中文
Announcement
More
Progress in Chemistry 2023, Vol. 35 Issue (2): 219-232 DOI: 10.7536/PC220723 Previous Articles   Next Articles

• Review •

Progress in Electrochemical Sensing of Ascorbic Acid

Yanyu Zhong, Zhengyun Wang(), Hongfang Liu()   

  1. School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Key Laboratory of Material Chemistry for Energy Conversion and Storage, Hubei Key Laboratory of Materials Chemistry & Service Failure,Wuhan 430074, China
  • Received: Revised: Online: Published:
  • Contact: *e-mail: wzyhustsh@163.com(Zhengyun Wang); liuhf@hust.edu.cn(Hongfang Liu)
  • Supported by:
    National Natural Science Foundation of China(52171069); National Natural Science Foundation of China(22005109); China Postdoctoral Science Foundation(2021M701292)
Richhtml ( 52 ) PDF ( 561 ) Cited
Export

EndNote

Ris

BibTeX

Ascorbic acid (AA), as a necessary biological small molecular substance to maintain the normal function of human body, directly and indirectly participates in many key biological reaction processes of human body. Electrochemical detection of AA has been a hot spot of sensing research in recent years due to the advantages such as fast response, high sensitivity and simple operation. In this review, the working principles of different sensors of AA are systematically and comprehensively introduced, and the recent research progress of electrochemical sensing of AA is reviewed. By comparing different materials based AA sensors performances, the advantages and defects of corresponding materials are analyzed and summarized by combining with the materials properties. Lastly, the outlook of development direction and trend of AA electrochemical sensing is given.

Contents

1 Introduction

2 Principles of electrochemical detection of ascorbic acid

3 Enzymatic sensors

4 Non-enzymatic sensors

4.1 Metal-based sensor

4.2 Conductive polymer-based sensor

4.3 Carbon material-based sensor

5 Conclusion and outlook

Fig.1 Chemical structure and redox reaction process of AA
Fig.2 Electrocatalytic reaction process (enzyme sensor: M: complex of AA and ascorbic acid oxidase, N: ascorbic acid oxidase; nonenzymatic senor: M: catalytic material, N: activated catalytic material)
Fig.3 Ascorbic acid determination in stimulated sweat[19]. Copyright 2020, American Chemical Society
Fig.4 (a) The principle of immobilized enzyme[22]; (b) the electron transfer process of enzyme active site[21]. Copyright 2007, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Fig.5 Schematic of the wearable vitamin C sensor for nutritional assessment[32]. Copyright 2020, Wiley-VCH GmbH
Fig.6 (A) SEM image of Au NPs/RGO/SPCEs; (B) CVs recorded at the AuNPs/RGO/SPCEs and bare SPCEs; (C) CVs recorded from -0.10 to +0.70 V, at different scan rate; (D) plot of iap of B vs ν1/2 and plot of Eap of AA vs logν[39]. Copyright 2020, Elsevier Ltd.
Fig.7 (a) Structure and (b) electrochemical activity of POMOFs[47]. Copyright 2020, Elsevier Ltd.
Fig.8 (a) Block diagram of part of the circuitry in the portable enzyme-free AA detection system. (b) Conceptual diagram of sensor devices for non-invasive human health monitoring[57]. Copyright 2020, Elsevier Ltd.
Fig.9 (a) The doping mechanism of PANI proton acid[61]; (b) the reaction mechanism between PANI and AA[63]; (c) preparation process of PANI/MnO2-Sb2O3 /FTO[69]. Copyright 2020, Elsevier Ltd.
Fig.10 (a) Preparation of the different pTS-/PPy MIPs by electropolymerization of Py in the presence of the template molecules and (b) incorporation of the fabricated MIP-based sensors into the ET sensor array and its application to the analysis of APIs in pharmaceutical samples[74]. Copyright 2021, Elsevier B.V.
Fig.11 Working principle and electrochemical performance of ratio electrochemical sensor[79]. Copyright 2020, American Chemical Society
Fig.12 (a) Process diagram of constructing AA electrochemical sensor based on 3D-KSC/CCSBP material and (b) morphology of 3D-KSC/CCSBP[92]. Copyright 2021, Elsevier B.V.
Table 1 Advantages and deficiency of AA sensors based on different materials
[1]
Rice M E. Trends Neurosci., 2000, 23(5): 209.

doi: 10.1016/s0166-2236(99)01543-x pmid: 10782126
[2]
Eggermont J J, Roberts L E. Trends Neurosci., 2004, 27(11): 676.

doi: 10.1016/j.tins.2004.08.010 pmid: 15474168
[3]
Mobley A S, Rodriguez-Gil D J, Imamura F, Greer C A. Trends Neurosci., 2014, 37(2): 77.

doi: 10.1016/j.tins.2013.11.004 pmid: 24361044
[4]
Dutta A, Gautam R, Chatterjee S, Ariese F, Sikdar S K, Umapathy S. ACS Chem. Neurosci., 2015, 6(11): 1794.

doi: 10.1021/acschemneuro.5b00106
[5]
Du J, Cullen J J, Buettner G R. Bba-Rev. Cancer., 2012, 1826: 443.
[6]
Levine M, Wang Y H, Padayatty S J, Morrow J. PNAS, 2001, 98(17): 9842.

doi: 10.1073/pnas.171318198 pmid: 11504949
[7]
Boekholdt S M, Meuwese M C, Day N E, Luben R, Welch A, Wareham N J, Khaw K T. Br. J. Nutr., 2006, 96: 516.
[8]
Niroula A, Amgain N, KC R, Adhikari S, Acharya J. Food Chem., 2021, 354: 129491.

doi: 10.1016/j.foodchem.2021.129491
[9]
Zhang H X, Zheng Y, Li R M. Food Chem., 2022, 390: 133206.

doi: 10.1016/j.foodchem.2022.133206
[10]
Chen L, Wang W W, Zhang J Y, Cui H C, Ni D J, Jiang H Y. Food Chem., 2021, 337: 127639.

doi: 10.1016/j.foodchem.2020.127639
[11]
Wei Z N, Li H Q, Liu S B, Wang W, Chen H L, Xiao L H, Ren C L, Chen X G. Anal. Chem., 2019, 91(24): 15477.

doi: 10.1021/acs.analchem.9b03272
[12]
Verdini R A, Lagier C M. J. Agric. Food Chem., 2000, 48(7): 2812.

doi: 10.1021/jf990987s
[13]
Washko P W, Welch R W, Dhariwal K R, Wang Y H, Levine M. Anal. Biochem., 1992, 204(1): 1.

pmid: 1514674
[14]
Xing L W, Ma Z F. Prog. Chem., 2016, 28: 1705.
(邢立文, 马占芳. 化学进展, 2016, 28: 1705.).

doi: 10.7536/PC160443
[15]
Endo H, Matsunaga C, Hoshi M, Hayashi T, Takai R K, Watanabe E. Biosens. Bioelectron., 1994, 9(7): 501.

doi: 10.1016/0956-5663(94)90012-4
[16]
Matsumoto K, Yamada K, Osajima Y. Anal. Chem., 1981, 53(13): 1974.

pmid: 7316205
[17]
Akyilmaz E, Dinçkaya E. Talanta, 1999, 50(1): 87.

pmid: 18967698
[18]
Csiffáry G, Fütö P, Adányi N, Kiss A. Food Technol. Biotechnol., 2016, 54: 31.
[19]
Sempionatto J R, Khorshed A A, Ahmed A, de Loyola e Silva A N, Barfidokht A, Yin L, Goud K Y, Mohamed M A, Bailey E, May J, Aebischer C, Chatelle C, Wang J. ACS Sens., 2020, 5(6): 1804.

doi: 10.1021/acssensors.0c00604
[20]
Sakurai T. Chem. Lett., 1996, 25(6): 481.

doi: 10.1246/cl.1996.481
[21]
Santucci R, Ferri T, Morpurgo L, Savini I, Avigliano L. Biochem. J., 1998, 332(3): 611.

doi: 10.1042/bj3320611
[22]
Murata K, Nakamura N, Ohno H. Electroanalysis, 2007, 19(5): 530.

doi: 10.1002/(ISSN)1521-4109
[23]
Barberis A, Spissu Y, Bazzu G, Fadda A, Azara E, Sanna D, Schirra M, Serra P A. Anal. Chem., 2014, 86(17): 8727.

doi: 10.1021/ac502066a pmid: 25088601
[24]
Liu M, Wen Y P, Xu J K, He H H, Li D, Yue R R, Liu G D. Anal. Sci., 2011, 27(5): 477.

doi: 10.2116/analsci.27.477
[25]
Liu M, Wen Y P, Li D, He H H, Xu J K, Liu C C, Yue R R, Lu B Y, Liu G D. J. Appl. Polym. Sci., 2011, 122(2): 1142.

doi: 10.1002/app.v122.2
[26]
Liu M, Wen Y P, Li D, Yue R R, Xu J K, He H H. Sens. Actuat. B Chem., 2011, 159(1): 277.

doi: 10.1016/j.snb.2011.07.005
[27]
Wen Y P, Xu J K, Liu M, Li D, Lu L M, Yue R R, He H H. J. Electroanal. Chem., 2012, 674: 71.

doi: 10.1016/j.jelechem.2012.03.021
[28]
Wen Y P, Xu J K, Liu M, Li D, He H H. Appl. Biochem. Biotechnol., 2012, 167(7): 2023.

doi: 10.1007/s12010-012-9711-y
[29]
Patil B, Kobayashi Y, Fujikawa S, Okajima T, Mao L Q, Ohsaka T. Bioelectrochemistry, 2014, 95: 15.

doi: 10.1016/j.bioelechem.2013.10.005
[30]
Akyilmaz E, Guvenc C, Koylu H. Bioelectrochemistry, 2020, 132: 107420.

doi: 10.1016/j.bioelechem.2019.107420
[31]
Chauhan N, Narang J, Pundir C S. Anal., 2011, 136(9): 1938.

doi: 10.1039/c0an00218f
[32]
Zhao J Q, Nyein H Y Y, Hou L, Lin Y J, Bariya M, Ahn C H, Ji W B, Fan Z Y, Javey A. Adv. Mater., 2021, 33(1): 2006444.

doi: 10.1002/adma.v33.1
[33]
Kim H J, Kim Y K. J. Food Sci., 1988, 53(5): 1525.

doi: 10.1111/jfds.1988.53.issue-5
[34]
Wawrzyniak J, Ryniecki A, Zembrzuski W. Acta Sci. Pol., Technol. Aliment., 2005, 4: 5.
[35]
Oko D N, Garbarino S, Zhang J M, Xu Z H, Chaker M, Ma D L, Guay D, Tavares A C. Electrochimica Acta, 2015, 159: 174.

doi: 10.1016/j.electacta.2015.01.192
[36]
Zhao Y W, Qin J H, Xu H, Gao S M, Jiang T T, Zhang S X, Jin J. Microchimica Acta, 2019, 186(1): 1.

doi: 10.1007/s00604-018-3127-5
[37]
Luo X L, Chen L M, Yang J Y, Li S T, Li M T, Mo Q, Li Y B, Li X C. Microchem. J., 2021, 169: 106623.

doi: 10.1016/j.microc.2021.106623
[38]
Arroquia A, Acosta I, Armada M P G. Mater. Sci. Eng. C, 2020, 109: 110602.

doi: 10.1016/j.msec.2019.110602
[39]
Bettazzi F, Ingrosso C, Sfragano P S, Pifferi V, Falciola L, Curri M L, Palchetti I. Food Chem., 2021, 344: 128692.

doi: 10.1016/j.foodchem.2020.128692
[40]
Eskiköy Bayraktepe D, İnal E K, Yazan Z. Microchem. J., 2021, 171: 106812.
[41]
Rohani T, Taher M A. Talanta, 2009, 78(3): 743.

doi: 10.1016/j.talanta.2008.12.041
[42]
Selvaraju T, Ramaraj R. Electrochimica Acta, 2007, 52(9): 2998.

doi: 10.1016/j.electacta.2006.09.032
[43]
Raveendran J, Krishnan R G, Nair B G, Satheesh Babu T G. Microchimica Acta, 2017, 184(9): 3573.

doi: 10.1007/s00604-017-2391-0
[44]
Öztürk Doğan H, Kurt Urhan B, Çepni E, Eryiğit M. Microchem. J., 2019, 150: 104157.

doi: 10.1016/j.microc.2019.104157
[45]
dos Santos Franco F, Fernandes D S, Do Carmo D R. Mater. Sci. Eng. C, 2020, 111: 110739.

doi: 10.1016/j.msec.2020.110739
[46]
Xu X, Li C H, Zhang H, Guo X M. Nanomaterials, 2022, 12(3): 482.

doi: 10.3390/nano12030482
[47]
Liu Q Q, Lin H Y, Lu J J, Zhang Y C, Wang X L. J. Solid State Chem., 2022, 308: 122911.

doi: 10.1016/j.jssc.2022.122911
[48]
Elhag S, Ibupoto Z, Nour O, Willander M. Materials, 2014, 8(1): 149.

doi: 10.3390/ma8010149 pmid: 28787929
[49]
Khand N H, Palabiyik I M, Buledi J A, Ameen S, Memon A F, Ghumro T, Solangi A R. J. Nanostructure Chem., 2021, 11(3): 455.

doi: 10.1007/s40097-020-00380-8
[50]
Tian L, Bian J Y, Wang B B, Qi Y J. Electrochimica Acta, 2010, 55(9): 3083.

doi: 10.1016/j.electacta.2010.01.077
[51]
Weng Y C, Lee Y G, Hsiao Y L, Lin C Y. Electrochimica Acta, 2011, 56(27): 9937.

doi: 10.1016/j.electacta.2011.08.084
[52]
Peik-See T, Pandikumar A, Nay-Ming H, Hong-Ngee L, Sulaiman Y. Sensors, 2014, 14(8): 15227.

doi: 10.3390/s140815227 pmid: 25195850
[53]
Huang H P, Yue Y F, Chen Z Z, Chen Y N, Wu S Z, Liao J S, Liu S J, Wen H R. Microchimica Acta, 2019, 186(3): 1.

doi: 10.1007/s00604-018-3127-5
[54]
Sarıoğulları H, Sengul I F, Gürek A G. New J. Chem., 2021, 45(48): 22714.

doi: 10.1039/D1NJ04052A
[55]
Zhu K, Wang J, Luo Y H, Zhang Y, Cai X Q, Liu B T, Zhang Q Y, Wu H Y, Liu Z Z, Zhang D E. J. Solid State Chem., 2022, 307: 122745.

doi: 10.1016/j.jssc.2021.122745
[56]
Motsaathebe P C, Fayemi O E. Nanomaterials, 2022, 12(4): 645.

doi: 10.3390/nano12040645
[57]
Wang L C, Pan L Y, Han X, Ha M N, Li K R, Yu H, Zhang Q H, Li Y G, Hou C Y, Wang H Z. J. Colloid Interface Sci., 2022, 616: 326.

doi: 10.1016/j.jcis.2022.02.058
[58]
Jo A, Kang M, Cha A, Jang H S, Shim J H, Lee N S, Kim M H, Lee Y, Lee C. Anal. Chimica Acta, 2014, 819: 94.

doi: 10.1016/j.aca.2014.02.017
[59]
Hou C, Liu H Y, Zhang D, Yang C, Zhang M Z. J. Alloys Compd., 2016, 666: 178.

doi: 10.1016/j.jallcom.2016.01.092
[60]
Yin Y Y, Zhao J W, Qin L R, Yang Y, He L Z. RSC Adv., 2016, 6(68): 63358.

doi: 10.1039/C6RA12145D
[61]
Zhong S S. Master Dissertation of Hunan University, 2016.
(钟莎莎. 湖南大学硕士学位论文, 2016.).
[62]
Sun J J, Zhou D M, Fang H Q, Chen H Y. Talanta, 1998, 45: 851.

pmid: 18967070
[63]
Ambrosi A, Morrin A, Smyth M R, Killard A J. Anal. Chimica Acta, 2008, 609(1): 37.

doi: 10.1016/j.aca.2007.12.017
[64]
Gao Z Q, Chen B, Zi M X. J. Electroanal. Chem., 1994, 365(1/2): 197.

doi: 10.1016/0022-0728(93)03055-T
[65]
Chen M, Nie M Y, Li H L. J. Colloid Interface Sci., 1999, 209(2): 421.

doi: 10.1006/jcis.1998.5913
[66]
Kumar S A, Cheng H W, Chen S M. React. Funct. Polym., 2009, 69(6): 364.

doi: 10.1016/j.reactfunctpolym.2009.03.001
[67]
Satheesh Babu T G, Varadarajan D, Murugan G, Ramachandran T, Nair B G. J. Appl. Electrochem., 2012, 42(6): 427.

doi: 10.1007/s10800-012-0416-2
[68]
Zhang X W, Lai G S, Yu A M, Zhang H L. Microchimica Acta, 2013, 180(5/6): 437.

doi: 10.1007/s00604-013-0939-1
[69]
Puangjan A, Chaiyasith S, Wichitpanya S, Daengduang S, Puttota S. J. Electroanal. Chem., 2016, 782: 192.

doi: 10.1016/j.jelechem.2016.09.019
[70]
Ensafi A A, Taei M, Khayamian T, Arabzadeh A. Sens. Actuat. B Chem., 2010, 147(1): 213.

doi: 10.1016/j.snb.2010.02.048
[71]
Chethana B K, Arthoba Naik Y. Anal. Methods, 2012, 4(11): 3754.

doi: 10.1039/c2ay25528f
[72]
Taei M, Jamshidi M S. Microchem. J., 2017, 130: 108.

doi: 10.1016/j.microc.2016.08.011
[73]
Shi L, Wu N, Liu W, Yang G, Wang Z. Int. J. Electrochem. Sci., 2021, 16(5): 556.
[74]
Wang M Y, CetÓ X, del Valle M. Biosens. Bioelectron., 2022, 198: 113807.

doi: 10.1016/j.bios.2021.113807
[75]
Liu X Q. Master Dissertation of Tianjin Normal University, 2015.
(刘小绮. 天津师范大学硕士论文, 2015.).
[76]
Sheng Z H, Zheng X Q, Xu J Y, Bao W J, Wang F B, Xia X H. Biosens. Bioelectron., 2012, 34(1): 125.

doi: 10.1016/j.bios.2012.01.030 pmid: 22342696
[77]
Qi S P, Zhao B, Tang H Q, Jiang X Q. Electrochimica Acta, 2015, 161: 395.

doi: 10.1016/j.electacta.2015.02.116
[78]
Li F, Li J J, Feng Y, Yang L M, Du Z F. Sens. Actuat. B Chem., 2011, 157(1): 110.

doi: 10.1016/j.snb.2011.03.033
[79]
Jiang Y M, Xiao X, Li C C, Luo Y, Chen S, Shi G Y, Han K, Gu H. Anal. Chem., 2020, 92(5): 3981.

doi: 10.1021/acs.analchem.9b05484
[80]
Stojanović G M, Kojić T, Simić M, Jovanović-Galović A, Pavlović B, Zurutuza A, Anzi L C, Sordan R. IEEE Sens. J., 2021, 21(15): 16744.

doi: 10.1109/JSEN.2021.3078692
[81]
Jiang J J, Ding D, Wang J, Lin X Y, Diao G W. Anal., 2021, 146(3): 964.

doi: 10.1039/D0AN01912G
[82]
Wang M, Guo H, Wu N, Zhang J, Zhang T, Liu B, Pan Z, Peng L, Yang W. Colloids Surf., A, 2022, 634: 127928.

doi: 10.1016/j.colsurfa.2021.127928
[83]
Bijad M, Karimi-Maleh H, Khalilzadeh M A. Food Anal. Methods, 2013, 6(6): 1639.

doi: 10.1007/s12161-013-9585-9
[84]
Naqvi S T R, Shirinfar B, Hussain D, Majeed S, Ashiq M N, Aslam Y, Ahmed N. Electroanalysis, 2019, 31(5): 851.

doi: 10.1002/elan.v31.5
[85]
Ramakrishnan S, Pradeep K R, Raghul A, Senthilkumar R, Rangarajan M, Kothurkar N K. Anal. Methods, 2015, 7(2): 779.

doi: 10.1039/C4AY02487G
[86]
Zhang H Q, Huang Q T, Huang Y H, Li F M, Zhang W X, Wei C, Chen J H, Dai P W, Huang L Z, Huang Z Y, Kang L P, Hu S R, Hao A Y. Electrochimica Acta, 2014, 142: 125.

doi: 10.1016/j.electacta.2014.07.094
[87]
Medeiros R A, Matos R, Benchikh A, Saidani B, Debiemme-Chouvy C, Deslouis C, Rocha-Filho R C, Fatibello-Filho O. Anal. Chimica Acta, 2013, 797: 30.

doi: 10.1016/j.aca.2013.08.018
[88]
Medeiros R A, Benchick A, Rocha-Filho R C, Fatibello-Filho O, Saidani B, Debiemme-Chouvy C, Deslouis C. Electrochem. Commun., 2012, 24: 61.

doi: 10.1016/j.elecom.2012.08.011
[89]
Zhang X, Ma L X, Zhang Y C. Electrochimica Acta, 2015, 177: 118.

doi: 10.1016/j.electacta.2015.01.202
[90]
Spissu Y, Barberis A, Bazzu G, D’hallewin G, Rocchitta G, Serra P A, Marceddu S, Vineis C, Garroni S, Culeddu N. Chemosensors, 2021, 9(12): 354.

doi: 10.3390/chemosensors9120354
[91]
Xu H, Liu X R, Qin J H, Dong L N, Gao S M, Hou F J, Zhong L L, Jiang T T, Lin N. Microchem. J., 2021, 168: 106494.

doi: 10.1016/j.microc.2021.106494
[92]
Peng X, Xie Y, Du Y, Song Y H, Chen S H. J. Electroanal. Chem., 2022, 904: 115850.

doi: 10.1016/j.jelechem.2021.115850
[93]
Li Q, Huo C R, Yi K, Zhou L L, Su L, Hou X M. Sens. Actuat. B Chem., 2018, 260: 346.

doi: 10.1016/j.snb.2017.12.208
[94]
Cabrita J F, Ferreira V C, Monteiro O C. Electrochimica Acta, 2014, 135: 121.

doi: 10.1016/j.electacta.2014.04.135
[95]
He Y S, Lin X G, Tang Y, Ye L. Anal. Methods, 2021, 13(38): 4503.

doi: 10.1039/D1AY00849H
[1] Dang Zhang, Xi Wang, Lei Wang. Biomedical Applications of Enzyme-Powered Micro/Nanomotors [J]. Progress in Chemistry, 2022, 34(9): 2035-2050.
[2] Yimin Sun, Houshen Li, Zhenyu Chen, Dong Wang, Zhanpeng Wang, Fei Xiao. The Application of MXene in Electrochemical Sensor [J]. Progress in Chemistry, 2022, 34(2): 259-271.
[3] Tingting Huang, Zihua Zhou, Qi Liu, Xiaozheng Wang, Wenli Guo, Shuangjun Lin*. Biosynthetic Mechanisms of Alkaloids from Actinomycetes [J]. Progress in Chemistry, 2018, 30(5): 692-702.
[4] Xinxin Jiang, Chengjun Zhao, Chunju Zhong, Jianping Li*. The Electrochemical Sensors Based on MOF and Their Applications [J]. Progress in Chemistry, 2017, 29(10): 1206-1214.
[5] Xing Liwen, Ma Zhanfang. Non-Enzymatic Electrochemical Sensors Based on Carbon Nanomaterials for Simultaneous Detection of Ascorbic Acid, Dopamine, and Uric Acid [J]. Progress in Chemistry, 2016, 28(11): 1705-1711.
[6] Li Minrui, Guo Yongliang, Yang Baoping, Guo Junhong, Cui Jinfeng. Electrochemical Analyses of Anion Recognition Based on Urea Derivatives [J]. Progress in Chemistry, 2015, 27(5): 559-570.
[7] Fang Li, He Jinlu. Nonenzymatic Glucose Sensors [J]. Progress in Chemistry, 2015, 27(5): 585-593.
[8] Zhou Yan, Zhao Xuebing, Liu Dehua. Effects of Non-Ionic Surfactant on the Enzymatic Hydrolysis of Lignocellulose and Corresponding Mechanism [J]. Progress in Chemistry, 2015, 27(11): 1555-1565.
[9] Zhao Jun, Huang Renliang, Qi Wei, Wang Yuefei, Su Rongxin, He Zhimin. Self-Assembly of Diphenylalanine Based Peptides:Molecular Design, Structural Control and Applications [J]. Progress in Chemistry, 2014, 26(09): 1445-1459.
[10] Shi Yugang, Dang Yali, Liu Yuhua, Bai Xue. Microbial and Chemical Production of Chondroitin Sulfate [J]. Progress in Chemistry, 2014, 26(08): 1378-1394.
[11] Jia Sisi, Chao Jie, Fan Chunhai, Liu Huajie. DNA Origami Nanoreactors [J]. Progress in Chemistry, 2014, 26(05): 695-705.
[12] Sun Bing, Ai Shiyun. Fabrication and Application of Photoelectrochemical Sensor [J]. Progress in Chemistry, 2014, 26(05): 834-845.
[13] Wei Yan, Liu Zhonggang, Gao Chao, Wang Lun, Liu Jinhuai, Huang Xingjiu. Electrochemical Sensors and Biosensors Based on Nanomaterials: A New Approach for Detection of Organic Micropollutants [J]. Progress in Chemistry, 2012, 24(04): 616-627.
[14] Shi Yugang, Cai Yan, Li Jianrong, Chu Yenho. Enzyme-Catalyzed Regioselective Synthesis of Carbohydrate Fatty Acid Esters in Ionic Liquids [J]. Progress in Chemistry, 2011, 23(11): 2247-2257.
[15] Zhang Mingjia Su Rongxin Qi Wei He Zhimin. Enzymatic Conversion of Lignocellulose into Sugars [J]. Progress in Chemistry, 2009, 21(05): 1070-1074.