中文
Announcement
More
Progress in Chemistry 2022, Vol. 34 Issue (4): 898-908 DOI: 10.7536/PC210401 Previous Articles   Next Articles

• Review •

Two-Dimensional Nanomaterial g-C3N4 in Application of Electrochemiluminescence

Yu Lin, Xuecai Tan(), Yeyu Wu, Fucun Wei, Jiawen Wu, Panpan Ou   

  1. School of Chemistry and Chemical Engineering, Guangxi Minzu University, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Key Laboratory of Guangxi Colleges and Universities for Food Safety and Pharmaceutical Analytical Chemistry, Nanning 530008, China
  • Received: Revised: Online: Published:
  • Contact: Xuecai Tan
  • Supported by:
    National Natural Science Foundation of China(21365004); Sub-Project of Guangxi Science and Technology Major Project(AA18118013-10); Guangxi Key Research and Development Program(AB18126048); Guangxi Science and Technology Base and Talents Special Project(AD18126005); Guangxi Graduate Education Innovation Project(JGY2019062); Guangxi Higher Education Undergraduate Teaching Reform Project(2015JGA194); 2021 Guangxi Doctoral Innovation Project(YCBZ2021060)
Richhtml ( 31 ) PDF ( 426 ) Cited
Export

EndNote

Ris

BibTeX

Electrochemiluminescence (ECL) combines the characteristics of electrochemistry and chemiluminescence. Because of its high sensitivity, wide linear range and low background interference, electrochemiluminescence has attracted the attention of many researchers in analytical science. Although the traditional luminescent materials of ECL have high luminous efficiency, they still have some disadvantages, such as high price, lower sample load, etc. g-C3N4 is a kind of metal-free semiconductor nanomaterial, which is based on triazine ring or heptazine ring as the basic structural unit. g-C3N4 is a two-dimensional graphite-like layered structure bonded by vander Waals forces between layers and C—N covalent bonds within layers. Since g-C3N4 was first discovered to have ECL performance in 2012, it had been widely used in the development and fabrication of ECL sensors, due to its advantages, such as stable property, unique band structure, good biocompatibility, better environmental performance, easy to function, inexpensive ingredients and simple preparation process. The research progresses of g-C3N4 in ECL sensor construction in recent years were reviewed, according to the mechanism of ECL luminescence, the effect of sensor, the signal type of sensor,and the different types of detection objects. And the challenges and prospects of g-C3N4 in ECL development were described as well.

Contents

1 Introduction

2 Classification according to luminescence mechanism

2.1 ECL cathodic co-reactant

2.2 ECL anode co-reactant

2.3 Other co-reactant

3 Classification according to sensor effect

3.1 Enhanced ECL sensor

3.2 Quenching ECL sensor

3.3 ECL sensors for both enhancement and quenching

4 Classification according to the signal type of the ECL sensor

4.1 Single signal ECL sensor

4.2 Double signal ECL sensor

5 Classification according to the target

5.1 Ions and small molecules

5.2 Nucleic acid

5.3 Protein immune

6 Conclusion and outlook

Fig. 1 (a) The development process of ECL from 1964 to 2002[16]; (b) the development process of ECL from 2002 to present
Fig. 2 Two basic structural units of g-C3N4: (a) C3N3, (b) C6N7
Fig. 3 (a) The enhanced ECL sensor for SCCA detection based on Ag-g-C3N4[49]; (b) construction process of enhanced ECL sensor based on g-C3N4-CD-Fc-COOH[50]
Fig. 4 The construction of quenching ECL sensor based on g-C3N4/APBA/PANI[52]
Fig. 5 (a) Construction of ECL sensor which signal increased at the early stage and then decreased[55];(b) construction of ECL sensor which signal decreased at the early stage and then increased[56];(c) construction of ECL sensor which signal enhanced, quenched then increased respectively[57]
Fig. 6 Construction of single signal ECL sensor based on C60/g-C3N4[60]
Fig. 7 (a) Construction of dual wavelength ratio ECL sensor based on g-C3N4 and Ru(bpy)32+[61];(b) construction of double potential ratio ECL sensor based on g-C3N4[48]
Table 1 The application of electrochemiluminescence sensor based on g-C3N4 in ions or small molecules detection
Target Material Linear range Detection limit ref
Cu2+ g-C3N4 2.5~100 nmol/L 0.9 nmol/L 31
Cu2+ g-C3N4 42.45~115.54 μmol/L 6.96 μmol/L 65
Cu2+ C,N QDs@g-C3N4 NSs 5 × 10-4~10 μmol/L 2 × 10-4 μmol/L 66
Cu2+ g-C3N4 0~45 nmol/L 1.2 nmol/L 67
Cu2+ g-C3N4/GO 1.0 × 1~1.0 × 1 mol/L 1.0 × 10-11mol/L 68
Pb2+ g-C3N4 QDs@NPG 0.05~20 nmol/L 0.02 nmol/L 69
GSH g-C3N4 0~100 μmol/L 9.6 nmol/L 70
GSH g-C3N4/MnO2 0.2~100 μmol/L 0.05 μmol/L 71
dopamine g-C3N4/MWCNTs 4.0 × 10-10~3.0 × 10-7 mol/L 0.19 nmol/L 42
dopamine g-C3N4/PANI 0.10 pM~5.0 nmol/L 0.033 pmol/L 52
dopamine Ag-g-C3N4 0.015~150 μmol/L 0.005 μmol/L 72
glucose Au-g-C3N4 0.1~8000 μmol/L 0.05 μmol/L 73
dopamine Au NF@g-C3N4-PANI 5.0 × 10-9~1.6 × 10-6 mol/L 1.7 × 10-9 mol/L 74
dopamine g-C3N4-PTCA 6.0 pM~30.0 nmol/L 2.4 pmol/L 75
Pen Hb/Au-g-C3N4 1.0 × 10-4~5.0 × 10-3 mol/L 3.1 × 10-5 mol/L 76
folic acid g-C3N4-rGO 0.1~90 nmol/L 62 pmol/L 77
glucose Ppy/Plu/C3N4-Ni(OH)2/GOx 0.5~500 μmol/L 0.04 μmol/L 78
diclofenac GO-g-C3N4/MWCNTs-AuNPs 0.005~1000 ng/mL 1.7 pg/mL 49
gibberellin Au-g-C3N4 4.0 × 10-14~7.0 × 10-11mol/L 1.64 × 10-14mol/L 79
gatifloxacin rGO-CuS-g-C3N4 1.0 × 10-4~1.0 × 10-8 mol/L 3.5 × 10-9 mol/L 80
adrenaline g-C3N4 /MWCNTs 1.0 × 10-9~1.5 × 10-6 mol/L 0.21 nmol/L 81
riboflavin g-CN QDs 0.02~11 μmol/L 0.63 nmol/L 82
Cu2+ g-C3N4 NSs/GQDs 5.5 × 10-10~4.5 × 10-6 mol/L 3.7 × 10-10 mol/L 83
PFOA MIP@utg-C3N4 0.02~40.0 ng/mL 0.01 ng/mL 84
BPA C-g-C3N4 0.1 pM~1 nmol/L 30 fmol/L 85
fipronil ZnO@g-C3N4 5~1000 nmol/L 1.5 nmol/L 86
Aflatoxin g-C3N4 0.005~10 ng/mL 0.004 ng/mL 87
Fig. 8 Construction of ECL gene detection sensor based on g-C3N4[88]
Table 2 The application of electrochemiluminescence immunosensor based on g-C3N4
[1]
Pavlos N, Giovanni V, Francesco P. Electrochim. Acta, 2021, 388: 138586.

doi: 10.1016/j.electacta.2021.138586
[2]
Hyun S N, Taemin K, Jong-In H. Sensor. Actuat. B: Chem, 2021, 342: 129868.

doi: 10.1016/j.snb.2021.129868
[3]
Emily K, Ryan F, Egan H D, Yi H N, Richard A, Rosanne M G, Beatriz P S, Paul S F, Megan D, David J H, Luke C H. Sensor. Actuat. B: Chem, 2021, 330: 129261.

doi: 10.1016/j.snb.2020.129261
[4]
Sakda J, Nattaya N, Sirirat R, Orawon C, Kurt K, Sudkate C. Biosens. Bioelectron, 2021, 188: 113323.

doi: 10.1016/j.bios.2021.113323
[5]
Kaoru H, Kosuke I, Keika K, Yuji N, Hitoshi S. Biosens. Bioelectron, 2021, 188: 113123.
[6]
Yan B V, Nadim D, Simone C. Cell Rep. Phys. Sci, 2020, 1(7): 100107.
[7]
Fumiki T, Ryo S, Tomoyuki N, Jiye J. Ultrason. Sonochem., 2020, 63: 104947.

doi: 10.1016/j.ultsonch.2019.104947
[8]
Bahareh B, Delnia B, Abdollah S. Biosens. Bioelectron., 2019, 142: 111530.

doi: 10.1016/j.bios.2019.111530
[9]
Youngwon J, Hee-Jun P, Ik-Soo S, Young K C, Joohoon K. Inorg. Chem. Commun., 2019, 106: 86.

doi: 10.1016/j.inoche.2019.05.033
[10]
Hasan M, Sima Z, Masoud A M, Abolghasem A K, Abdol-Khalegh B. Biosens. Bioelectron, 2018, 118: 217.

doi: 10.1016/j.bios.2018.07.066
[11]
Elena V, Giovanni V, Massimo M, Luca M, Simona B, Denis G, Sandro C, Francesco P. Electrochim. Acta, 2018, 277: 168.

doi: 10.1016/j.electacta.2018.04.215
[12]
Morteza H, Mohammad R K P, Parviz N, Mohammad R M, Mohammad R G. Mat. Sci. Eng. C, 2017, 76: 483.

doi: 10.1016/j.msec.2017.03.070
[13]
Cyrille B, Jophrette M N N, Anicet M M, Calixte B, Guy M M, Bolni M N. Asian Pac. J. Trop. Bio., 2017, 7(9): 805.
[14]
Mohtashim H S, Kihwan C, Alphonsus H C N, M Dean C, Aaron R W. Biosens. Bioelectron., 2016, 77: 845.

doi: 10.1016/j.bios.2015.10.036 pmid: 26516684
[15]
Carvajal M A, Ballesta-Claver J, Martínez-Olmos A, Capitán-Vallvey L F, Palma A J. Sens. Actuat. B: Chem., 2015, 221: 956.

doi: 10.1016/j.snb.2015.07.038
[16]
Wu J M. Chem. Rev., 2008, 108(7): 2506.

doi: 10.1021/cr068083a
[17]
Feng D F, Wei F C, Wu Y Y, Tan X C, Li F, Lu Y K, Fan G C, Han H Y. Anal., 2021, 146(4): 1295.

doi: 10.1039/D0AN02158J
[18]
Feng D F, Li P H, Tan X C, Wu Y Y, Wei F C, Du F K, Ai C H, Luo Y N, Chen Q Y, Han H Y. Anal. Chimica Acta, 2020, 1100: 232.

doi: 10.1016/j.aca.2019.11.069
[19]
Du F K, Zhang H, Tan X C, Feng D F, Luo Y N. J. Anal. Chem., 2020, 48(2): 240.
(杜方凯, 张慧, 谭学才, 冯德芬, 罗燕妮. 分析化学, 2020, 48(2): 240.).
[20]
Feng D F, Tan X C, Wu Y Y, Ai C H, Luo Y N, Chen Q Y, Han H Y. Biosens. Bioelectron., 2019, 129: 100.

doi: 10.1016/j.bios.2018.12.050
[21]
Du F K, Zhang H, Tan X C, Ai C H, Li M R, Yan J, Liu M, Wu Y Y, Feng D F, Liu S G, Han H Y. J. Solid State Electrochem., 2019, 23(8): 2579.

doi: 10.1007/s10008-019-04352-z
[22]
Ai C H, Wu Y Y, Tan X C, Feng D F, Chen Q Y, Luo Y N. Chinese Journal of Analysis Laboratory, 2019, 38(5): 513.
(艾晨昊, 吴叶宇, 谭学才, 冯德芬, 陈全友, 罗燕妮. 分析试验室, 2019, 38(5): 513.).
[23]
Du F K, Zhang H, Tan X C, Yan J, Liu M, Chen X, Wu Y Y, Feng D F, Chen Q Y, Cen J M, Liu S G, Qiu Y Q, Han H Y. Biosens. Bioelectron., 2018, 106: 50.

doi: 10.1016/j.bios.2018.01.059
[24]
Feng D F, Wu Y Y, Tan X C, Chen Q Y, Yan J, Liu M, Ai C H, Luo Y N, Du F K, Liu S G, Han H Y. Sens. Actuat. B: Chem., 2018, 265: 378.

doi: 10.1016/j.snb.2018.03.046
[25]
Wu Y Y, Li X Y, Tan X C, Feng D F, Yan J, Zhang H, Chen X, Huang Z Y, Han H Y. Electrochim. Acta, 2018, 282: 672.

doi: 10.1016/j.electacta.2018.06.104
[26]
Li X Y, Tan X C, Yan J, Hu Q, Wu J W, Zhang H, Chen X. Electrochim. Acta, 2016, 187: 433.

doi: 10.1016/j.electacta.2015.11.082
[27]
Zhang H, Tan X C, Yan J, Liu M, Li X Y, Chen X, Feng D F, Cen J M, Chen Q Y, Wei Y B. Journal of Instrumental Analysis, 2016, 35(12): 1616.
(张慧, 谭学才, 严军, 刘敏, 李晓宇, 陈晓, 冯德芬, 岑建梅, 陈全友, 魏耀秘. 分析测试学报, 2016, 35(12): 1616.).
[28]
Zhang H, Tan X C, Yan J, Liu M, Li X Y, Chen X. Journal of Instrumental Analysis, 2016, 35(6): 769.
(张慧, 谭学才, 严军, 刘敏, 李晓宇, 陈晓. 分析测试学报, 2016, 35(6): 769.).
[29]
Li X Y, Tan X C, Yan J, Hu Q, Wu J W, Zhang H, Chen X. Chinese Journal of Analysis Laboratory, 2015, 34(10): 1127.
( 李晓宇, 谭学才, 严军, 胡琪, 吴佳雯, 张慧, 陈晓. 分析试验室, 2015, 34(10): 1127.).
[30]
Li T, Tan X C, Hu Q, Wu J W, Fang X X, Liu S G, Yu H C, Huang Z Y. Journal of Instrumental Analysis, 2014, 33(2): 212.
(李焘, 谭学才, 胡琪, 吴佳雯, 方晓雪, 刘绍刚, 余会成, 黄在银. 分析测试学报, 2014, 33(2): 212.).
[31]
Cheng C M, Huang Y, Tian X Q, Zheng B Z, Li Y, Yuan H Y, Xiao D, Xie S P, Choi M M F. Anal. Chem., 2012, 84(11): 4754.

doi: 10.1021/ac300205w
[32]
Cheng C M, Huang Y, Wang J, Zheng B Z, Yuan H Y, Xiao D. Anal. Chem., 2013, 85(5): 2601.

doi: 10.1021/ac303263n
[33]
Shang Q W, Zhou Z X, Shen Y F, Zhang Y Y, Li Y, Liu S Q, Zhang Y J. ACS Appl. Mater. Interfaces, 2015, 7(42): 23672.

doi: 10.1021/acsami.5b07405
[34]
Chen P P, Xia F Q, Tian D, Zhou C L. J. Electrochem. Soc., 2018, 165(5): B196.

doi: 10.1149/2.0531805jes
[35]
Zhou M, Pu Y X, Wu Q, Wang P J, Liu T T, Zhang M X. Sens. Actuat. B: Chem., 2020, 319: 128298.

doi: 10.1016/j.snb.2020.128298
[36]
Cao J T, Fu X L, Zhao L Z, Ma S H, Liu Y M. Sens. Actuat. B: Chem., 2020, 311: 127926.

doi: 10.1016/j.snb.2020.127926
[37]
Wang Y Z, Zhao W, Dai P P, Lu H J, Xu J J, Pan J, Chen H Y. Biosens. Bioelectron., 2016, 86: 683.

doi: 10.1016/j.bios.2016.07.067
[38]
Sun Y, Zhang Y M, Zhang H X, Liu M L, Liu Y. Anal. Chem., 2020, 92(15): 10668.

doi: 10.1021/acs.analchem.0c01776
[39]
Yu L D, Liang R P. Nanchang Univ. Nat. Sci., 2018, 42(1):27.
(于禄丹, 梁汝萍. 南昌大学学报(理科版), 2018, 42(1): 27.).
[40]
Guo X. Master Dissertation of Shandong Normal University, 2017.
(郭欣丽. 山东师范大学硕士论文, 2017.).
[41]
Wu L, Hu Y F, Sha Y H, Li W R, Yan T T, Wang S, Li X, Guo Z Y, Zhou J, Su X R. Talanta, 2016, 160: 247.

doi: 10.1016/j.talanta.2016.07.023
[42]
Wang Y. Master Dissertation of Shanghai Normal University, 2020.
(王彦. 上海师范大学硕士论文, 2020.).
[43]
Wu Q, Wang P J, Yang X, Wei M, Zhou M, Pu Y X, Zhang M X. Sens. Actuat. B: Chem., 2019, 297: 126767.

doi: 10.1016/j.snb.2019.126767
[44]
Liu Q, Peng Y J, Xu J C, Ma C, Li L L, Mao C J, Zhu J J. ChemElectroChem, 2017, 4(7): 1768.

doi: 10.1002/celc.201700035
[45]
Liu Y T, Wang Q B, Lei J P, Hao Q, Wang W, Ju H X. Talanta, 2014, 122: 130.

doi: 10.1016/j.talanta.2014.01.018
[46]
Liu J L, Jiang J, Zhang J Q, Chai Y Q, Xiao Q, Yuan R. Biosens. Bioelectron., 2020, 152: 112006.

doi: 10.1016/j.bios.2020.112006
[47]
Wu Q. Master Dissertation of Southwest University, 2020.
( 吴前. 西南大学硕士论文, 2020.).
[48]
Wang H, Pu G Q, Devaramani S, Wang Y F, Yang Z F, Li L F, Ma X F, Lu X Q. Anal. Chem., 2018, 90(7): 4871.

doi: 10.1021/acs.analchem.8b00517
[49]
Wang J, Wang H X, Cao W N, Zhang Q Q, Zhong W Y. Talanta, 2020, 212: 120798.

doi: 10.1016/j.talanta.2020.120798
[50]
Wang B X, Wang H J, Zhong X, Chai Y Q, Chen S H, Yuan R. Chem. Commun., 2016, 52(28): 5049.

doi: 10.1039/C5CC10491B
[51]
Li Y, Liang R P. Nanchang Univ. Nat. Sci., 2017, 41(03):230.
(李颖, 梁汝萍. 南昌大学学报(理科版), 2017, 41(03):230.).
[52]
Zuo F M, Jin L, Fu X M, Zhang H, Yuan R, Chen S H. Sens. Actuat. B: Chem., 2017, 244: 282.

doi: 10.1016/j.snb.2017.01.001
[53]
Li X J, Guo Z K, Li J X, Zhang Y, Ma H M, Pang X H, Du B, Wei Q. Anal. Chimica Acta, 2015, 854: 40.

doi: 10.1016/j.aca.2014.11.018
[54]
Xia B Y, Yuan Q M, Chu M F, Wang S F, Gao R, Yang S L, Liu C B, Luo S L. Sens. Actuat. B: Chem., 2016, 228: 565.

doi: 10.1016/j.snb.2016.01.014
[55]
Hu L Y, Zheng J, Zhao K, Deng A P, Li J N. Biosens. Bioelectron., 2018, 101: 260.

doi: 10.1016/j.bios.2017.10.043
[56]
Xu H F, Zhu X, Dong Y Q, Wu H S, Chen Y M, Chi Y W. Sens. Actuat. B: Chem., 2016, 236: 8.

doi: 10.1016/j.snb.2016.05.056
[57]
Xu H F, Liang S J, Zhu X, Wu X Q, Dong Y Q, Wu H S, Zhang W X, Chi Y W. Biosens. Bioelectron., 2017, 92: 695.

doi: 10.1016/j.bios.2016.10.026
[58]
Sha H F, Zhang Y, Wang Y F, Ke H, Xiong X, Jia N Q. Biosens. Bioelectron., 2019, 124/125: 59.

doi: 10.1016/j.bios.2018.10.023
[59]
Fu X L. Master Dissertation of Xinyang Normal University, 2020.
(付晓龙. 信阳师范学院硕士论文, 2020.).
[60]
Fu X M, Gu Z C, Lu Q Y, Liao J Y, Chen S H. RSC Adv., 2016, 6(16): 13217.

doi: 10.1039/C5RA19344C
[61]
Feng Q M, Shen Y Z, Li M X, Zhang Z L, Zhao W, Xu J J, Chen H Y. Anal. Chem., 2016, 88(1): 937.

doi: 10.1021/acs.analchem.5b03670
[62]
Wang Y F, Zhang Y, Sha H F, Xiong X, Jia N Q. ACS Appl. Mater. Interfaces, 2019, 11(40): 36299.

doi: 10.1021/acsami.9b09492
[63]
Zhang C, Liu D, Zhang H, Tan X R, Chen S H. Microchimica Acta, 2019, 186(12): 1.

doi: 10.1007/s00604-018-3127-5
[64]
Wang Y Z, Hao N, Feng Q M, Shi H W, Xu J J, Chen H Y. Biosens. Bioelectron., 2016, 77: 76.

doi: 10.1016/j.bios.2015.08.057
[65]
Wu W W. Master Dissertation of Nanjing University, 2018.
(吴婉婉. 南京大学硕士论文, 2018.).
[66]
Fang L, Xue Y, Hu X M, Xie D, Li W J. J. Mater. Sci.: Mater. Electron., 2018, 29(24): 20580.
[67]
Cheng N Y, Jiang P, Liu Q, Tian J Q, Asiri A M, Sun X P. Anal., 2014, 139(20): 5065.

doi: 10.1039/C4AN00914B
[68]
Xia B Y, Chu M F, Wang S F, Wang W Q, Yang S L, Liu C B, Luo S L. Anal. Chimica Acta, 2015, 891: 113.

doi: 10.1016/j.aca.2015.05.054
[69]
Zhang Y, Zhang L N, Kong Q K, Ge S G, Yan M, Yu J H. Anal. Bioanal. Chem., 2016, 408(25): 7181.

doi: 10.1007/s00216-016-9718-2 pmid: 27356927
[70]
Tang Y R, Song H J, Su Y Y, Lv Y. Anal. Chem., 2013, 85(24): 11876.

doi: 10.1021/ac403517u
[71]
Fu X L, Hou F, Liu F R, Ren S W, Cao J T, Liu Y M. Biosens. Bioelectron., 2019, 129: 72.

doi: 10.1016/j.bios.2019.01.010
[72]
Wang Y F, Guo W W, Jia N Q. ChemElectroChem, 2018, 5(23): 3786.

doi: 10.1002/celc.201800877
[73]
Jiang J J. Doctoral Dissertation of Nanjing University, 2015.
(江婧婧, 南京大学博士论文, 2015.).
[74]
Lu Q Y, Zhang J J, Liu X F, Wu Y Y, Yuan R, Chen S H. Anal., 2014, 139(24): 6556.

doi: 10.1039/C4AN01595A
[75]
Fu X M, Feng J H, Tan X R, Lu Q Y, Yuan R, Chen S H. RSC Adv., 2015, 5(53): 42698.

doi: 10.1039/C5RA03154K
[76]
Lin X, Zhu S, Wang Q H, Xia Q, Ran P Y, Fu Y Z. Colloids Surf. B: Biointerfaces, 2016, 148: 371.

doi: 10.1016/j.colsurfb.2016.09.013
[77]
Zhou C, Chen Y M, Shang P X, Chi Y W. Anal., 2016, 141(11): 3379.

doi: 10.1039/C6AN00664G
[78]
Hamtak M, Hosseini M, Fotouhi L, Aghazadeh M. Anal. Methods, 2018, 10(47): 5723.

doi: 10.1039/C8AY01849A
[79]
Xie H. Z, Yang B, Li J. P. Chinese Journal of Analytical Chemistry, 2020, 48(12): 1633.

doi: 10.1016/S1872-2040(20)60065-2
(谢汉钊, 杨斌, 李建平. 分析化学, 2020, 48(12): 1633.).
[80]
Jiang L H, Mo G C, Yu C H, Ya D M, He X X, Mo W M, Deng B Y. Colloids Surf. B: Biointerfaces, 2019, 173: 378.

doi: 10.1016/j.colsurfb.2018.10.003
[81]
Sun Y N, Wang Y, Yang Y W, Yang M L. Chem. Lett., 2019, 48(3): 215.

doi: 10.1246/cl.180893
[82]
Wang H, Ma Q, Wang Y F, Wang C H, Qin D D, Shan D L, Chen J, Lu X Q. Anal. Chimica Acta, 2017, 973: 34.

doi: 10.1016/j.aca.2017.03.041
[83]
Sun Y N. Master Dissertation of Shanghai Normal University, 2019.
(孙亚楠. 上海师范大学硕士论文, 2019.).
[84]
Chen S H, Li A M, Zhang L Z, Gong J M. Anal. Chimica Acta, 2015, 896: 68.

doi: 10.1016/j.aca.2015.09.022
[85]
Cao H X, Wang L, Pan C G, He Y S, Liang G X. Microchimica Acta, 2018, 185(10): 1.

doi: 10.1007/s00604-017-2562-z
[86]
Yin J H, Chen X H, Chen Z D. Microchem. J., 2019, 145: 295.

doi: 10.1016/j.microc.2018.09.030
[87]
Tian D Y. Master Dissertation of Beijing Jiaotong University, 2021.
(田东岩. 北京交通大学硕士论文, 2021.).
[88]
Wang Y H, Zhang L N, Shen L, Ge S G, Yu J H, Yan M. Microchimica Acta, 2017, 184(8): 2587.

doi: 10.1007/s00604-017-2234-z
[89]
Pan C G. Master Dissertation of Jiangsu University, 2019.
(潘常刚. 江苏大学硕士论文, 2019.).
[90]
Sui C J. Master Dissertation of Shandong Agriculture University, 2020.
( 隋程吉. 山东农业大学硕士论文, 2020.).
[91]
Gao J W, Xiong H W, Zhang W, Wang Y, Wang H X, Wen W, Zhang X H, Wang S F. Carbon, 2018, 130: 416.

doi: 10.1016/j.carbon.2018.01.026
[92]
Jin Y C, Kang Q, Guo X L, Zhang B, Shen D Z, Zou G Z. Anal. Chem., 2018, 90(21): 12930.

doi: 10.1021/acs.analchem.8b03554
[93]
Chen L C, Zeng X T, Si P, Chen Y M, Chi Y W, Kim D H, Chen G N. Anal. Chem., 2014, 86(9): 4188.

doi: 10.1021/ac403635f
[94]
Li X J, Zhang X Y, Ma H M, Wu D, Zhang Y, Du B, Wei Q. Biosens. Bioelectron., 2014, 55: 330.

doi: 10.1016/j.bios.2013.12.039
[95]
Li X J, Guo Z K, Li J X, Zhang Y, Ma H M, Pang X H, Du B, Wei Q. Anal. Chimica Acta, 2015, 854: 40.

doi: 10.1016/j.aca.2014.11.018
[96]
Fan Y, Tan X R, Ou X, Lu Q Y, Chen S H, Wei S P. Electrochim. Acta, 2016, 202: 90.

doi: 10.1016/j.electacta.2016.04.013
[97]
Ou X, Tan X R, Liu X F, Lu Q Y, Chen S H, Wei S P. Biosens. Bioelectron., 2015, 70: 89.

doi: 10.1016/j.bios.2015.03.021
[98]
Chen L. Master Dissertation of Shandong Normal University, 2020.
(陈璐. 山东师范大学硕士论文, 2020.).
[99]
Xie S D, Wang F, Wu Z Y, Joshi L, Liu Y. RSC Adv., 2016, 6(39): 32804.

doi: 10.1039/C6RA05249E
[100]
Qin H X. Master Dissertation of Qingdao University Science Technology, 2020.
(秦海新. 青岛科技大学硕士论文, 2020.).
[101]
Zhou X M, Zhang W, Wang Z, Han J, Xie G, Chen S P. Biosens. Bioelectron., 2020, 148: 111795.

doi: 10.1016/j.bios.2019.111795
[102]
Wang Y Z. Doctoral Dissertation of Nanjing University, 2018.
(王银珠. 南京大学博士论文, 2018.).
[103]
Zhu X D. Master Dissertation of Jinan University, 2020.
(朱晓冬. 济南大学硕士论文, 2020.).
[104]
Wu L, Sha Y H, Li W R, Wang S, Guo Z Y, Zhou J, Su X R, Jiang X H. Sens. Actuat. B: Chem., 2016, 226: 62.

doi: 10.1016/j.snb.2015.11.133
[105]
Gao H M. Master Dissertation of Wuhan University Science Technology, 2020.
(高宏民. 武汉科技大学硕士论文, 2020.).
[1] Gehui Chen, Nan Ma, Shuaibing Yu, Jiao Wang, Jinming Kong, Xueji Zhang. Immunity and Aptamer Biosensors for Cocaine Detection [J]. Progress in Chemistry, 2023, 35(5): 757-770.
[2] Yan Bao, Jiachen Xu, Ruyue Guo, Jianzhong Ma. High-Sensitivity Flexible Pressure Sensor Based on Micro-Nano Structure [J]. Progress in Chemistry, 2023, 35(5): 709-720.
[3] Jinglong Zhao, Wenfeng Shen, Dawu Lv, Jiaqi Yin, Tongxiang Liang, Weijie Song. Gas-Sensing Technology for Human Breath Detection [J]. Progress in Chemistry, 2023, 35(2): 302-317.
[4] Yanyu Zhong, Zhengyun Wang, Hongfang Liu. Progress in Electrochemical Sensing of Ascorbic Acid [J]. Progress in Chemistry, 2023, 35(2): 219-232.
[5] Keqing Wang, Huimin Xue, Chenchen Qin, Wei Cui. Controllable Assembly of Diphenylalanine Dipeptide Micro/Nano Structure Assemblies and Their Applications [J]. Progress in Chemistry, 2022, 34(9): 1882-1895.
[6] Jiyang Lu, Tiantian Wang, Xiangxiang Li, Fuming Wu, Hui Yang, Wenping Hu. Flexible Sensors Based on Electrohydrodynamic Jet Printing [J]. Progress in Chemistry, 2022, 34(9): 1982-1995.
[7] Yiling Tan, Shichun Li, Xi Yang, Bo Jin, Jie Sun. Strategies of Improving Anti-Humidity Performance for Metal Oxide Semiconductors Gas-Sensitive Materials [J]. Progress in Chemistry, 2022, 34(8): 1784-1795.
[8] Yaoyu Qiao, Xuehui Zhang, Xiaozhu Zhao, Chao Li, Naipu He. Preparation and Application of Graphene/Metal-Organic Frameworks Composites [J]. Progress in Chemistry, 2022, 34(5): 1181-1190.
[9] Hongji Jiang, Meili Wang, Zhiwei Lu, Shanghui Ye, Xiaochen Dong. Graphene-Based Artificial Intelligence Flexible Sensors [J]. Progress in Chemistry, 2022, 34(5): 1166-1180.
[10] Hui Zhao, Wenbo Hu, Quli Fan. Two-Photon Fluorescence Probe in Bio-Sensor [J]. Progress in Chemistry, 2022, 34(4): 815-823.
[11] Yimin Sun, Houshen Li, Zhenyu Chen, Dong Wang, Zhanpeng Wang, Fei Xiao. The Application of MXene in Electrochemical Sensor [J]. Progress in Chemistry, 2022, 34(2): 259-271.
[12] Huayue Sun, Xianxin Xiang, Tingyi Yan, Lijun Qu, Guangyao Zhang, Xueji Zhang. Wearable Biosensors Based on Smart Fibers and Textiles [J]. Progress in Chemistry, 2022, 34(12): 2604-2618.
[13] Qian Peng, Jingjing Zhang, Xinyue Fang, Jie Ni, Chunyuan Song. Surface-Enhanced Raman Spectroscopy on Detection of Myocardial Injury-Related Biomarkers [J]. Progress in Chemistry, 2022, 34(12): 2573-2587.
[14] Zhao Jing, Wang Ziya, Mo Lixin, Meng Xiangyou, Li Luhai, Peng Zhengchun. Performance Enhancing Mechanism,Implementation and Practical Advantages of Microstructured Flexible Pressure Sensors [J]. Progress in Chemistry, 2022, 34(10): 2202-2221.
[15] Huipeng Hou, Axin Liang, Bo Tang, Zongkun Liu, Aiqin Luo. Fabrication and Application of Photonic Crystal Biochemical Sensor [J]. Progress in Chemistry, 2021, 33(7): 1126-1137.