中文
Announcement
More
Progress in Chemistry 2021, Vol. 33 Issue (3): 380-393 DOI: 10.7536/PC200611 Previous Articles   Next Articles

• Review •

Peptide-Based Metal Ion Sensors

Shuaibing Yu1, Zhaolu Wang1, Xuliang Pang1, Lei Wang1, Lianzhi Li1,*(), Yingwu Lin2,*()   

  1. 1 School of Chemistry and Chemical Engineering, Liaocheng University,Liaocheng 252059, China
    2 School of Chemistry and Chemical Engineering, University of South China,Hengyang 421001, China
  • Received: Revised: Online: Published:
  • Contact: Lianzhi Li, Yingwu Lin
  • Supported by:
    the National Natural Science Foundation of China(20471025); the National Natural Science Foundation of China(21142003); the National Natural Science Foundation of China(21977042); the Scientific Research Foundation of Liaocheng University(318011919)
Richhtml ( 40 ) PDF ( 677 ) Cited
Export

EndNote

Ris

BibTeX

Peptide-based metal ion sensors, as a new type of sensor designed based on peptide sequences, have attracted more and more attention from researchers. As important small biological molecules, peptides have advantages of simple and well-developed synthetic methods with low costs, and can provide multidentate coordination to metal ions. Peptide-based sensors have high sensitivity and high selectivity to metal ions, and can be further optimized by adjusting the peptide sequence. Compared with other types of sensors, peptide-based metal ion sensors have good water solubility, biocompatibility, and low toxicity, and therefore have important applications in environmental detection and bioanalytical diagnosis, especially for metal ion imaging. This review focuses on the progress of different types of peptide-based metal ion sensors in recent years, including those based on UV-Vis absorption spectroscopy, fluorescence spectroscopy, and electrochemical analysis, and their applications, especially for detections and bioimaging of highly toxic metal ions(Hg2+, Cd2+, etc.), and metal ions playing key roles in biological systems(Cu2+, Zn2+, etc.). Moreover, the advantages of peptide-based metal ion sensors are summarized and their future developments and applications are prospected.

Contents

1 Introduction

2 Peptide?based UV?vis colorimetric sensors

3 Peptide?based fluorescent chemical sensors

3.1 Mechanism of fluorescence chemical sensors

3.2 Modified peptides with dansyl

3.3 Modified peptides with pyrene

3.4 Modified peptides with FAM/FITC

3.5 Modified peptides with aggregation?induced emission fluorophore

3.6 Other peptide fluorescence sensors

4 Peptide?based electrochemical sensors

5 Conclusion and outlook

Fig.1 Illustration of Cu2+ ions induced p-AuNPs aggregation[24]
Fig.2 (a) Schematic diagram of the strategy of colorimetric Zn2+ assay based on unmodified AuNPs and a zinc-binding peptides[28];(b) Schematic diagram of the colorimetric detection of Hg2+ after mixing nanogold and peptide[30]
Table 1 Peptide-based fluorescent chemical sensors and their limits of detection
Fig.3 (a) Fluorescence sensor based on zinc finger protein[34];(b) Fluorescence spectra of peptides after addition of Zn2+[35]
Fig.4 Chemical structure of H2L and its combination with Cd2+[40]
Fig.5 Proposed binding modes of D-P4 with Cu2+, Hg2+ and biothiols[59]
Fig.6 Action mechanism of Pyrene-Cys-Gly-Pro-Cys-COOH towards Cd2+[63]
Fig.7 Proposed binding mode of 1 with Hg2+[71]
Fig.8 Proposed binding mode of sensor with Al3+[74]
Fig.9 Chemical structure of two cyclic decapeptides:A includes two histidines and two aspartic acids; B replaces histidine with phosphorylated serine and aspartic acid with glutamic acid[77]
Fig.10 Chemical structure of GSH-Fc including sulfhydryl that can bind to Au electrodes; ferrocene with electrochemical signals; and binding sites with multiple metal coordination
Fig.11 SWV curves of three different types of electrodes: bare Au electrode, peptide modified electrode, lead recorded at peptide modified electrode[83]
Fig.12 The action mode of nano-pore sensor[86]
[1]
Xu J, Cao Z, Zhang Y L, Yuan Z L, Lou Z M, Xu X H, Wang X K. Chemosphere, 2018, 195:351.
[2]
Hashim M A, Mukhopadhyay S, Sahu J N, Sengupta B. J. Environ. Manag., 2011, 92:2355.
[3]
Kuperman R G, Carreiro M M. Soil Biol. Biochem., 1997, 29:179.
[4]
Huang L H, Fan Z T, Yu C H, Hopke P K, Lioy P J, Buckley B T, Lin L, Ma Y J. Environ. Sci. Technol., 2013, 47:4408.
[5]
Poyil P. Cancer. Res., 2015,75∶2798.
[6]
Ascenzi P, Tundo G R, Coletta M. J. Inorg. Biochem., 2018, 187:116.
[7]
Todinova S, Raynova Y, Idakieva K. J. Therm. Anal. Calorim., 2018, 132:777.
[8]
Krishna S S. Nucleic Acids Res., 2003, 31:532.
[9]
Baker R D, Greer F R, Nutrition T C O. Pediatrics, 2010, 126:1040.
[10]
Zhou F F, Wang H Q, Liu P Y, Hu Q H, Wang Y Y, Liu C, Hu J K. Spectrochimica Acta Part A: Mol. Biomol. Spectrosc., 2018, 190:104.
[11]
Tamanini E, Katewa A, Sedger L M, Todd M H, Watkinson M. Inorg. Chem., 2009, 48:319.
[12]
Tang X L, Peng X H, Dou W, Mao J, Zheng J R, Qin W W, Liu W S, Chang J, Yao X J. Org. Lett., 2008, 10:3653.
[13]
Liu Z P, Zhang C L, He W J, Yang Z H, Gao X, Guo Z J. Chem. Commun., 2010, 46:6138.
[14]
Divrikli U, Kartal A, Soylak M, Elci L. J. Hazard. Mater., 2007, 145:459.
[15]
Faraji M, Yamini Y, Saleh A, Rezaee M, Ghambarian M, Hassani R. Anal. Chimica Acta, 2010, 659:172.
[16]
Karimzadeh A, Hasanzadeh M, Shadjou N, de la Guardia M. Trac Trends Anal. Chem., 2018, 107:1.
[17]
Zhai H Q, Jin X L, Yue J J. Hubei Agricultural Sciences, 2010, 49(8):1995.
翟慧泉, 金星龙, 岳俊杰. 湖北农业科学, 2010, 49(8):1995.
[18]
Xu J G, Wang L, Xiao H Y, Gao M, Li J. Environmental Science Survey, 2010, 29(5):104.
徐继刚, 王雷, 肖海洋, 高明, 李静. 环境科学导刊, 2010, 29(5):104.
[19]
Malachowski L, Stair J, Holcombe J A. Pure Appl. Chem., 2004, 76:777.
[20]
Kim J S, Quang D T. Chem. Rev., 2007, 107:3780.
[21]
Schwarzenbach G. Helv. Chim. Acta, 1952, 35:2344.
[22]
Jadzinsky P D, Calero G, Ackerson C J, Bushnell D A, Kornberg R D. Science, 2007, 318:430.
[23]
Murphy C J, Gole A M, Hunyadi S E, Stone J W, Sisco P N, Alkilany A, Kinard B E, Hankins P. Chem. Commun., 2008, 5:544.
[24]
Chen H X, Zhang J J, Liu X J, Gao Y M, Ye Z H, Li G X. Anal. Methods, 2014, 6:2580.
[25]
Li X Y, Wu Z T, Zhou X D, Hu J M. Biosens. Bioelectron., 2017, 92:496.
[26]
Chai F, Wang C G, Wang T T, Ma Z F, Su Z M. Nanotechnology, 2010, 21:025501.
[27]
Si S, Kotal A, Mandal T K. J. Phys. Chem. C, 2007, 111:1248.
[28]
Li W, Nie Z, He K Y, Xu X H, Li Y, Huang Y, Yao S Z. Chem. Commun., 2011, 47:4412.
[29]
Du J J, Sun Y H, Jiang L, Cao X B, Qi D P, Yin S Y, Ma J, Boey F Y C, Chen X D. Small, 2011, 7:1407.
[30]
Feng H Y, Gao L, Ye X H, Wang L, Xue Z C, Kong J M, Li L Z. Chem. Res. Chin. Univ., 2017, 33:155.
[31]
Vance D H, Czarnik A W. J. Am. Chem. Soc., 1994, 116:9397.
[32]
Wu F Y, Li Z, Wen Z C, Zhou N, Zhao Y F, Jiang Y B. Org. Lett., 2002, 4:3203.
[33]
Kuner T, Augustine G J. Neuron, 2000, 27:447.
[34]
Walkup G K, Imperiali B. J. Am. Chem. Soc., 1996, 118:3053.
[35]
Godwin H A, Berg J M. J. Am. Chem. Soc., 1996, 118:6514.
[36]
Wan J J, Duan W X, Chen K, Tao Y D, Dang J, Zeng K H, Ge Y S, Wu J, Liu D. Sensor Actuat. B: Chem., 2018, 255:49.
[37]
Wang B, Li H W, Gao Y, Zhang H Y, Wu Y Q. J. Fluoresc., 2011, 21:1921.
[38]
Donadio G, di Martino R, Oliva R, Petraccone L, del Vecchio P, di Luccia B, Ricca E, Isticato R, di Donato A, Notomista E. J. Mater. Chem. B, 2016, 4:6979.
[39]
Siepi M, Oliva R, Petraccone L, del Vecchio P, Ricca E, Isticato R, Lanzilli M, Maglio O, Lombardi A, Leone L, Notomista E, Donadio G. PLoS One, 2018, 13:e0204164.
[40]
Wang P, Wu J, Liu L X, Zhou P P, Ge Y S, Liu D, Liu W S, Tang Y. Dalton Trans., 2015, 44:18057.
[41]
Wang P, Wu J, Su P R, Xu C, Ge Y S, Liu D, Liu W S, Tang Y. Dalton Trans., 2016, 45:16246.
[42]
Wang P, Wu J, Zhou P P, Liu W S, Tang Y. J. Mater. Chem. B, 2015, 3:3617.
[43]
Wang P, Zhou D G, Chen B. Spectrochimica Acta Part A: Mol. Biomol. Spectrosc., 2018, 204:735.
[44]
Wang P, Wu J. Spectrochimica Acta Part A: Mol. Biomol. Spectrosc., 2019, 208:140.
[45]
Wang P, Zhou D G, Chen B. Spectrochimica Acta Part A: Mol. Biomol. Spectrosc., 2019, 207:276.
[46]
Wang P, An Y, Liao Y W. Spectrochimica Acta Part A: Mol. Biomol. Spectrosc., 2019, 216:61.
[47]
An Y, Wang P, Yue Z J. Spectrochimica Acta Part A: Mol. Biomol. Spectrosc., 2019, 216:319.
[48]
Xue S R, Wang P, Chen K. Spectrochimica Acta Part A: Mol. Biomol. Spectrosc., 2020, 226:117616.
[49]
Wang P, Wu J, Zhao C H. Spectrochimica Acta Part A: Mol. Biomol. Spectrosc., 2020, 226:117600.
[50]
Joshi B P, Lee K H. Bioorg. Med. Chem., 2008, 16:8501.
[51]
Joshi B P, Park J Y, Lee K H. Sensor Actuat. B: Chem., 2014, 191:122.
[52]
Kim J M, Lohani C R, Neupane L N, Choi Y, Lee K H. Chem. Commun., 2012, 48:3012.
[53]
In B, Hwang G W, Lee K H. Bioorg. Med. Chem. Lett., 2016, 26:4477.
[54]
Jung K H, Oh E T, Park H J, Lee K H. Biosens. Bioelectron., 2016, 85:437.
[55]
Azuma T, Fukushima Y. J. Photopol. Sci. Technol., 2014, 27:685.
[56]
Zhang L L, Cao J, Chen K, Liu Y, Ge Y S, Wu J, Liu D. New J. Chem., 2019, 43:3071.
[57]
Li Y, Li L Z, Pu X W, Ma G L, Wang E Q, Kong J M, Liu Z P, Liu Y Z. Bioorg. Med. Chem. Lett., 2012, 22:4014.
[58]
Wang Z L, Feng H Y, Li Y, Xu T, Xue Z C, Li L Z. Chinese Journal of Inorganic Chemistry, 2015, 31(10):1946.
王召璐, 冯慧云, 李艳, 许涛, 薛泽春, 李连之. 无机化学学报, 2015,31(10):1946.
[59]
Pang X L, Gao L, Feng H Y, Li X D, Kong J M, Li L Z. New J. Chem., 2018, 42:15770.
[60]
Pang X L, Wang L, Gao L, Feng H Y, Kong J M, Li L Z. Luminescence, 2019, 34:585.
[61]
Pang X L, Dong J F, Gao L, Wang L, Yu S B, Kong J M, Li L Z. Dye. Pigment., 2020, 173:107888.
[62]
Thirupathi P, Lee K H. Bioorg. Med. Chem., 2013, 21:7964.
[63]
Jung K H, Oh S, Park J, Park Y J, Park S H, Lee K H. New J. Chem., 2018, 42:18143.
[64]
Hwang G W, Jeon J, Neupane L N, Lee K H. New J. Chem., 2018, 42:1437.
[65]
Mehta P K, Oh E T, Park H J, Lee K H. Sensor Actuat. B: Chem., 2017, 245:996.
[66]
Mehta P K, Oh E T, Park H J, Lee K H. Sensor Actuat. B: Chem., 2018, 256:393.
[67]
Jang S, Thirupathi P, Neupane L N, Seong J, Lee H, Lee W I, Lee K H. Org. Lett., 2012, 14:4746.
[68]
Lv X L, Wei Y, Luo S Z. Anal. Sci., 2012, 28:749.
[69]
Xu J B, Liu N, Hao C W, Han Q Q, Duan Y L, Wu J. Sensor Actuat. B: Chem., 2019, 280:129.
[70]
Wang P, Xue S R, Yang X P. Biosens. Bioelectron., 2020, 163:112283.
[71]
Neupane L N, Oh E T, Park H J, Lee K H. Anal. Chem., 2016, 88:3333.
[72]
Neupane L N, Hwang G W, Lee K H. Biosens. Bioelectron., 2017, 92:179.
[73]
Liu D N, Ji S L, Li H R, Hong L, Kong D L, Qi X, Ding D. Faraday Discuss., 2017, 196:377.
[74]
Neupane L N, Mehta P K, Oh S, Park S H, Lee K H. Analyst, 2018, 143:5285.
[75]
Lin Y C, Zheng Y F, Guo Y C, Yang Y L, Li H B, Fang Y, Wang C. Sensor Actuat. B: Chem., 2018, 273:1654.
[76]
Viswanathan K. Sensor Actuat. A: Phys., 2012, 175:15.
[77]
Yang C T, Han J, Gu M, Liu J, Li Y, Huang Z, Yu H Z, Hu S, Wang X L. Chem. Commun., 2015, 51:11769.
[78]
Sun W, Wang L, Li Y J, He X W. Analytical Chemistry, 2004, 32(4):541.
孙微, 王磊, 李一峻, 何锡文. 分析化学, 2004, 32(4):541.
[79]
Chow E, Hibbert D B, Gooding J J. Analyst, 2005, 130:831.
[80]
Wang F B, Fan M Y, Liu Y N, Wang J X, Zeng D M, Huang K L. J. Cent. South Univ. Technol., 2008, 15:44.
[81]
Ye W L, Peng Y, Li X Q, Xiang J, Liu X F, Liu Y N. Chinese Journal of Inorganic Chemistry, 2010, 26(10):1820.
叶武龙, 彭勇, 李学强, 向进, 刘晓芳, 刘又年. 无机化学学报, 2010,26(10):1820.
[82]
Chow E, Ebrahimi D, Gooding J J, Hibbert D B. Analyst, 2006, 131:1051.
[83]
Lin M, Cho M, Choe W S, Lee Y. Electroanalysis, 2016, 28:998.
[84]
Clara P R, Núria S, JosÉ M D C, Cristina A, Miquel E. Talanta, 2016, 155:8.
[85]
Liu T, Yin J, Wang Y H, Miao P. J. Electroanal. Chem., 2016, 783:304.
[86]
Roozbahani G M, Chen X H, Zhang Y W, Juarez O, Li D E, Guan X Y. Anal. Chem., 2018, 90:5938.
[1] Gehui Chen, Nan Ma, Shuaibing Yu, Jiao Wang, Jinming Kong, Xueji Zhang. Immunity and Aptamer Biosensors for Cocaine Detection [J]. Progress in Chemistry, 2023, 35(5): 757-770.
[2] Yan Bao, Jiachen Xu, Ruyue Guo, Jianzhong Ma. High-Sensitivity Flexible Pressure Sensor Based on Micro-Nano Structure [J]. Progress in Chemistry, 2023, 35(5): 709-720.
[3] Xinyue Wang, Kang Jin. Chemical Synthesis of Peptides and Proteins [J]. Progress in Chemistry, 2023, 35(4): 526-542.
[4] Jinglong Zhao, Wenfeng Shen, Dawu Lv, Jiaqi Yin, Tongxiang Liang, Weijie Song. Gas-Sensing Technology for Human Breath Detection [J]. Progress in Chemistry, 2023, 35(2): 302-317.
[5] Yanyu Zhong, Zhengyun Wang, Hongfang Liu. Progress in Electrochemical Sensing of Ascorbic Acid [J]. Progress in Chemistry, 2023, 35(2): 219-232.
[6] Keqing Wang, Huimin Xue, Chenchen Qin, Wei Cui. Controllable Assembly of Diphenylalanine Dipeptide Micro/Nano Structure Assemblies and Their Applications [J]. Progress in Chemistry, 2022, 34(9): 1882-1895.
[7] Jiyang Lu, Tiantian Wang, Xiangxiang Li, Fuming Wu, Hui Yang, Wenping Hu. Flexible Sensors Based on Electrohydrodynamic Jet Printing [J]. Progress in Chemistry, 2022, 34(9): 1982-1995.
[8] Yiling Tan, Shichun Li, Xi Yang, Bo Jin, Jie Sun. Strategies of Improving Anti-Humidity Performance for Metal Oxide Semiconductors Gas-Sensitive Materials [J]. Progress in Chemistry, 2022, 34(8): 1784-1795.
[9] Yaoyu Qiao, Xuehui Zhang, Xiaozhu Zhao, Chao Li, Naipu He. Preparation and Application of Graphene/Metal-Organic Frameworks Composites [J]. Progress in Chemistry, 2022, 34(5): 1181-1190.
[10] Hongji Jiang, Meili Wang, Zhiwei Lu, Shanghui Ye, Xiaochen Dong. Graphene-Based Artificial Intelligence Flexible Sensors [J]. Progress in Chemistry, 2022, 34(5): 1166-1180.
[11] Jinhui Zhang, Jinhua Zhang, Jiwei Liang, Kaili Gu, Wenjing Yao, Jinxiang Li. Progress in Zerovalent Iron Technology for Water Treatment of Metal(loid) (oxyan) Ions: A Golden Decade from 2011 to 2021 [J]. Progress in Chemistry, 2022, 34(5): 1218-1228.
[12] Yu Lin, Xuecai Tan, Yeyu Wu, Fucun Wei, Jiawen Wu, Panpan Ou. Two-Dimensional Nanomaterial g-C3N4 in Application of Electrochemiluminescence [J]. Progress in Chemistry, 2022, 34(4): 898-908.
[13] Hui Zhao, Wenbo Hu, Quli Fan. Two-Photon Fluorescence Probe in Bio-Sensor [J]. Progress in Chemistry, 2022, 34(4): 815-823.
[14] Hong Li, Xiaodan Shi, Jieling Li. Self-Assembled Peptide Hydrogel for Biomedical Applications [J]. Progress in Chemistry, 2022, 34(3): 568-579.
[15] Geng Gao, Keyu Zhang, Qianwen Wang, Libo Zhang, Dingfang Cui, Yaochun Yao. Metal Oxalate-Based Anode Materials: A New Choice for Energy Storage Materials Applied in Metal Ion Batteries [J]. Progress in Chemistry, 2022, 34(2): 434-446.
Viewed
Full text


Abstract

Peptide-Based Metal Ion Sensors