cited
Export

EndNote

Ris

BibTeX

Photocatalysis became one of the important ways to solve the current global energy crisis and environmental pollution in recent years. It uses solar energy to product hydrogen via water splitting and degenerate the organic pollutants, which is not only low-cost but also environmentally friendly. Cu2O is a p-type oxide semiconductor with the band gap of 2.0—2.2eV based on its size and shape. Therefore Cu2O can adsorb the visible part of the sunlight and has a potential application in the photocatalytic field. In this review, we introduce the structural characteristics of CuO, which contains three-dimensional Cu2O networks and special band structure. Then, the modification of Cu2O including doping and coupling are described. Furthermore, the researches on the water splitting and the degeneration of organic compounds using Cu2O and modified Cu2O photocatalysts are discussed. The keys which inhibit the photocatalytic efficiency of Cu2O are the recombination of the photo-excitated electrons and holes as well as the photo corrosion of Cu2O. In the end, the ideas on further research based on the problems of Cu2O as the photocatalysts are presented.

Contents
1 Introduction
2 Structural characteristics of Cu2O and its modification
2.1 Structural characteristics of Cu2O
2.2 Modification of Cu2O
3 Water splitting using Cu2O-based photocatalysts
3.1 Water splitting using Cu2O photocatalysts
3.2 Water plitting using modified Cu2O photocatalysts
4 Organic degeneration using Cu2O-based photoc-atalysts
4.1 Organic degeneration using Cu2O photocatalysts
4.2 Organic degeneration using modified Cu2O photocatalysts
5 Conclusion and prospects

CLC Number: 


[1] Fujishima A, Honda K. Nature, 1972, 238(5358): 37—38

[2] 盛国栋(Sheng G D), 李家星(Li J X), 王所伟(Wang S W), 王祥科(Wang X K). 化学进展(Progress in Chemistry), 2009, 21(12): 2492—2504

[3] Ni M, Leung M K H, Leung D Y C, Sumathy K. Renew. Sust. Energ. Rev., 2007, 11(3): 401—425

[4] Choi W. Catal. Surv. Asia, 2006, 10(1): 16—28

[5] Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y. Science, 2001, 293(5528): 269—271

[6] Jang J S, Hwang D W, Lee J S. Catal. Today, 2007, 120(2): 174—181

[7] Omata T, Otsuka-Yao-Matsuo S. J. Photochem. Photobiol. A: Chem., 2003, 156(1/3): 243—248

[8] Maeda K, Teramura K, Lu D L, Takata T, Saito N, Inoue Y, Domen K. Nature, 2006, 440(7082): 295—295

[9] Zou Z G, Ye J H, Sayama K, Arakawa H. Nature, 2001, 414(6864): 625—627

[10] Yan S C, Li Z S, Zou Z G. Langmuir, 2009, 25(17): 10397—10401

[11] 田蒙奎(Tian M K), 上官文峰(Shangguan W F), 王世杰(Wang S J), 欧阳自远(Ouyang Z Y). 化学进展(Progress in Chemistry), 2007, 19(5): 680—688

[12] Rafea M A, Roushdy N. J. Phys. D: Appl. Phys., 2009, 42(1): ant. no. 015413

[13] Balamurugan B, Aruna I, Mehta B R, Shivaprasad S M. Phys. Rev. B, 2004, 69(16): art. no. 165419

[14] Baumeister P W. Phys. Rev., 1961, 121(2): 359—362

[15] Ghijsen J, Tjeng L H, van Elp J, Eskes H, Westerink J, Sawatzky G A, Czyzyk M T. Phys. Rev. B, 1988, 38(16): 11322—11330

[16] Ghijsen J, Tjeng L H, Eskes H, Sawatzky G A, Johnson R L. Phys. Rev. B, 1990, 42(4): 2268—2274

[17] Hara M, Kondo T, Komoda M, Ikeda S, Shinohara K, Tanaka A, Kondo J N, Domen K. Chem. Commun., 1998, (3): 357—358

[18] Roos A, Chibuye T, Karlsson B. Sol. Energy Mater., 1983, 7(4): 453—465

[19] Nolan M, Elliott S D. Phys. Chem. Chem. Phys., 2006, 8(45): 5350 — 5358

[20] Nolan M, Elliott S D. Chem. Mater., 2008, 20(17): 5522—5531

[21] Islam M M, Diawara B, Maurice V, Marcus P. J. Mol. Struct. Theochem., 2009, 903(1/3): 41—48

[22] Nolan M, Elliott S D. Thin Solid Films, 2008, 516(7): 1468—1472

[23] Das K, Sharma S N, Kumar M, De S K. J. Appl. Phys., 2010, 107(2): art. no. 024316

[24] Zhang W Q, Shi L, Tang K B, Dou S M. Eur. J. Inorg. Chem., 2010, (7): 1103—1109

[25] Zheng Z K, Huang B B, Wang Z Y, Guo M, Qin X Y, Zhang X Y, Wang P, Dai Y. Journal of Physical Chemistry C, 2009, 113(32): 14448—14453

[26] Nian J N, Hu C C, Teng H. Int. J. Hydrogen Energy, 2008, 33(12): 2897—2903

[27] Zhang Y, Deng B, Zhang T R, Gao D M, Xu A W. J. Phys. Chem. C, 2010, 114(11): 5073—5079

[28] Wood B J, Wise H, Yolles R S. J. Catal., 1969, 15(4): 355—362

[29] Bessekhouad Y, Robert D, Weber J V. Catal. Today, 2005, 101(3/4): 315—321

[30] Kakuta S, Abe T. Electrochem. Solid-State Lett., 2009, 12(3): 1—3

[31] Martinez-Ruiz A, Moreno M G, Takeuchi N. Solid State Sci., 2003, 5(2): 291—295

[32] Nakano Y, Saeki S, Morikawa T. Appl. Phys. Lett., 2009, 94(2): art. no. 022111

[33] Zhou B, Liu Z G, Wang H X, Yang Y Q, Su W H. Catal. Lett., 2009, 132(1/2): 75—80

[34] 靳治良(Jin Z L), 吕功煊(Lv G X). 分子催化(Journal of Molecular Catalysis), 2004, 18(4): 310—320

[35] Hou Y, Li X Y, Zhao Q D, Quan X, Chen G H. Appl. Phys. Lett., 2009, 95(9): art. no. 093108

[36] Hou Y, Li X, Zou X, Quan X, Chen G. Environ. Sci. Technol., 2008, 43(3): 858—863

[37] Zhang J Y, Zhu H L, Zheng S K, Pan F, Wang T M. ACS Appl. Mater. Interf., 2009, 1(10): 2111—2114

[38] Siripala W, Ivanovskaya A, Jaramillo T F, Baeck S H, McFarland E W. Sol. Energy Mater. Sol. Cells, 2003, 77(3): 229—237

[39] Huang L, Peng F, Ohuchi F S. Surf. Sci., 2009, 603(17): 2825—2834

[40] 陈金毅(Chen J Y), 彭梦(Peng M), 李念(Li N), 李宛怡(Li W Y), 海婷婷(Hai T T), 李薇(Li W). 五邑大学学报(Journal of Wuyi University), 2010, 24(1): 8—12

[41] 李念(Li N), 彭梦(Peng M), 李宛怡(Li W Y), 海婷婷(Hai T T), 李薇(Li W), 陈金毅(Chen J Y). 武汉工程大学学报(J. Wuhan Inst. Tech. ), 2010, 32(1): 87—89

[42] Hu C C, Nian J N, Teng H. Sol. Energy Mater. Sol. Cells, 2008, 92(9): 1071—1076

[43] Fernando C A N, De Silva L A A, Mehra R M, Takahashi K. Semicond. Sci. Technol., 2001, 16(6): 433—439

[44] Ikeda S, Takata T, Kondo T, Hitoki G, Hara M, Kondo J N, Domen K, Hosono H, Kawazoe H, Tanaka A. Chem. Commun., 1998, (20): 2185—2186

[45] Hara M, Hasei H, Yashima M, Ikeda S, Takata T, Kondo J N, Domen K. Appl. Catal. A: General, 2000, 190(1/2): 35—42

[46] Ohta T. Int. J. Hydrogen Energy, 2000, 25(10): 911—917

[47] Hara M, Komoda M, Hasei H, Yashima M, Ikeda S, Takata T, Kondo J N, Domen K. J. Phys. Chem. B, 2000, 104(4): 780—785

[48] Domen K. J. Phys. Chem. B, 2004, 108(49): 19078—19078

[49] De Jongh P E, Vanmaekelbergh D, Kelly J J. Chem. Commun., 1999, (12): 1069—1070

[50] De Jongh P E, Vanmaekelbergh D, Kelly J J. J. Electrochem. Soc., 2000, 147(2): 486—489

[51] Davide B, Paolo F, Alberto G, Valentina G, Chiara M, Tiziano M, Eugenio T. Chem. Sus. Chem., 2009, 2(3): 230—233

[52] 温福宇(Wen F Y), 杨金辉(Yang J H), 宗旭(Zong X), 马艺(Ma Y), 徐倩(Xu Q), 马保军(Ma B J), 李灿(Li C). 化学进展(Progress in Chemistry), 2009, 21(11): 2285—2302

[53] Schoppel H R, Gerischer H, Bunsenges B. Ber. Bunsenges. Phys. Chem., 1971, 75: 1237—1239

[54] Somasundaram S, Chenthamarakshan C R N, de Tacconi N R, Rajeshwar K. Int. J. Hydrogen Energy, 2007, 32(18): 4661—4669

[55] Wu Y Q, Lu G X, Li S B. Catal. Lett., 2009, 133(1/2): 97—105

[56] Kakuta S, Abe T. Solid State Sci., 2009, 11(8): 1465—1469

[57] 许宜铭(Xu Y M). 化学进展(Progress in Chemistry), 2009, 21(2/3): 524—533

[58] Palmisano G, Augugliaro V, Pagliaro M, Palmisano L. Chem. Commun., 2007, (33): 3425—3437

[59] Gaya U I, Abdullah A H. J. Photochem. Photobiol. C: Photochem. Rev., 2008, 9(1): 1—12

[60] Fujishima A, Zhang X, Tryk D A. Int. J. Hydrogen Energy, 2007, 32(14): 2664—2672

[61] Tang A D, Xiao Y, Jing O Y, Nie S. J. Alloys Compd., 2008, 457(1/2): 447—451

[62] 苏晓艳(Su X Y), 肖举强(Xiao J Q). 工业催化(Industrial Catalysis), 2009, 17(3): 71—74

[63] Xu H L, Wang W Z, Zhu W. J. Phys. Chem. B, 2006, 110(28): 13829—13834

[64] Yang H M, Ouyang J, Tang A D, Xiao Y, Li X W, Dong X D, Yu Y M. Mater. Res. Bull., 2006, 41(7): 1310—1318

[65] Huang L, Peng F, Yu H, Wang H J. Solid State Sci., 2009, 11(1): 129—138

[66] 梁宇宁(Liang Y N), 黄智(Huang Z), 覃思晗(Tan S H), 甘庆华(Gan Q H). 环境污染治理技术与设备(Techniques and Equipment for Environmental Pollution Control), 2003, 4(10): 36—39

[67] 刘洪禄(Liu H L), 张爱茜(Zhang A Q), 吴海锁(Wu H S). 环境化学(Environmental Chemistry), 2004, 23(5): 490—494

[68] 黄智(Huang Z), 张爱茜(Zhang A Q), 韩朔睽(Han S K). 环境化学(Environmental Chemistry), 2003, 22(3): 150—153

[69] 陈金毅(Chen J Y), 刘小玲(Liu X L), 李闾轮(Li L L), 李家麟(Li J L). 华中师范大学学报(Journal of Central China Normal University), 2002, 36(2): 200—203

[70] 刘小玲(Liu X L), 陈金毅(Chen J Y), 周文涛(Zhou W T), 李家麟(Li J L). 华中师范大学学报(Journal of Central China Normal University), 2002, 36(4): 475—477

[71] 何开棘(He K J), 丁慧(Ding H), 王开明(Wang K M). 化工进展(Chemical Industry and Engineering Progress), 2009, 28(6): 975—977

[72] 李晓勤(Li X Q), 方涛(Fang T), 罗永松(Luo Y S), 李家麟(Li J L). 化学通报(Chemistry), 2006, 69(4): 290—293

[73] Xu L, Jiang L P, Zhu J J, Nanotech., 2009, 20(4): art. no. 045605

[74] Cao Y B, Fan J M, Bai L Y, Yuan F L, Chen Y F. Cryst. Growth Des., 2010, 10(1): 232—236

[75] Han C, Li Z, Shen J. J. Hazard. Mater., 2009, 168(1): 215—219

[76] Huang L, Peng F, Wang H, Yu H, Li Z. Catal. Commun., 2009, 10(14): 1839—1843

[77] 周波(Zhou B), 刘志国(Liu Z G), 王红霞(Wang H X), 黄喜强(Huang X Q), 隋郁(Sui Y), 王先杰(Wang X J), 吕喆(Lv Z), 苏文辉(Su W H). 物理化学学报(Acta Physico-Chimica Sinica), 2009, 25(9): 1841—1846

[78] 周波(Zhou B), 刘志国(Liu Z G), 王红霞(Wang H X), 赵莉君(Zhao L J), 刘伟龙(Liu W L), 苏文辉(Su W H). 高等学校化学学报(Chemical Journal of Chinese Universities ), 2010, 31(1): 141—144

[79] 马玉燕(Ma Y Y), 魏守强(Wei S Q), 侯微(Hou W), 陈玉叶(Chen Y Y), 刘瑛(Liu Y). 电镀与精饰(Plating and Finishing), 2009, 31(12): 5—8

[80] Xu C, Cao L X, Su G, Liu W, Liu H, Yu Y Q, Qu X F. J. Hazard. Mater., 2010, 176(1/3): 807—813

[81] Du Y L, Zhang N, Wang C M. Catal. Commun., 2010, 11(7): 670—674

[82] 黄智(Huang Z), 李玉英(Li Y Y), 龙腾发(Long T F), 陈孟林(Chen M L), 何星存(He X C). 现代化工(Morden Chemical Industry), 2010, 30(1): 57—59

[83] 陈茂荣(Chen M R), 陈金毅(Chen J Y), 张文蓉(Zhang W R), 张静(Zhang J), 孙家寿(Sun J S). 武汉工程大学学报(J. Wuhan Inst. Tech. ), 2009, 31(12): 28—31

[84] 李东(Li D), 李登好(Li D H), 冯良东(Feng L D). 工业水处理(Industrial Water Treatment), 2010, 30(1): 53—56

[1] Ruyue Cao, Jingjing Xiao, Yixuan Wang, Xiangyu Li, Anchao Feng, Liqun Zang. Cascade RAFT Polymerization of Hetero Diels-Alder Cycloaddition Reaction [J]. Progress in Chemistry, 2023, 35(5): 721-734.
[2] Xuedan Qian, Weijiang Yu, Junzhe Fu, Youxiang Wang, Jian Ji. Fabrication and Biomedical Application of Hyaluronic Acid Based Micro- and Nanogels [J]. Progress in Chemistry, 2023, 35(4): 519-525.
[3] Dandan Wang, Zhaoxin Lin, Huijie Gu, Yunhui Li, Hongji Li, Jing Shao. Modification and Application of Bi2MoO6 in Photocatalytic Technology [J]. Progress in Chemistry, 2023, 35(4): 606-619.
[4] Shuyang Yu, Wenlei Luo, Jingying Xie, Ya Mao, Chao Xu. Review on Mechanism and Model of Heat Release and Safety Modification Technology of Lithium-Ion Batteries [J]. Progress in Chemistry, 2023, 35(4): 620-642.
[5] Liu Yvfei, Zhang Mi, Lu Meng, Lan Yaqian. Covalent Organic Frameworks for Photocatalytic CO2 Reduction [J]. Progress in Chemistry, 2023, 35(3): 349-359.
[6] Xuexian Wu, Yan Zhang, Chunyi Ye, Zhibin Zhang, Jingli Luo, Xianzhu Fu. Surface Pretreatment of Polymer Electroless Plating for Electronic Applications [J]. Progress in Chemistry, 2023, 35(2): 233-246.
[7] Shiying Yang, Qianfeng Li, Sui Wu, Weiyin Zhang. Mechanisms and Applications of Zero-Valent Aluminum Modified by Iron-Based Materials [J]. Progress in Chemistry, 2022, 34(9): 2081-2093.
[8] Qianqian Fan, Lu Wen, Jianzhong Ma. Lead-Free Halide Perovskite Nanocrystals: A New Generation of Photocatalytic Materials [J]. Progress in Chemistry, 2022, 34(8): 1809-1814.
[9] Yehjun Lim, Yanmei Li. Chemical Synthesis/Semisynthesis of Post-Translational Modified Tau Protein [J]. Progress in Chemistry, 2022, 34(8): 1645-1660.
[10] Jin Zhou, Pengpeng Chen. Modification of 2D Nanomaterials and Their Applications in Environment Pollution Treatment [J]. Progress in Chemistry, 2022, 34(6): 1414-1430.
[11] Xiaoqing Ma. Graphynes for Photocatalytic and Photoelectrochemical Applications [J]. Progress in Chemistry, 2022, 34(5): 1042-1060.
[12] Xuanshu Zhong, Zongjian Liu, Xue Geng, Lin Ye, Zengguo Feng, Jianing Xi. Regulating Cell Adhesion by Material Surface Properties [J]. Progress in Chemistry, 2022, 34(5): 1153-1165.
[13] Xiaowei Li, Lei Zhang, Qixin Xing, Jinyu Zan, Jin Zhou, Shuping Zhuo. Construction of Magnetic NiFe2O4-Based Composite Materials and Their Applications in Photocatalysis [J]. Progress in Chemistry, 2022, 34(4): 950-962.
[14] Yan Xu, Chungang Yuan. Preparation, Stabilization and Applications of Nano-Zero-Valent Iron Composites in Water Treatment [J]. Progress in Chemistry, 2022, 34(3): 717-742.
[15] Xin Pang, Shixiang Xue, Tong Zhou, Hudie Yuan, Chong Liu, Wanying Lei. Advances in Two-Dimensional Black Phosphorus-Based Nanostructures for Photocatalytic Applications [J]. Progress in Chemistry, 2022, 34(3): 630-642.
Viewed
Full text


Abstract

Cu2O-Based Photocatalysis