中文
Announcement
More
Progress in Chemistry 2024, Vol. 36 Issue (3): 376-392 DOI: 10.7536/PC230725 Previous Articles   Next Articles

• Review •

Degradation Mechanisms and Durability Improvement Strategies of Fe-N-C Catalysts for Oxygen Reduction Reaction

Longhao Li2, Wei Zhou2(), Liang Xie2, Chaowei Yang2, Xiaoxiao Meng1,2(), Jihui Gao2   

  1. 1 State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
    2 School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
  • Received: Revised: Online: Published:
  • Contact: * e-mail: hitzhouw@hit.edu.cn (Wei Zhou);mengxiaoxiao@hit.edu.cn (Xiaoxiao Meng)
  • Supported by:
    Open Project of State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology(HC202331)
Richhtml ( 5 ) PDF ( 54 ) Cited
Export

EndNote

Ris

BibTeX

Among the many non-precious metal catalysts that have been reported so far, M-N-C catalysts based on transition metal-nitrogen-carbon structure are considered as the most promising candidates to replace Pt-based catalysts for oxygen reduction reaction. Compared with other M-N-C catalysts, Fe-N-C catalysts exhibit the highest ORR activity in acidic environments due to the suitable adsorption energy of oxygen-containing intermediates and thermodynamically favorable 4e pathway. However, the practical application of this catalyst is still limited by the challenge of insufficient stability under the high voltage and strong acidic conditions of PEMFC. Thus, the preparation of stable and efficient Fe-N-C catalysts still faces many challenges. In this review, we systematically summarize the common synthesis methods of Fe-N-C catalysts, including spatial confinement method and template-assisted strategy, outline the half-cell and single-cell test methods used to evaluate the catalyst stability, and analyze the reasons for the discrepancies between the two test results. In order to design highly stable catalysts, a clear knowledge and understanding of the degradation mechanism is required, so we describe four possible degradation mechanisms for Fe-N-C catalysts: demetallization, carbon oxidation, protonation, and microporous water flooding, subsequently we propose some specific strategies to enhance the stability of Fe-N-C catalysts. Finally, the future development direction of Fe-N-C catalysts is discussed in this review. It is hoped that the comprehensive and in-depth study of Fe-N-C catalysts will guide the design and development of highly stable Fe-N-C catalysts for the application of PEMFC.

Contents

1 Introduction

2 Synthesis methods of Fe-N-C catalysts

2.1 Spatial confinement method

2.2 The template method

2.3 Other methods

3 Stability test protocols for Fe-N-C catalysts

3.1 Half-cell test

3.2 Single-cell test

3.3 Analysis of the variability of the results of the two test protocols

4 Degradation mechanisms of Fe-N-C catalysts

4.1 Demetalation

4.2 Carbon crossion

4.3 Protonation

4.4 Water flooding in microporous

5 Durability improvement strategies of Fe-N-C catalysts

5.1 Stable carbon matrix

5.2 Stable active sites

5.3 Avoiding fenton reaction

6 Conclusion and outlook

Fig. 1 Synthesis methods of Fe-N-C catalysts(a)Schematic diagram of synthesis process of O-FeN4C-O[30]. Copyright 2022 Elsevier Inc.(b)Schematic illustration of microstructure evolution at high temperatures for improving ORR stability of pyrolyzed Fe-N-C catalysts[31]. Copyright 2022 Wiley-VCH.(c)Synthesis of porous FeN4-O-NCR catalysts by three-step pyrolysis under different temperatures and atmospheres[34]. Copyright 2022 Wiley-VCH Gmbh.(d)Synthesis of porous carbon nanorod Fe/N-CNR catalysts using one-dimensional Fe2O3 as a template[39]. Copyright 2020 Elsevier B.V.(e)Schematic illustration for the synthesis of Fe-N-C/N-OMC catalyst[40]. Copyright 2020 Wiley-VCH Gmbh.
Table 1 Summary of representative Fe-N-C catalysts half-cell and full-cell performance in recent years
Catalysts Half-cell test Performance Single-cell test Performance
FeNC-1200[31] 10 000 square cycles between 0.6 and
1.0 V/RHE in O2-saturated 0.1 M HClO4
E1/2 8 mV constant voltage of 0.5 V under H2-O2 condition for 30 h current density loss 20%
Fe-AC-CVD[32] 10 000 square cycles between 0.6 and
1.0 V/RHE in O2-saturated 0.5 M H2SO4
E1/2 17 mV 30,000 square cycles between 0.6 and OCV in H2-Air PEMFC current density loss 13%
O-FeN4-O[30] 10 000 square cycles between 0.6 and
1.0 V/RHE in O2-saturated 0.5 M H2SO4
E1/2 10 mV constant current density of 0.5 A·cm-2 under H2-O2 condition for 50 h potential loss 33%
Fe-N-C/Pd[41] 30 000 square cycles between 0.6 and
1.0 V/RHE in O2-saturated 0.1 M HClO4
E1/2 13.5 mV - -
ZIF-NC-0.5Fe-700[42] 30 000 square cycles between 0.6 and
1.0 V/RHE in O2-saturated 0.5 M H2SO4
E1/2 31 mV - -
Fe-N-C/F[43] - - constant voltage of 0.6 V under H2-O2 condition for 100 h current density loss 3%
Fe/PI-1000-III-NH3[44] - - constant current of 30mA under H2-O2 condition for 1000 h potential loss 15%
PANI-FeCo-C[45] - - constant voltage of 0.4 V under H2-O2 condition for 700 h current density loss 3%
Fe-ZIF/CNT/1[46] 1 000 square cycles between 0.9 and
1.4 V/RHE in N2-saturated 0.1 M HClO4
E1/2 42 mV constant voltage of 0.4 V under H2-O2 condition for 30 h current density loss 34%
Fe/N,S-HC[47] 1 000 square cycles between 0.6 and
1.0 V/RHE in N2-saturated 0.1 M KOH
E1/2 7 mV - -
Fe@MNC-OAc[35] 10 000 square cycles between 0.6 and
1.0 V/RHE in O2-saturated 0.1 M HClO4
E1/2 9 mV - -
FeSA/FeAC-2DNPC[48] 10 000 square cycles between 0.6 and
1.0 V/RHE in O2-saturated 0.5 M H2SO4
E1/2 15 mV constant voltage of 0.5 V under H2-Air condition for 30 h slight decrease in current density for the first 32 hours, then stabilized
P(AA-MA)(5-1)-Fe-N[49] 5 000 square cycles between 0.6 and
1.0 V/RHE in O2-saturated 0.5 M H2SO4
E1/2 5 mV constant voltage of 0.55 V under H2-O2 condition for 30 h virtually no loss of current density during the initial 37 hours
Fig. 2 ORR polarization curves of FeIM/ZIF-8 measured during RRDE and MEA stability test: RRDE test conditions include cycling from 0.0 to 1.1 V at 50 mV·s-1 in(a)0.1 M Ar-purged HClO4 or(b)0.1 M O2-purged HClO4 at 25 ℃ for multiple cycles, followed by polarization curve measurement in O2-purged HClO4 at the scan rate of 10 mV·s-1.(c) 100-hour stability test by measuring the current density at 0.5 V of a single cell with FeIM/ZIF-8 as the cathode catalyst(Nafion 117 membrane)operated with H2-air[55]. Copyright 2012 The Royal Society of Chemistry.
Fig. 3 Performance of state-of-the-art Pt catalysts evaluated in RDE and MEA[56].Copyright 2021 Springer Nature Limited.
Fig. 4 Deactivation mechanism of Fe-N-C catalysts:(a)Online SFC/ICP-MS results. The Fe dissolution was recorded at 20 ℃ during a stepwise chronoamperometry experiment with a 0.1?V step size[61]; Morphology change of a single Fe-N-C particle. Dark-field IL-STEM micrographs b)before and c)?after 5000 cycles performed between 1.2 and 1.5?V at 50 ℃ in a 0.1 M HClO4 electrolyte[61]. Copyright 2015 WILEY-VCH Verlag GmbH & Co.KGaA, Weinheim.(d) Schematic illustration describing autocatalytic degradation cycle comprising demetalation, Fenton(-like) reaction, and carbon oxidation[67]. Copyright 2021 Elsevier Inc.(e)Schematic of the electrochemical probe method to in-operando monitor the H2O2 concentration in the fuel cell catalyst layer[64]. Copyright 2022 Elsevier B.V.
Fig. 5 Strategies for building stable carbon substrate:(a)AST test results of SA-Fe-N-1.5-800[74];(b)Raman spectra of SA-Fe-N catalysts synthesized using different concentrations of SA versus Fe-N-C catalysts without SA[74]. Copyright 2018 WILEY-VCH Verlag GmbH & Co.KGaA, Weinheim.(c)Relationship between mesopore and micropore area and ORR mass activity[76]. Copyright 2021 Elsevier Inc.(d)Stability test results of six Fe-N-C catalysts with different micropore ratios[77]. Copyright 2016 American Chemistry Society
Fig. 6 Strategies for constructing stable active sites:(a)Comparison of D1 and D2 sites contents in Fe-N-C catalysts before and after CVD treatment[32]. Copyright 2022 Springer Nature Limited.(b)PAA-Fe-N and P(AA-MA)-Fe-N catalysts were prepared by lower binding constant PAA-Fe and higher binding constant P(AA-MA)-Fe as precursor, respectively[49];(c)k3-weighted FT-EXAFS spectra of P(AA-MA)(5-1)-Fe-N, PAA-Fe-N, and Fe foil samples[49]. Copyright 2021 Wiley-VCH Gmbh.(d)Durability tests of the Co(mIm)-NC(1.0)and Fe(mIm)-NC(1.0)catalysts in MEA in 1 bar H2-air at a constant cell voltage of 0.7 V for 100 h[82]. Copyright 2020 Springer Nature.(e)The trends in electrochemical H2O2 production and H2O2 reduction over a series of M-N-C materials(M=Mn, Fe, Co, Ni, and Cu)exclusively comprising atomically dispersed M-Nx sites from molecular first-principles to bench-scale electrolyzers operating at industrial current density[83]. Copyright 2019 American Chemistry Society.
Fig. 7 Strategies to avoid Fenton reaction:(a)Positive correlation between the cumulative amounts of Fe dissolved during the 20 fast cycles and the total content of crystalline Fe structures in the catalysts[87];(b)Current density versus time during the durability test for 50 h at 0.5 V[87]. Copyright 2016 American Chemistry Society. Schematic of the ORR mechanism for Pt AMS(c)and Pt = N2 = Fe ABA(d)[88]. Copyright 2022 Springer Nature.(e)The optimized structure of Fe,Ce-N-C[92];(f)accelerated degradation test(ADT)by cycling the potential(0.6~1.0 V)in O2-saturated 0.1 M HClO4 for 30 000 cycles to study the stability of the best-performing Fe,Ce-N-C[92]. Copyright 2023 Elsevier Inc.(g) Current density decay comparison for cells with and without Ta-TiOx/KB after the ADT[92]. Copyright 2022 Springer Nature Limited.
[1]
Ehelebe K, Schmitt N, Sievers G, Jensen A W, Hrnjić A, Collantes Jiménez P, Kaiser P, Geuß M, Ku Y P, Jovanovič P, Mayrhofer K J J, Etzold B, Hodnik N, Escudero-Escribano M, Arenz M, Cherevko S. ACS Energy Lett., 2022, 7(2): 816.

doi: 10.1021/acsenergylett.1c02659
[2]
Zhao L, Zhu J B, Zheng Y, Xiao M L, Gao R, Zhang Z, Wen G B, Dou H Z, Deng Y P, Yu A P, Wang Z B, Chen Z W. Adv. Energy Mater., 2022, 12(2): 2102665.

doi: 10.1002/aenm.v12.2
[3]
Wang Y D, Meyer Q, Tang K N, McClure J E, White R T, Kelly S T, Crawford M M, Iacoviello F, Brett D J L, Shearing P R, Mostaghimi P, Zhao C, Armstrong R T. Nat. Commun., 2023, 14: 745.

doi: 10.1038/s41467-023-35973-8
[4]
Jiao K, Xuan J, Du Q, Bao Z M, Xie B, Wang B W, Zhao Y, Fan L H, Wang H Z, Hou Z J, Huo S, Brandon N P, Yin Y, Guiver M D. Nature, 2021, 595(7867): 361.

doi: 10.1038/s41586-021-03482-7
[5]
Liu F, Shi C X, Pan L, Huang Z F, Zhang X W, Zou J J. EES. Catal., 2023, 1(4): 562.
[6]
Ding S C, Barr J A, Shi Q R, Zeng Y C, Tieu P, Lyu Z Y, Fang L Z, Li T, Pan X Q, Beckman S P, Du D, Lin H F, Li J C, Wu G, Lin Y H. ACS Nano, 2022, 16(9): 15165.

doi: 10.1021/acsnano.2c06459
[7]
Tian Y H, Deng D J, Xu L, Li M, Chen H, Wu Z Z, Zhang S Q. Nano Micro Lett., 2023, 15(1): 122.

doi: 10.1007/s40820-023-01067-9
[8]
Tian X L, Lu X F, Xia B Y, Lou X W D. Joule, 2020, 4(1): 45.

doi: 10.1016/j.joule.2019.12.014
[9]
Wang X X, Swihart M T, Wu G. Nat. Catal., 2019, 2(7): 578.

doi: 10.1038/s41929-019-0304-9
[10]
Wang W, Chen X W, Zhang X, Ye J Y, Xue F, Zhen C, Liao X Y, Li H Q, Li P T, Liu M C, Kuang Q, Xie Z X, Xie S F. Nano Energy, 2020, 71: 104623.

doi: 10.1016/j.nanoen.2020.104623
[11]
Dey S, Mondal B, Chatterjee S, Rana A, Amanullah S, Dey A. Nat. Rev. Chem., 2017, 1(12): 98.

doi: 10.1038/s41570-017-0098
[12]
Pegis M L, Wise C F, Martin D J, Mayer J M. Chem. Rev., 2018, 118(5): 2340.

doi: 10.1021/acs.chemrev.7b00542
[13]
Muñoz-Becerra K, Zagal J H, Venegas R, Recio F J. Curr. Opin. Electrochem., 2022, 35: 101035.
[14]
Li L F, Wen Y D, Han G K, Liu Y X, Song Y J, Zhang W, Sun J, Du L, Kong F P, Ma Y L, Gao Y Z, Wang J J, Du C Y, Yin G P. Chem. Eng. J., 2022, 437: 135320.

doi: 10.1016/j.cej.2022.135320
[15]
Ye H, Li L J, Liu D D, Fu Q J, Zhang F Z, Dai P C, Gu X, Zhao X B. ACS Appl. Mater. Interfaces, 2020, 12(52): 57847.

doi: 10.1021/acsami.0c16081
[16]
Meng P F, Zhang X R, Liao S J, Deng Y J. Prog. Chem. 2022, 34(10): 2190.
(孟鹏飞, 张笑容, 廖世军, 邓怡杰. 化学进展 2022, 34(10): 2190.).
[17]
Liu K X, Qiao Z, Hwang S, Liu Z Y, Zhang H G, Su D, Xu H, Wu G, Wang G F. Appl. Catal. B Environ., 2019, 243: 195.

doi: 10.1016/j.apcatb.2018.10.034
[18]
Xie J F, Xie Y. Chem. Eur. J., 2016, 22(11): 3588.
[19]
Lebechi A K, Ipadeola A K, Eid K, Abdullah A M, Ozoemena K I. Nanoscale, 2022, 14(30): 10717.

doi: 10.1039/D2NR02330J
[20]
Shen W, Zhu J M, Hu Y, Yin J, Zheng Y, Xi P X. Chin. J. Chem., 2023, 41(14): 1740.

doi: 10.1002/cjoc.v41.14
[21]
Li Y Q, Li J, Wang Y G, Chen X R, Liu M T, Zheng Z, Peng X H. Int. J. Hydrog. Energy, 2021, 46(24): 13273.
[22]
Jasinski R. Nature, 1964, 201(4925): 1212.

doi: 10.1038/2011212a0
[23]
Lefèvre M, Proietti E, Jaouen F, Dodelet J P. Science, 2009, 324(5923): 71.

doi: 10.1126/science.1170051
[24]
Liang X, Fu N H, Yao S C, Li Z, Li Y D. J. Am. Chem. Soc., 2022, 144(40): 18155.

doi: 10.1021/jacs.1c12642
[25]
Yin H B, Xia H C, Zhao S Y, Li K X, Zhang J N, Mu S C. ENERGY ENVIRONMENTAL Mater., 2021, 4(1): 5.

doi: 10.1002/eem2.v4.1
[26]
Liu H D, Cheng M, Liu Y, Wang J, Zhang G X, Li L, Du L, Wang G F, Yang S Z, Wang X Y. Energy Environ. Sci., 2022, 15(9): 3722.

doi: 10.1039/D2EE01037B
[27]
Dong A R, Lin Y, Guo Y Y, Chen D D, Wang X, Ge Y J, Li Q P, Qian J J. J. Colloid Interface Sci., 2023, 650: 2056.

doi: 10.1016/j.jcis.2023.06.043
[28]
Jiao L, Zhu J T, Zhang Y, Yang W J, Zhou S Y, Li A W, Xie C F, Zheng X S, Zhou W, Yu S H, Jiang H L. J. Am. Chem. Soc., 2021, 143(46): 19417.

doi: 10.1021/jacs.1c08050
[29]
Yang M R, Xie Y X, Zhu D R. Prog. Chem., 2023, 35(5): 683.
(杨孟蕊, 谢雨欣, 朱敦如. 化学进展, 2023, 35(5): 683.).
[30]
Sun P P, Qiao K W, Li D Y, Liu X R, Liu H B, Yang L, Xu H X, Zhuang Z B, Yan Y S, Cao D P. Chem Catal., 2022, 2(10): 2750.
[31]
Xia D S, Tang X, Dai S, Ge R L, Rykov A, Wang J H, Huang T H, Wang K W, Wei Y P, Zhang K, Li J, Gan L, Kang F Y. Adv. Mater., 2023, 35(5): 2204474.

doi: 10.1002/adma.v35.5
[32]
Liu S W, Li C Z, Zachman M J, Zeng Y C, Yu H R, Li B Y, Wang M Y, Braaten J, Liu J W, Meyer H M, Lucero M, Kropf A J, Alp E E, Gong Q, Shi Q R, Feng Z X, Xu H, Wang G F, Myers D J, Xie J, Cullen D A, Litster S, Wu G. Nat. Energy, 2022, 7(7): 652.

doi: 10.1038/s41560-022-01062-1
[33]
Thompson S T, Wilson A R, Zelenay P, Myers D J, More K L, Neyerlin K C, Papageorgopoulos D. Solid State Ion., 2018, 319: 68.

doi: 10.1016/j.ssi.2018.01.030
[34]
Peng L S, Yang J, Yang Y Q, Qian F R, Wang Q, Sun-Waterhouse D, Shang L, Zhang T R, Waterhouse G I N. Adv. Mater., 2022, 34(29): 2202544.

doi: 10.1002/adma.v34.29
[35]
Liu Y Y, Tu F D, Zhang Z Y, Zhao Z G, Guo P, Shen L X, Zhang Y L, Zhao L, Shao G J, Wang Z B. Appl. Catal. B Environ., 2023, 324: 122209.

doi: 10.1016/j.apcatb.2022.122209
[36]
Zhan Q N, Shuai T Y, Xu H M, Huang C J, Zhang Z J, Li G R. Chin. J. Catal., 2023, 47: 32.
[37]
Lin L H, Chen Z, Chen W X. Nano Res., 2021, 14(12): 4398.

doi: 10.1007/s12274-021-3412-9
[38]
Niu W H, Li L G, Liu X J, Wang N, Liu J, Zhou W J, Tang Z H, Chen S W. J. Am. Chem. Soc., 2015, 137(16): 5555.

doi: 10.1021/jacs.5b02027
[39]
Gong X F, Zhu J B, Li J Z, Gao R, Zhou Q Y, Zhang Z, Dou H Z, Zhao L, Sui X L, Cai J J, Zhang Y L, Liu B, Hu Y F, Yu A P, Sun S H, Wang Z B, Chen Z W. Adv. Funct. Mater., 2021, 31(8): 2008085.

doi: 10.1002/adfm.v31.8
[40]
Han J X, Bao H L, Wang J Q, Zheng L R, Sun S R, Wang Z L, Sun C W. Appl. Catal. B Environ., 2021, 280: 119411.

doi: 10.1016/j.apcatb.2020.119411
[41]
Wei X Q, Song S J, Cai W W, Luo X, Jiao L, Fang Q, Wang X S, Wu N N, Luo Z, Wang H J, Zhu Z H, Li J, Zheng L R, Gu W L, Song W Y, Guo S J, Zhu C Z. Chem, 2023, 9(1): 181.

doi: 10.1016/j.chempr.2022.10.001
[42]
Li J Z, Zhang H G, Samarakoon W, Shan W T, Cullen D A, Karakalos S, Chen M J, Gu D M, More K L, Wang G F, Feng Z X, Wang Z B, Wu G. Angew. Chem. Int. Ed., 2019, 58(52): 18971.

doi: 10.1002/anie.v58.52
[43]
Wang Y C, Zhu P F, Yang H, Huang L, Wu Q H, Rauf M, Zhang J Y, Dong J, Wang K, Zhou Z Y, Sun S G. ChemElectroChem, 2018, 5(14): 1914.

doi: 10.1002/celc.v5.14
[44]
Nabae Y, Kuang Y B, Chokai M, Ichihara T, Isoda A, Hayakawa T, Aoki T. J. Mater. Chem. A, 2014, 2(30): 11561.

doi: 10.1039/C4TA01828A
[45]
Wu G, More K L, Johnston C M, Zelenay P. Science, 2011, 332(6028): 443.

doi: 10.1126/science.1200832
[46]
Xia D S, Tang F, Yao X Z, Wei Y P, Cui Y F, Dou M, Gan L, Kang F Y. Carbon, 2020, 162: 300.

doi: 10.1016/j.carbon.2020.02.046
[47]
Liu F, Shi L, Song S F, Ge K, Zhang X P, Guo Y C, Liu D. Small, 2021, 17(40): e2102425.
[48]
Wan X, Liu Q T, Liu J Y, Liu S Y, Liu X F, Zheng L R, Shang J X, Yu R H, Shui J L. Nat. Commun., 2022, 13: 2963.

doi: 10.1038/s41467-022-30702-z
[49]
Miao Z P, Wang X M, Zhao Z L, Zuo W B, Chen S Q, Li Z Q, He Y H, Liang J S, Ma F, Wang H L, Lu G, Huang Y H, Wu G, Li Q. Adv. Mater., 2021, 33(39): 2006613.

doi: 10.1002/adma.v33.39
[50]
Luo X, Wei X Q, Wang H J, Gu W L, Kaneko T, Yoshida Y, Zhao X, Zhu C Z. Nano Micro Lett., 2020, 12(1): 163.

doi: 10.1007/s40820-020-00502-5
[51]
Wan K C, Chu T K, Li B, Ming P W, Zhang C M. Adv. Sci., 2023, 10(11): e2203391.
[52]
Lin J, Wang A Q, Qiao B T, Liu X Y, Yang X F, Wang X D, Liang J X, Li J, Liu J Y, Zhang T. J. Am. Chem. Soc., 2013, 135(41): 15314.

doi: 10.1021/ja408574m
[53]
Tian J C, Zhu Y Q, Yao X Y, Yang L F, Du C L, Lv Z, Hou M C, Zhang S L, Ma X L, Cao C B. J. Mater. Chem. A, 2023, 11(10): 5288.

doi: 10.1039/D2TA08943B
[54]
Hu Y F, Li B L, Yu C L, Fang H C, Li Z S. Mater. Today, 2023, 63: 288.

doi: 10.1016/j.mattod.2023.01.019
[55]
FCCT. US DOE. 2013. https://www.energy.gov/sites/prod/files/2015/08/f25/fcto_dwg_usdrive_fctt_accelerated_stress_tests_jan2013.pdf.
[56]
Fan J T, Chen M, Zhao Z L, Zhang Z, Ye S Y, Xu S Y, Wang H J, Li H. Nat. Energy, 2021, 6(5): 475.

doi: 10.1038/s41560-021-00824-7
[57]
Zhang H G, Osmieri L, Park J H, Chung H T, Cullen D A, Neyerlin K C, Myers D J, Zelenay P. Nat. Catal., 2022, 5(5): 455.

doi: 10.1038/s41929-022-00778-3
[58]
Kumar K, Dubau L, Mermoux M, Li J K, Zitolo A, Nelayah J, Jaouen F, Maillard F. Angew. Chem. Int. Ed., 2020, 59(8): 3235.

doi: 10.1002/anie.v59.8
[59]
Liu S Y, Meyer Q, Jia C, Wang S H, Rong C L, Nie Y, Zhao C. Energy Environ. Sci., 2023, 16(9): 3792.

doi: 10.1039/D3EE01166F
[60]
Thorarinsdottir A E, Erdosy D P, Costentin C, Mason J A, Nocera D G. Nat. Catal., 2023, 6(5): 425.

doi: 10.1038/s41929-023-00958-9
[61]
Choi C H, Baldizzone C, Grote J P, Schuppert A K, Jaouen F, Mayrhofer K J J. Angew. Chem. Int. Ed., 2015, 54(43): 12753.

doi: 10.1002/anie.v54.43
[62]
Zhang P Y, Wang Y C, You Y Z, Yuan J Y, Zhou Z Y, Sun S G. J. Phys. Chem. Lett., 2021, 12(32): 7797.

doi: 10.1021/acs.jpclett.1c01905
[63]
Wan L Y, Zhao K M, Wang Y C, Wei N, Zhang P Y, Yuan J Y, Zhou Z Y, Sun S G. ACS Catal., 2022, 12(18): 11097.

doi: 10.1021/acscatal.2c03216
[64]
Qiu C Y, Wan L Y, Wang Y C, Rauf M, Hong Y H, Yuan J Y, Zhou Z Y, Sun S G. Chin. J. Catal., 2022, 43(7): 1918.
[65]
Gao X B, Wang Y C, Xu W C, Huang H, Zhao K M, Ye H, Zhou Z Y, Zheng N F, Sun S G. J. Am. Chem. Soc., 2023, 145(28): 15528.

doi: 10.1021/jacs.3c04315
[66]
Xiao F, Wang Y A, Xu G L, Yang F, Zhu S Q, Sun C J, Cui Y D, Xu Z W, Zhao Q L, Jang J, Qiu X Y, Liu E S, Drisdell W S, Wei Z D, Gu M, Amine K, Shao M H. J. Am. Chem. Soc., 2022, 144(44): 20372.

doi: 10.1021/jacs.2c08305
[67]
Kim J, Yoo J M, Lee H S, Sung Y E, Hyeon T. Trends Chem., 2021, 3(9): 779.

doi: 10.1016/j.trechm.2021.05.009
[68]
Liu G, Li X G, Popov B. ECS Trans., 2009, 25(1): 1251.
[69]
Herranz J, Jaouen F, Lefèvre M, Kramm U I, Proietti E, Dodelet J P, Bogdanoff P, Fiechter S, Abs-Wurmbach I, Bertrand P, Arruda T M, Mukerjee S. J. Phys. Chem. C, 2011, 115(32): 16087.

doi: 10.1021/jp2042526
[70]
Yang N, Peng L L, Li L, Li J, Liao Q, Shao M H, Wei Z D. Chem. Sci., 2021, 12(37): 12476.

doi: 10.1039/D1SC02901K
[71]
Jaouen F, Lefèvre M, Dodelet J P, Cai M. J. Phys. Chem. B, 2006, 110(11): 5553.

doi: 10.1021/jp057135h
[72]
Choi J Y, Yang L J, Kishimoto T, Fu X G, Ye S Y, Chen Z W, Banham D. Energy Environ. Sci., 2017, 10(1): 296.

doi: 10.1039/C6EE03005J
[73]
Kangasniemi K H, Condit D A, Jarvi T D. J. Electrochem. Soc., 2004, 151(4): E125.

doi: 10.1149/1.1649756
[74]
Miao Z P, Wang X M, Tsai M C, Jin Q Q, Liang J S, Ma F, Wang T Y, Zheng S J, Hwang B J, Huang Y H, Guo S J, Li Q. Adv. Energy Mater., 2018, 8(24): 1801226.

doi: 10.1002/aenm.v8.24
[75]
Xia D S, Yang X, Xie L, Wei Y P, Jiang W, Dou M, Li X N, Li J, Gan L, Kang F Y. Adv. Funct. Mater., 2019, 29(49): 1906174.

doi: 10.1002/adfm.v29.49
[76]
Jaouen F, Herranz J, Lefèvre M, Dodelet J P, Kramm U I, Herrmann I, Bogdanoff P, Maruyama J, Nagaoka T, Garsuch A, Dahn J R, Olson T, Pylypenko S, Atanassov P, Ustinov E A. ACS Appl. Mater. Interfaces, 2009, 1(8): 1623.

doi: 10.1021/am900219g
[77]
Shao M H, Chang Q W, Dodelet J P, Chenitz R. Chem. Rev., 2016, 116(6): 3594.

doi: 10.1021/acs.chemrev.5b00462
[78]
Wan L Y, Chen W K, Xu H, Wang Y C, Yuan J Y, Zhou Z Y, Sun S G. ACS Appl. Mater. Interfaces, 2021, 13(38): 45661.

doi: 10.1021/acsami.1c14709
[79]
Wang Y C, Huang W, Wan L Y, Yang J, Xie R J, Zheng Y P, Tan Y Z, Wang Y S, Zaghib K, Zheng L R, Sun S H, Zhou Z Y, Sun S G. Sci. Adv., 2022, 8(44): eadd8873.

doi: 10.1126/sciadv.add8873
[80]
Li J K, Sougrati M T, Zitolo A, Ablett J M, Oğuz I C, Mineva T, Matanovic I, Atanassov P, Huang Y, Zenyuk I, Di Cicco A, Kumar K, Dubau L, Maillard F, Dražić G, Jaouen F. Nat. Catal., 2020, 4(1): 10.

doi: 10.1038/s41929-020-00545-2
[81]
Zeng Y C, Li C Z, Li B Y, Li J S, Zachman M J, Cullen D A, Hermann R P, Alp E E, Lavina B, Karakalos S, Lucero M, Zhang B Z, Wang M Y, Feng Z X, Wang G F, Xie J, Myers D J, Dodelet J P, Wu G. Nat. Catal., 2023, 6(12):1215

doi: 10.1038/s41929-023-01062-8
[82]
Xie X H, He C, Li B Y, He Y H, Cullen D A, Wegener E C, Kropf A J, Martinez U, Cheng Y W, Engelhard M H, Bowden M E, Song M, Lemmon T, Li X S, Nie Z M, Liu J, Myers D J, Zelenay P, Wang G F, Wu G, Ramani V, Shao Y Y. Nat. Catal., 2020, 3(12): 1044.

doi: 10.1038/s41929-020-00546-1
[83]
Sun Y Y, Silvioli L, Sahraie N R, Ju W, Li J K, Zitolo A, Li S, Bagger A, Arnarson L, Wang X L, Moeller T, Bernsmeier D, Rossmeisl J, Jaouen F, Strasser P. J. Am. Chem. Soc., 2019, 141(31): 12372.

doi: 10.1021/jacs.9b05576
[84]
Li F, Noh H J, Che W, Jeon J P, Han G F, Shin T J, Kim M G, Wang Y B, Bu Y F, Fu Z P, Lu Y L, Baek J B. ACS Nano, 2022, 16(11): 18830.

doi: 10.1021/acsnano.2c07589
[85]
Luo X, Wu W K, Wang Y H, Li Y Y, Ye J Y, Wang H Y, Jiang Q R, Zhou Z Y, Li Y C, Wang Y C, Sun S G. Adv. Funct. Mater., 2023, 33(30): 2215021.

doi: 10.1002/adfm.v33.30
[86]
Yang G G, Zhu J W, Yuan P F, Hu Y F, Qu G, Lu B A, Xue X Y, Yin H B, Cheng W Z, Cheng J Q, Xu W J, Li J, Hu J S, Mu S C, Zhang J N. Nat. Commun., 2021, 12: 1734.

doi: 10.1038/s41467-021-21919-5
[87]
Choi C H, Baldizzone C, Polymeros G, Pizzutilo E, Kasian O, Schuppert A K, Ranjbar Sahraie N, Sougrati M T, Mayrhofer K J J, Jaouen F. ACS Catal., 2016, 6(5): 3136.

doi: 10.1021/acscatal.6b00643
[88]
Zhou W L, Su H, Cheng W R, Li Y L, Jiang J J, Liu M H, Yu F F, Wang W, Wei S Q, Liu Q H. Nat. Commun., 2022, 13: 6414.

doi: 10.1038/s41467-022-34169-w
[89]
Zhang Y X, Zhang S B, Huang H L, Liu X L, Li B B, Lee Y Y, Wang X D, Bai Y, Sun M Z, Wu Y F, Gong S Y, Liu X W, Zhuang Z B, Tan T, Niu Z Q. J. Am. Chem. Soc., 2023, 145(8): 4819.

doi: 10.1021/jacs.2c13886
[90]
Wei H W, Su X G, Liu J G, Tian J, Wang Z W, Sun K, Rui Z Y, Yang W W, Zou Z G. Electrochem. Commun., 2018, 88: 19.

doi: 10.1016/j.elecom.2018.01.011
[91]
Shao Y Y. US DOE. 2019. [2023-07-01]
[92]
Chu Y Y, Luo E G, Wei Y, Zhu S Y, Wang X, Yang L T, Gao N X, Wang Y, Jiang Z, Liu C P, Ge J J, Xing W. Chem Catal., 2023, 3(3): 100532.
[93]
Xie H, Xie X H, Hu G X, Prabhakaran V, Saha S, Gonzalez-Lopez L, Phakatkar A H, Hong M, Wu M L, Shahbazian-Yassar R, Ramani V, Al-Sheikhly M I, Jiang D E, Shao Y Y, Hu L B. Nat. Energy, 2022, 7(3): 281.

doi: 10.1038/s41560-022-00988-w
[1] Jiang Wan, Jingze Zhang, Hongling Chen, Hanmei Shen, Zhen Wang, Chun Zhang. Functionalization and Application of Polymer-Modified Proteins [J]. Progress in Chemistry, 2024, 36(3): 416-429.
[2] Mengrui Yang, Yuxin Xie, Dunru Zhu. Synthetic Strategies of Chemically Stable Metal-Organic Frameworks [J]. Progress in Chemistry, 2023, 35(5): 683-698.
[3] Shuyang Yu, Wenlei Luo, Jingying Xie, Ya Mao, Chao Xu. Review on Mechanism and Model of Heat Release and Safety Modification Technology of Lithium-Ion Batteries [J]. Progress in Chemistry, 2023, 35(4): 620-642.
[4] Zhang Huidi, Li Zijie, Shi Weiqun. The Stability Enhancement of Covalent Organic Frameworks and Their Applications in Radionuclide Separation [J]. Progress in Chemistry, 2023, 35(3): 475-495.
[5] Li Tingting, Li Haibin, Liu Binghui, Zhao Chengji, Li Haolong. Proton Exchange Membranes Based on All-Carbon Backbone Aromatic Polymers [J]. Progress in Chemistry, 2023, 35(11): 1559-1578.
[6] Chao Ji, Tuo Li, Xiaofeng Zou, Lu Zhang, Chunjun Liang. Two-Dimensional Perovskite Photovoltaic Devices [J]. Progress in Chemistry, 2022, 34(9): 2063-2080.
[7] Yuexiang Zhu, Weiyue Zhao, Chaozhong Li, Shijun Liao. Pt-Based Intermetallic Compounds and Their Applications in Cathodic Oxygen Reduction Reaction of Proton Exchange Membrane Fuel Cell [J]. Progress in Chemistry, 2022, 34(6): 1337-1347.
[8] Shiying Yang, Danyang Fan, Xiaojuan Bao, Peiyao Fu. Modification Mechanism of Zero-Valent Aluminum by Carbon Materials [J]. Progress in Chemistry, 2022, 34(5): 1203-1217.
[9] Yangyang Liu, Zigang Zhao, Hao Sun, Xianghui Meng, Guangjie Shao, Zhenbo Wang. Post-Treatment Technology Improves Fuel Cell Catalyst Stability [J]. Progress in Chemistry, 2022, 34(4): 973-982.
[10] Wei Zhang, Kang Xie, Yunhao Tang, Chuan Qin, Shan Cheng, Ying Ma. Application of Transition Metal Based MOF Materials in Selective Catalytic Reduction of Nitrogen Oxides [J]. Progress in Chemistry, 2022, 34(12): 2638-2650.
[11] Xiangchun Tang, Jiaxiang Chen, Lina Liu, Shijun Liao. Pt-Based Electrocatalysts with Special Three-Dimensional Morphology or Nanostructure [J]. Progress in Chemistry, 2021, 33(7): 1238-1248.
[12] Song Jiang, Jiapei Wang, Hui Zhu, Qin Zhang, Ye Cong, Xuanke Li. Synthesis and Applications of Two-Dimensional V2C MXene [J]. Progress in Chemistry, 2021, 33(5): 740-751.
[13] Gaojie Yan, Qiong Wu, Linghua Tan. Design, Synthesis and Applications of Nitrogen-Rich Azole-Based Energetic Metal Complexes [J]. Progress in Chemistry, 2021, 33(4): 689-712.
[14] Qi Yang, Nanping Deng, Bowen Cheng, Weimin Kang. Gel Polymer Electrolytes in Lithium Batteries [J]. Progress in Chemistry, 2021, 33(12): 2270-2282.
[15] Siyan Yu, Long Zheng, Pengfei Meng, Xiudong Shi, Shijun Liao. M-N/C Electrocatalysts Derived from MOFs for Oxygen Reduction Reaction [J]. Progress in Chemistry, 2021, 33(10): 1693-1705.