中文
Announcement
More
Progress in Chemistry 2023, Vol. 35 Issue (11): 1559-1578 DOI: 10.7536/PC230513   Next Articles

• Review •

Proton Exchange Membranes Based on All-Carbon Backbone Aromatic Polymers

Li Tingting1, Li Haibin1, Liu Binghui2, Zhao Chengji2, Li Haolong1,2()   

  1. 1 State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University,Changchun 130012, China
    2 Key Laboratory of High Performance Plastics, Ministry of Education, College of Chemistry, Jilin University,Changchun 130012, China
  • Received: Revised: Online: Published:
  • Contact: Li Haolong
  • Supported by:
    National Natural Science Foundation of China(92261110); National Natural Science Foundation of China(22075097)
Richhtml ( 47 ) PDF ( 288 ) Cited
Export

EndNote

Ris

BibTeX

Proton exchange membranes are widely used in energy storage and conversion technologies such as fuel cells, redox flow batteries, and water electrolysis, which are key materials urgently needed under the “dual carbon” goal. Perfluorosulfonic acid membranes show high proton conductivity and mechanical properties, which are currently the most widely used proton exchange membranes materials. However, these membranes suffer from the following disadvantages, such as greatly decreased proton conductivity at low humidity conditions, low glass transition temperature, and complex synthesis process. In the past decades, efforts have been devoted to the development of various alternative materials, such as polyether ether ketone, polyphenylene oxide, polysulfone and polyimide. However, the main chains of these polymers usually contain heteroatoms. Upon working in a complex practical condition for a long time, the heteroatom position is prone to break, which reduces the chemical stability of these materials. In contrast, the all-carbon backbone aromatic polymers have excellent chemical stability, thermal stability, and mechanical properties, and are a class of potential alternative materials that have attracted extensive attention in recent years. In this review paper, we summarize the recent research progress of all-carbon backbone aromatic polymers, focusing on the synthesis strategies, structure-performance relationships, as well as the applications of these polymers in proton exchange membranes.

Contents

1 Introduction

2 Proton exchange membranes based on polyphenylenes

2.1 Synthesis and general properties

2.2 Straight-chain sulfonated polyphenylene proton exchange membranes

2.3 Curve-chain sulfonated polyphenylene proton exchange membranes

3 Proton exchange membranes based on phenylated polyphenylenes

3.1 Synthesis and general properties

3.2 Sulfonated phenylated polyphenylene proton exchange membranes

3.3 Phosphoric acid doped phenylated polyphenylene proton exchange membranes

4 Proton exchange membranes based on poly(arylene-alkane)s

4.1 Synthesis and general properties

4.2 Sulfonated poly(arylene-alkane) proton exchange membranes

4.3 Phosphorylated poly(arylene-alkane) proton exchange membranes

4.4 Phosphoric acid doped poly(arylene-alkane) proton exchange membranes

5 Conclusion and outlook

Table 1 Typical structures and synthesis methods of polyphenylenes, phenylated polyphenylenes and poly(arylene-alkane)s
Fig.1 Polyphenylenes was synthesized by coupling reaction induced by nickel catalysts[36,42,43,45,46]
Fig.2 Sulfonated polyphenylenes was synthesized by Ullmann coupling reaction[44]
Fig.3 Chemical structures of some polyphenylenes: (a) PBPDSA, (b) PPDSA, (c) BXPY, (d) PPDSA-g-DDB3-24%, PPDSA-g-OcB11-16% and B20P80-g-OcB7-18%, (e) B20P80-g-BP10%-210C-3h[44,47,48]
Fig.4 Chemical structure of (a) SPP-BP-CH3 and SPP-BP-CF3 (b) SBAF[49,51]
Fig.5 Chemical structures of (a) SPP-QP and (b) SPP-BP[42,54]
Fig.6 Synthesis of QP monomer[42]
Fig.7 (a) Synthesis of phenylated polyphenylenes by Diels-Alder condensation, (b) synthesis of 1,4-bis(2,4,5-triphenylcyclopentadienone)benzene[58⇓⇓~61]
Fig.8 Synthesis of phenylated polyphenylene sPPP-H+ by pre-sulfonated monomer approach[65]
Fig.9 Chemical structure of some phenylated polyphenylenes: (a) sPPB-H+, (b) sPPN-H+, (c) sPPB (x% DB)-H+, (d) sTPPyPP-H+[66,70~72]
Table 2 Young’s modulus, tensile strength, elongation at break, thermal decomposition temperature and Fenton’s reagent test of some phenylated polyphenylenes
Fig.10 Chemical structure of PA-doped QAPOH[75]
Fig.11 Synthesis of poly(arylene-alkane)s by Friedel-Crafts reaction[83⇓~85,87,89,90]
Fig.12 Several methods of sulfonation of poly(arylene-alkane)s[90,94⇓~96,98⇓⇓ ~101]
Fig.13 Fenton’s reagent test of PPx membranes at 80℃: (a) initial state and after 5 h, and (b) after 260 h[110]
Fig.14 Synthesis of the PTP polymer and the subsequent grafting with different quaternized reagents[112]
Table 3 Fenton’s reagent test of some poly(arylene-alkane) proton exchange membranes
[1]
Liu Z C, Yi X D, Gao F X, Xie Z K, Han B X, Sun Y H, He M Y, Yang J L. Acta Phys. Chim. Sin., 2021, 2112029.
[2]
Xie Z K, Wang Y D, Liu Z C. Sci. Sin. Chim., 2014, 44(9): 1394.
[3]
Khataee A, Nederstedt H, Jannasch P, Lindström R W. J. Membr. Sci., 2023, 671: 121390.
[4]
Park E J, Arges C G, Xu H, Kim Y S. ACS Energy Lett., 2022, 7(10): 3447.
[5]
Wang G, Li J L, Shang L C, He H B, Cui T T, Chai S C, Zhao C J, Wu L X, Li H L. CCS Chem., 2022, 4(1): 151.
[6]
Xiang Y, Lu S F, Jiang S P. Chem. Soc. Rev., 2012, 41(21): 7291.
[7]
Zeng M H, Liu W Q, Guo H K, Li T T, Li Q J, Zhao C J, Li X J, Li H L. ACS Appl. Energy Mater., 2022, 5(7): 9058.
[8]
Parekh A. Front. Energy Res., 2022, 10: 956132.
[9]
Esmaeili N, Gray E M, Webb C J. ChemPhysChem, 2019, 20: 2016.
[10]
Miyake J, Miyatake K. Polym. J., 2017, 49(6): 487.
[11]
Shi X Y, Ma Y N, Huo X Y, Esan O C, An L. Int. J. Green Energy, 2021, 1. DOI: 10.1080/15435075.2021.2010085.
[12]
Ahmad Zakil F, Kamarudin S K, Basri S. Renew. Sustain. Energy Rev., 2016, 65: 841.
[13]
Haider R, Wen Y C, Ma Z F, Wilkinson D P, Zhang L, Yuan X X, Song S Q, Zhang J J. Chem. Soc. Rev., 2021, 50(2): 1138.
[14]
Hauch A, Dalgaard Ebbesen S, Jensen S H, Mogensen M. J. Mater. Chem., 2008, 18(20): 2331.
[15]
He H B, Zhu Y L, Li T T, Song S H, Zhai L, Li X, Wu L X, Li H L. ACS Nano, 2022, 16(11): 19240.
[16]
Qu E L, Cheng G, Xiao M, Han D M, Huang S, Huang Z H, Liu W, Wang S J, Meng Y Z. J. Mater. Chem. A, 2023, 11: 12885.
[17]
Tang H Y, Geng K, Hu Y X, Li N W. J. Membr. Sci., 2020, 605: 118107.
[18]
Zhang J J, Zhang J, Wang H N, Xiang Y, Lu S F. Acta Phys. Chimica Sin., 2020, 2010071.
[19]
Guo Z M, Perez-Page M, Chen J N, Ji Z Q, Holmes S M. J. Energy Chem., 2021, 63: 393.
[20]
Dai J M, Zhang Y, Wang G, Zhuang Y B. Sci. China Mater., 2022, 65(2): 273.
[21]
He D L, Liu G L, Wang A L, Ji W X, Wu J N, Tang H L, Lin W R, Zhang T Y, Zhang H N. J. Membr. Sci., 2022, 650: 120442.
[22]
Wang J, Liu G L, Wang A L, Ji W X, Zhang L G, Zhang T Y, Li J, Pan H F, Tang H L, Zhang H N. J. Membr. Sci., 2023, 669: 121332.
[23]
Wang L, Wu Y N, Fang M L, Chen J L, Liu X T, Yin B B, Wang L,. J. Membr. Sci., 2020, 602: 117981.
[24]
Maurya S, Shin S H, Kim Y, Moon S H. RSC Adv., 2015, 5(47): 37206.
[25]
Merle G, Wessling M, Nijmeijer K. J. Membr. Sci., 2011, 377(1/2): 1.
[26]
Varcoe J R, Atanassov P, Dekel D R, Herring A M, Hickner M A, Kohl P A, Kucernak A R, Mustain W E, Nijmeijer K, Scott K, Xu T W, Zhuang L. Energy Environ. Sci., 2014, 7(10): 3135.
[27]
Inaba M, Kinumoto T, Kiriake M, Umebayashi R, Tasaka A, Ogumi Z. Electrochimica Acta, 2006, 51(26): 5746.
[28]
Liao J H, Li Q F, Rudbeck H C, Jensen J O, Chromik A, Bjerrum N J, Kerres J, Xing W. Fuel Cells, 2011, 11(6): 745.
[29]
Wu J F, Yuan X Z, Martin J J, Wang H J, Zhang J J, Shen J, Wu S H, Merida W. J. Power Sources, 2008, 184(1): 104.
[30]
Li N W, Guiver M D. Macromolecules, 2014, 47(7): 2175.
[31]
Adamski M, Peressin N, Holdcroft S. Mater. Adv., 2021, 2(15): 4966.
[32]
Zhang X, Higashihara T, Ueda M, Wang L. Polym. Chem., 2014, 5(21): 6121.
[33]
Chen N J, Hu C, Wang H H, Kim S P, Kim H M, Lee W H, Bae J Y, Park J H, Lee Y M. Angewandte Chemie Int. Ed., 2021, 60(14): 7710.
[34]
Chen N J, Paek S Y, Lee J Y, Park J H, Lee S Y, Lee Y M. Energy Environ. Sci., 2021, 14(12): 6338.
[35]
Chen N J, Wang H H, Kim S P, Kim H M, Lee W H, Hu C, Bae J Y, Sim E S, Chung Y C, Jang J H, Yoo S J, Zhuang Y B, Lee Y M. Nat. Commun., 2021, 12: 2367.
[36]
Long Z, Miyatake K. ACS Appl. Mater. Interfaces, 2021, 13(13): 15366.
[37]
Shiino K, Otomo T, Yamada T, ARIMA H, Hiroi K, Takata S, Miyake J, Miyatake K. ACS Appl. Polym. Mater., 2020, 2(12): 5558.
[38]
Kallitsis J K, Rehahn M, Wegner G. Makromol. Chem., 1992, 193(4): 1021.
[39]
Marcus R, Beate M, Kai M, Hans-Joachim R, Werner K. Macromolecules, 1999, 32(4): 1073.
[40]
Yamamoto T, Hayashi Y, Yamamoto A. Bull. Chem. Soc. Jpn., 1978, 51(7): 2091.
[41]
Schlüter A D, Wegner G. Acta Polym., 1993, 44(2): 59.
[42]
Miyake J, Taki R, Mochizuki T, Shimizu R, Akiyama R, Uchida M, Miyatake K. Sci. Adv., 2017, 3(10): eaao0476.
[43]
Si K, Wycisk R, Dong D X, Cooper K, Rodgers M, Brooker P, Slattery D, Litt M. Macromolecules, 2013, 46(2): 422.
[44]
Si K, Dong D X, Wycisk R, Litt M. J. Mater. Chem., 2012, 22(39): 20907.
[45]
Ghassemi H, McGrath J E. Polymer, 2004, 45(17): 5847.
[46]
Liu F H, Miyatake K. J. Mater. Chem. A, 2022, 10(14): 7660.
[47]
Litt M, Granados-Focil S, Kang J, Si K, Wycisk R. ECS Trans., 2010, 33(1): 695.
[48]
Kun S, Morton H L. ECS Trans., 2019, 41: 1645.
[49]
Ahn J, Shimizu R, Miyatake K. J. Mater. Chem. A, 2018, 6(47): 24625.
[50]
Kobayashi T, Rikukawa M, Sanui K, Ogata N. Solid State Ionics, 1998. 106(3/4): 219.
[51]
Liu F H, Ahn J, Miyake J, Miyatake K. Polym. Chem., 2021, 12(42): 6101.
[52]
Rodgers M, Yang Y S, Holdcroft S. Eur. Polym. J., 2006, 42(5): 1075.
[53]
Long Z, Zhang Y J, Miyake J, Miyatake K. Ind. Eng. Chem. Res., 2019, 58(23): 9915.
[54]
Shiino K, Miyake J, Miyatake K. Chem. Commun., 2019, 55(49): 7073.
[55]
Holmes T, Skalski T J G, Adamski M, Holdcroft S. Chem. Mater., 2019, 31(4): 1441.
[56]
Peressin N, Adamski M, Schibli E M, Ye E, Frisken B J, Holdcroft S. Macromolecules, 2020, 53(8): 3119.
[57]
Rusanov A L, Likhachev D Y, Kostoglodov P V, Belomoina N M. Polym. Sci. Ser. C, 2008, 50(1): 39.
[58]
Berresheim A J, Müller M, Müllen K. Chem. Rev., 1999, 99(7): 1747.
[59]
Fujimoto C H, Hickner M A, Cornelius C J, Loy D A. Macromolecules, 2005, 38(12): 5010.
[60]
Mukamal H, Harris F W, Stille J K. J. Polym. Sci. Part A 1 Polym. Chem., 1967, 5(11): 2721.
[61]
Walter R, Karl Heinz B. Chem. Ber., 2006, 93: 1769.
[62]
Cherry B R, Fujimoto C H, Cornelius C J, Alam T M. Macromolecules, 2005, 38(4): 1201.
[63]
Sorte E G, Paren B A, Rodriguez C G, Fujimoto C, Poirier C, Abbott L J, Lynd N A, Winey K I, Frischknecht A L, Alam T M. Macromolecules, 2019, 52(3): 857.
[64]
Adamski M, Skalski T J G, Xu S Y, Killer M, Schibli E M, Frisken B J, Holdcroft S. Polym. Chem., 2019, 10(13): 1668.
[65]
Skalski T J G, Britton B, Peckham T J, Holdcroft S. J. Am. Chem. Soc., 2015, 137(38): 12223.
[66]
Adamski M, Skalski T J G, Britton B, Peckham T J, Metzler L, Holdcroft S. Angewandte Chemie Int. Ed., 2017, 56(31): 9058.
[67]
Skalski T J G, Adamski M, Britton B, Schibli E M, Peckham T J, Weissbach T, Moshisuki T, Lyonnard S, Frisken B J, Holdcroft S. ChemSusChem, 2018, 11(23): 4033.
[68]
Voit B I, Lederer A. Chem. Rev., 2009, 109(11): 5924.
[69]
Graessley W W. Acc. Chem. Res., 1977, 10(9): 332.
[70]
Adamski M, Skalski T J G, Schibli E M, Killer M, Wu Y, Peressin N, Frisken B J, Holdcroft S. J. Membr. Sci., 2020, 595: 117539.
[71]
Xu S Y, Adamski M, Killer M, Schibli E M, Frisken B J, Holdcroft S. Macromolecules, 2019, 52(6): 2548.
[72]
Xu S Y, Wu Y, Adamski M, Fraser K, Holdcroft S. J. Mater. Chem. A, 2020, 8(45): 23866.
[73]
Gittleman C S, Jia H F, De Castro E S, Chisholm C R I, Kim Y S. Joule, 2021, 5(7): 1660.
[74]
Jiao K, Xuan J, Du Q, Bao Z M, Xie B, Wang B W, Zhao Y, Fan L H, Wang H Z, Hou Z J, Huo S, Brandon N P, Yin Y, Guiver M D. Nature, 2021, 595(7867): 361.
[75]
Lee K S, Spendelow J S, Choe Y K, Fujimoto C, Kim Y S. Nat. Energy, 2016, 1(9): 16120.
[76]
Xu G, Pan J, Zou X, Jin Z, Zhang J, Fang P, Zhang Q, Sun Z, Yan F. Adv. Funct. Mater., 2023, DOI: 10.1002/adfm.202302364.
[77]
Yu W S, Ge Z J, Zhang K Y, Liang X, Ge X L, Wang H J, Li M, Shen X H, Xu Y, Wu L, Xu T W. Ind. Eng. Chem. Res., 2022, 61(12): 4329.
[78]
Jang M J, Yang S H, Park M G, Jeong J, Cha M S, Shin S H, Lee K H, Bai Z Y, Chen Z W, Lee J Y, Choi S M. ACS Energy Lett., 2022, 7(8): 2576.
[79]
Du X M, Wang Z, Zhang H Y, Yuan Y J, Wang H, Zhang Z G. J. Membr. Sci., 2021, 619: 118805.
[80]
Liu B H, Duan Y T, Li T T, Li J L, Zhang H Q, Zhao C J. Sep. Purif. Technol., 2022, 282: 120032.
[81]
Liu B H, Li T T, Li Q J, Zhu S Y, Duan Y T, Li J L, Zhang H Q, Zhao C J. J. Membr. Sci., 2022, 660: 120816.
[82]
Guillory J K. J. Med. Chem., 2009, 52(17): 5560.
[83]
Li X F, Yang K, Wang Z M, Chen Y H, Li Y G, Guo J, Zheng J F, Li S H, Zhang S B. Macromolecules, 2022, 55(23): 10607.
[84]
Mancilla E C, Hernández-Martínez H, Zolotukhin M G, Alberto Ruiz-Treviño F, González-Díaz M O, Cardenas J, Scherf U. Ind. Eng. Chem. Res., 2019, 58(33): 15280.
[85]
Olvera L I, Guzmán-GutiÉrrez M T, Zolotukhin M G, Fomine S, Cárdenas J, Ruiz-Trevino F A, Villers D, Ezquerra T A, Prokhorov E. Macromolecules, 2013, 46(18): 7245.
[86]
Wang J H, Zhao Y, Setzler B P, Rojas-Carbonell S, Ben Yehuda C, Amel A, Page M, Wang L, Hu K D, Shi L, Gottesfeld S, Xu B J, Yan Y S. Nat. Energy, 2019, 4(5): 392.
[87]
Zhou S Y, Guan J Y, Li Z Q, Zhang Q F, Zheng J F, Li S H, Zhang S B. Macromolecules, 2021, 54(13): 6543.
[88]
Cruz A R, Hernandez M C G, Guzmán-GutiÉrrez M T, Zolotukhin M G, Fomine S, Morales S L, Kricheldorf H, Wilks E S, Cárdenas J, SalmÓn M. Macromolecules, 2012, 45(17): 6774.
[89]
Ryu T, Ahmed F, Sutradhar S C, Lopa N S, Yang H M, Yoon S, Lee S, Choi I, Kim W. Int. J. Hydrog. Energy, 2018, 43(26): 11862.
[90]
Xue B X, Zhu M Z, Fu S Q, Huang P P, Qian H D, Liu P N. J. Membr. Sci., 2023, 673: 121263.
[91]
Khomein P, Ketelaars W, Lap T, Liu G. Renew. Sustain. Energy Rev., 2021, 137: 110471.
[92]
Xiao F, Wang Y C, Wu Z P, Chen G Y, Yang F, Zhu S Q, Siddharth K, Kong Z J, Lu A L, Li J C, Zhong C J, Zhou Z Y, Shao M H. Adv. Mater., 2021, 33(50): 2006292.
[93]
Chen Y H, Liu C F, Xu J C, Xia C F, Wang P, Xia B Y, Yan Y, Wang X Y. Small Struct., 2023, 4(6): 202200130.
[94]
Lee S, Lim Y, Hossain M A, Jang H, Jeon Y, Lee S, Jin L, Kim W. Renew. Energy, 2015, 79: 72.
[95]
Xu F, Chen Y B, Li J, Han Y Y, Lin B C, Ding J N. J. Membr. Sci., 2022, 664: 121045.
[96]
Ryu T, Jang H, Ahmed F, Lopa N S, Yang H M, Yoon S, Choi I, Kim W. Int. J. Hydrog. Energy, 2018, 43(10): 5398.
[97]
Zuo P P, Li Y Y, Wang A Q, Tan R, Liu Y H, Liang X, Sheng F M, Tang G G, Ge L, Wu L, Song Q L, McKeown N B, Yang Z J, Xu T W. Angew. Chem. Int. Ed., 2020, 59(24): 9564.
[98]
Pagels M K, Adhikari S, Walgama R C, Singh A, Han J, Shin D, Bae C. ACS Macro Lett., 2020, 9(10): 1489.
[99]
Li W H, Zhang R, Zhao X Y, Yue Z Y, Qian H D, Yang H. J. Mater. Chem. A, 2023, 11(9): 4547.
[100]
Kang N R, Pham T H, Jannasch P. ACS Macro Lett., 2019, 8(10): 1247.
[101]
Nederstedt H, Jannasch P. J. Membr. Sci., 2022, 647: 120270.
[102]
Bock T, Möhwald H, Mülhaupt R. Macromol. Chem. Phys., 2007, 208(13): 1324.
[103]
Date B, Han J, Park S, Park E J, Shin D, Ryu C Y, Bae C. Macromolecules, 2018, 51(3): 1020.
[104]
Jang S, Kim S Y, Jung H Y, Park M J. Macromolecules, 2018, 51(3): 1120.
[105]
Sen U, Erkartal M, Kung C W, Ramani V, Hupp J T, Farha O K. ACS Appl. Mater. Interfaces, 2016, 8(35): 23015.
[106]
Tamura Y, Sheng L, Nakazawa S, Higashihara T, Ueda M. J. Polym. Sci. A Polym. Chem., 2012, 50(20): 4334.
[107]
Abu-Thabit N Y, Ali S A, Javaid Zaidi S M. J. Membr. Sci., 2010, 360(1/2): 26.
[108]
Dimitrov I, Takamuku S, Jankova K, Jannasch P, Hvilsted S. J. Membr. Sci., 2014, 450: 362.
[109]
Shao Z C, Sannigrahi A, Jannasch P. J. Polym. Sci. A Polym. Chem., 2013, 51(21): 4657.
[110]
Kang N R, Pham T H, Nederstedt H, Jannasch P. J. Membr. Sci., 2021, 623: 119074.
[111]
Bai H J, Peng H Q, Xiang Y, Zhang J, Wang H N, Lu S F, Zhuang L. J. Power Sources, 2019, 443: 227219.
[112]
Jin Y P, Wang T, Che X F, Dong J H, Liu R H, Yang J S. J. Membr. Sci., 2022, 641: 119884.
[113]
Jin Y P, Wang T, Che X F, Dong J H, Li Q F, Yang J S. J. Power Sources, 2022, 526: 231131.
[114]
Tang H Y, Gao J, Wang Y D, Li N W, Geng K. Chem. A Eur. J., 2022, 28(70): e202202064.
[115]
Wen L, Wen L, Jin Z, Haining W, Shanfu L, Yan X. Adv. Funct. Mater., 2022, 33(6): 2210036.
[116]
Zhou S Y, Guan J Y, Li Z Q, Huang L, Zheng J F, Li S H, Zhang S B. J. Mater. Chem. A, 2021, 9(7): 3925.
[117]
Ju Q, Tang H Y, Chao G, Guo T G, Geng K, Li N W. J. Mater. Chem. A, 2022, 10(47): 25295.
[1] Mengrui Yang, Yuxin Xie, Dunru Zhu. Synthetic Strategies of Chemically Stable Metal-Organic Frameworks [J]. Progress in Chemistry, 2023, 35(5): 683-698.
[2] Zhang Huidi, Li Zijie, Shi Weiqun. The Stability Enhancement of Covalent Organic Frameworks and Their Applications in Radionuclide Separation [J]. Progress in Chemistry, 2023, 35(3): 475-495.
[3] Yu Bai, Shuanjin Wang, Min Xiao, Yuezhong Meng, Chengxin Wang. Phosphoric Acid Based Proton Exchange Membranes for High Temperature Proton Exchange Membrane Fuel Cells [J]. Progress in Chemistry, 2021, 33(3): 426-441.
[4] Xi Liang, Cheng Wang, Yijie Lei, Yadi Liu, Bo Zhao, Feng Liu. Potential Applications of Metal Organic Framework-Based Materials for Proton Exchange Membrane Fuel Cells [J]. Progress in Chemistry, 2018, 30(11): 1770-1783.
[5] Wang Nanfang, Liu Suqin*. Preparation and Properties of Separation Membranes for Vanadium Redox Flow Battery [J]. Progress in Chemistry, 2013, 25(01): 60-68.
[6] . Bismuth (V)-Contained Semiconductor Compounds and Their Applications in Heterogeneous Photocatalysis [J]. Progress in Chemistry, 2010, 22(09): 1729-1734.
[7] Wu Xiaohui Guo Hang Ye Fang Ma Chongfang. Application of Silicon in Micro Fuel Cells [J]. Progress in Chemistry, 2009, 21(6): 1344-1348.
[8] Li Lei Shang Yuming Xie Xiaofeng Feng Shaoguang Jiang Jinzhi. Development of Porous -PTFE Reinforced Proton Exchange Membranes [J]. Progress in Chemistry, 2009, 21(0708): 1611-1618.
[9] . Ionic Conductivity in Mesoporous Materials [J]. Progress in Chemistry, 2009, 21(04): 765-770.
[10] Hua Dai,Rong Guan**,Lijuan Wang. The Research Progress of Sulfonated Polysulfone Proton Exchange Membrane for Fule Cells [J]. Progress in Chemistry, 2006, 18(01): 36-44.